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We present a novel approach for rapidly identifying sequences that leverages the
representational power of Deep Learning techniques and is applied to the analysis of
microbiome data. The method involves the creation of a latent sequence space, training a
convolutional neural network to rapidly identify sequences by mapping them into that
space, and we leverage the novel encoded latent space for denoising to correct
sequencing errors. Using mock bacterial communities of known composition, we show
that this approach achieves single nucleotide resolution, generating results for sequence
identification and abundance estimation that match the best available microbiome
algorithms in terms of accuracy while vastly increasing the speed of accurate
processing. We further show the ability of this approach to support phenotypic
prediction at the sample level on an experimental data set for which the ground truth
for sequence identities and abundances is unknown, but the expected phenotypes of the
samples are definitive. Moreover, this approach offers a potential solution for the analysis of
data from other types of experiments that currently rely on computationally intensive
sequence identification.
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INTRODUCTION

The identification of known sequences and of new variants related to known sequences has been
foundational to biological science over decades. The original Smith-Waterman algorithm (Smith and
Waterman, 1981) identified the most optimal alignments between sequences but was
computationally demanding and therefore slow. BLAST was first introduced in 1990 (Altschul
et al., 1990) as a more rapid approximation and has evolved to its current form (Camacho et al., 2009)
as themain workhorse for sequence identification. The use of k-mers (Edgar, 2004) has also become a
widely used method for faster rapid approximations based on string searches and counts. Because of
the large numbers of reads found in many experimental microbiome samples and the frequency with
which bacteria contain multiple copies of the 16S gene many times with single-base variation, there is
a need for a solution that can further reduce computational demands on sequence identification
while simultaneously providing single-base resolution of sequence variation. Moreover, improved
methodology for identification of which single-base variants in a microbiome sample represent
sequencing errors and which are likely to be true biological sequence variants would assist in
obtaining accurate abundance results.

A search of PubMed using the term “Microbiome” generates over 100,000 listings and a graph
showing exponential growth over the last 10 years. The Human Microbiome Project (https://portal.
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hmpdacc.org/), which contains just 18 microbiome studies,
contains over 30,000 samples. Most published microbiome
studies contain small number of samples, and therefore, their
statistical resolving power is low. In order to increase the
resolving power of studies on a specific subject, larger studies
containing many thousands of samples are desirable, and the
capability to combine multiple studies for meta-analysis would be
useful. In either case, this means that thousands of samples would
need to be processed with speed and accuracy using a single set of
analysis tools. Reduction in the computational burdens of using
these tools would promote the ability of more researchers to
conduct studies with larger samples.

The output of commonly used microbiome tools falls into two
general categories: operational taxon units (OTUs) that group
together closely related strains into higher level taxonomic units
and amplicon sequence variants (ASVs) that strive to achieve the
base pair level accuracy required to bring taxonomic
identification to the strain level. The microbiome analysis
pipeline tool QIIME2 (Bokulich et al., 2018) uses the widely
adopted VSEARCH algorithm (Rognes et al., 2016) for
microbiome data analysis at the OTU level, while also
permitting optional selection of a broader range of algorithms.
VSEARCH uses a k-mer-based approach to speed sequence
identification and error resolution, originally inspired by
USEARCH (Edgar, 2010). USEARCH evolved to include
UPARSE (Edgar, 2013) for OTU analysis using default 97%
identity for clustering. Many clustering methods including
mothur-average (Schloss et al., 2009), UPARSE, and UCLUST
(Edgar, 2010) are benchmarked and compared in Kopylova et al.
(2016) and applied to test microbiota data sets at the OTU level.

OTU methods intentionally speed analysis by settling for
higher level taxonomic resolution and that is frequently
sufficient for phenotypic studies. ASV methods take on the
additional challenge of trying to achieve finer-grained
taxonomic resolution by distinguishing sequence variation that
is due to errors in the sequencing process from true biological
sequence variants. Among ASV methods, the DADA2
microbiome analysis tool (Callahan et al., 2016) uses a
probabilistic model to identify amplicon sequence variants
(ASVs) with high sequence fidelity and has been chosen by
multiple comparative studies as having the highest biological
resolution for differentiating closely related and/or low
abundance strains (Nearing et al., 2018; Caruso et al., 2019;
Prodan et al., 2020). The UNOISE3 algorithm (Edgar, 2016)
uses a kmer-based approach to sequence identification and error
correction to produce ASVs. UCLUST, UPARSE, VSEARCH,
and UNOISE3 allow for pooling all samples or clustering
sequence reads for each sample individually for error
correction. DADA2 uses a subset of samples to learn its error
profile and then applies this error model to one sample at a time.
The Deblur algorithm (Amir et al., 2017) operates on each sample
separately for clustering to identify ASVs. Caruso et al. (2019)
found DADA2 and UNOISE to be preferable for maximizing
detection of true community members but note Deblur may be
more appropriate for minimizing detection of spurious ASVs.
UNOISE has been shown to have significantly higher speed
(Nearing et al., 2018) than DADA2. Performance benchmarks

and detailed comparison of the algorithmic similarities and
differences among the VSEARCH, DADA2 and UNOISE3
algorithms is given in Tremblay and Yergeau (2019) and
among DADA2, UNOISE3 and Deblur in Nearing et al. (2018).

Microbiomics is an ideal field for applying recent advances in
machine learning that may offer speed advantages in
combination with high accuracy when there is sufficient
training data available. There is a large quantity of publicly
shared microbiome data, with countless studies revealing the
pivotal role microbial populations play in establishing and
maintaining healthy conditions within diverse set of
ecosystems, including the human body. The gut microbiome
alone has been implicated in bone and brain development,
obesity, diabetes, autoimmune conditions, autism,
cardiovascular disease, metabolic disorders, inflammatory
bowel disorders, and drug response (Cho and Blaser, 2012;
Jandhyala et al., 2015; Levy et al., 2017; Thursby and Juge,
2017; Barlow et al., 2018; Gilbert et al., 2018). The presence or
absence of certain bacterial populations are often directly linked
to these medical conditions. Effective tools for characterizing
healthy versus unhealthy microbial populations with resolution
as close to the strain level as possible have an important impact on
biological discovery, potentially leading to new diagnostics and
treatments. Soil and plant microbiomes are also subjects of active
research, where the same tools can be applied to determine
microbial composition and lead to valuable interventions.

Unprecedented levels of accuracy in other fields have been
achieved by the expansion of machine learning through the
development of Deep Learning algorithms. In 2012, the
convolutional network AlexNet created a sensation with its
dramatic improvement demonstrated in an established
computer vision competition using the ImageNet challenge
data (Krizhevsky et al., 2012). Since then, image based neural
networks have continued to evolve, both in terms of architecture
and training strategies, from recurrent neural networks to the
now widely applied Transformer (Vaswani et al., 2017) design.
Aside from computer vision, these algorithms have
revolutionized other important areas such as speech and text
recognition and have created headline news with vast AI
improvements in specialized domains such as board games
[e.g., AlphaGo (Silver et al., 2016)] and protein folding
[AlphaFold (Jumper et al., 2021)].

Deep learning algorithms have been applied to classify the
phenotype of microbiome and metagenome samples. Asgari et al.
(2018) showed that deep learning can outperform random forest
classifiers and support vector machines for phenotypic prediction
from 16S data when the number of samples is large. Zhao et al.
(2021) use kmer embeddings and convolutional neural networks,
recurrent neural networks, and attention mechanisms to predict
taxonomic classifications and sample-associated attributes of
whole microbiome data at the level of a read. They use
additional methods such as voting to determine the phenotype
of each sample from the deep-learning-predicted phenotype of
the reads. This enables the predictor to consider many thousands
of read sequences and it achieves accuracy at phenotypic
prediction comparable to existing methods. An early
application of deep recursive neural networks to metagenomic
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data did not show much improvement over other methods for
metagenomic classification but the ability to learn hierarchical
representations of a data set that is produced could be useful
(Ditzler et al., 2015). Furusawa et al. (2021) chose an unusual
approach to perform image analysis on Gram-stained fecal
samples to classify their microbiome state with a deep
convolutional neural network. Although the prediction success
was low for fecal state, particularly on samples from adjacent time
points, it had more success in predicting quantitative changes in
microbial abundances. García-Jiménez et al. (2021) explored the
creation of deep latent spaces for prediction of the ecological
composition of a microbiome sample using minimal sequencing
features and incorporating sample environmental metadata such
as rainfall and plant age. These methods are generally not
intended to produce exact microbial composition based on
rigorous sequence variant identification or optimal abundance
estimates at the level of ASVs. They focus more on the ability to
accurately categorize the sample as a whole with respect to a
relevant phenotype (i.e., a population characteristic of interest).
However, for a deeper understanding of the microbial population,
the population dynamics and the ability to approach the
mechanisms by which the microbiome exerts its influence, an
accurate analysis of its composition at the true sequence variation
level provides more scientific insight than a phenotypic classifier.

Sequence identification in the closely related field of
metagenomics is an area where deep learning algorithms are
beginning to be applied. The Seeker tool (Auslander et al., 2020)
addresses the challenging problem of detecting bacteriophage in
metagenomic sequence data since bacteriophage evolve rapidly,
quickly losing sequence similarity to known bacteriophage. It uses
Long Short-TermMemory (LSTM) networks, a type of Recurrent
Neural Network (RNN), trained on bacteriophage and bacteria
sequences to detect subtle differences in sequence usage and is
able to predict which sequences in the metagenome are
bacteriophage and which are from bacteria, even when
homology to known bacteriophage is very low. Virfinder2
(Ren et al., 2020) is a convolutional neural network (CNN)
that learned to predict viral sequences by training on the
differences between prokaryotic and viral DNA sequences. Its
success does not rely on known sequence homologies or use of
pre-defined features such as kmers. While using more traditional
machine learning and not deep learning, the VirSorter2 algorithm
(Guo et al., 2021) has demonstrated considerable success in
identifying both RNA and DNA viruses within metagenomic
samples. It relies on a collection of known viral motifs and
annotations that are used as input features to a set of random
forest classifiers each trained on a major viral group. Its modular
design allows for easy updates as known viral diversity grows.
While each of these tools is successful at sequence analysis and
appropriate for metagenomics, their algorithmic approaches are
not readily adapted for microbiome analysis that relies on 16S
amplicon sequences from a single bacterial gene and then
attempts to identify the population of bacteria represented by
those sequences.

Herein, we describe a deep learning approach to finding ASVs
and obtaining their abundance estimates on sample sequencing
data obtained from mock communities of known bacterial

composition. We will show that using a latent sequence space
based on all known bacterial V4 sequences from the 16S gene and
using a Convolutional Neural Network algorithm trained to map
V4 sequences obtained from experimental data into this space
will match or better the accuracy of the best available open source
microbiome tools in significantly shorter computational time. A
denoising method that starts with clustering of experimental
sequence data in the V4 16S latent sequence space achieves
accurate abundance estimates. Although motivated by the
desire for improved sensitivity and accurate abundance
estimation of the microbial community, we demonstrate that
the output still supports phenotypic prediction by comparison to
previously published results for four data sets where the exact
microbial composition is unknown, but the phenotypes of the
samples are unambiguous.

This approach may be extensible to other types of
experimental sequence data in addition to microbiome where
single nucleotide resolution, correction of likely sequencing
errors and accurate abundance estimation are desirable. We
refer to this mathematical approach as Deep Learning
Encoding for Rapid Sequence Identification (DERSI).

MATERIALS AND METHODS

In order to identify a method for both rapid and accurate
identification of ASVs from microbiome experiments that use
16S sequence, a series of steps were performed. The steps were
used on data from microbiome sequence analysis using the V4
region of the 16S gene.

1. The first step was to create a 10-dimensional latent space
that encoded the distances among all known bacterial and
archaeal V4 sequences. An overview of this step is presented
in Figure 1. A copy of the Silva rRNA database (Yilmaz et al.,
2014) version 132 that contained alignments for known 16S
sequences was supplemented with sequences from GenBank.
The Silva database consisted of a set of more than 200,000
samples of known 16S sequences placed into alignment with
each other. Due to gaps and insertions, ~50,000 possible nucleic
acid positions are present in this alignment matrix for the full-
length 16S gene. The alignment matrix exhibits extreme sparsity
and any manipulation of it rapidly becomes computationally
infeasible. The number of features was therefore reduced by
eliminating nucleic acid base positions that were present in
less than 0.1% of sequences. The resulting matrix was given to
the Mothur (Schloss et al., 2009) software package as a template
and each of the 16S sequences from GenBank that were not in
that release of Silva were aligned to the template by Mothur tool
using default parameters. The resulting alignment matrix was
then trimmed to the V4 region resulting in 320 nucleic acid
positions (features) and 117,161 unique V4 sequences (samples).

To create the latent sequence space for V4, the pairwise
distances among each of the aligned V4 sequences in the V4
matrix (D) must be accurately reflected in the corresponding
distances among those samples in the latent space (d). First, each
V4 sequence was converted to a one hot vector, and then the
distance to each of the other V4 sequences was calculated based
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on the alignments and the data was sorted by this distance. The
distance (D) reflects the distance between the aligned sequences
and its detailed calculation is presented in the Supplementary
Material Choosing Proper Distance Metrics. Since it is not
computationally feasible to iteratively train the latent space while
rigorously adjusting all of the embedded latent space distances (d)
for every possible pair during every iteration, a sampling method
was used. In order to optimize the latent space to distinguish
single base pair variation, the 300 sequences most similar to each
V4 sequence based on the distance (D) were included in the
sampling. In addition to those 300 nearest sequences to the
current V4 sequence, 200 more were chosen for comparison
to the current sequence by sampling from the remaining 116,860
potential pairs using a dilation formula that biases toward the
most similar remaining sequences with the most distantly related
sequences receiving the lowest sampling representation. The
intention is to provide sufficient accuracy to distinguish closely
related sequences that may differ by as little as a single base using
the embedding distance d.

The mathematical details for the sampling method are given
here. For each known V4 sequence:

1. Convert the sequence to a one-hot vector, calculate and sort
by the distances from this known sequence to all other V4
sequences, selecting the n sequences with smallest distance
to this known sequence

2. Gather additional sampling from the remaining m–n V4
sequences using an exponential schedule such that the ith
sample is at position n p f i in the sorted samples, where the
dilation factor f is found by solving the relation:

N � n × fm−n andf � e
ln(N

n)/(m−n)

Where in this instance:

N = 117,161 unique sequences for the V4 region
m = 500 total number of samplings per sequence
n = 300 number of nearest neighbors included.

After completing these samplings for the distance
comparisons that will be used to ensure the constructed latent
space reflects the actual sequence distances, the next step was to
actually construct the space. Within the latent space, each of the
117,161 V4 sequences was represented as a 10-dimensional
vector. Initial values for each vector were filled at random
using a centered Gaussian with sigma = 10. Determining the
accurate placement for each unique V4 sequence vector in the
latent space was done during an iterative gradient descent
training by adjusting the distances (d) among pairwise
sequences within the 10-dimensional latent space to closely
match the distances calculated for each of the sampled 500
distance comparisons in the original sequence matrix (D).
Thus, for each V4 sequence, a total of 500 pairwise
comparisons were used in each iteration of the gradient
descent training to construct the latent space.

In mathematical terms, given the input sequence space S and
the embedding space E, we seek a mapping
f : S → E, such that for every x, y ∈ S and f (x), f(y) ∈ E, we
obtain D (x, y) ≈ d (f(x), f(y)), where D and d are distance
functions in the original sequence and embedding spaces,
respectively. To ensure that d corresponds to D, we used a
loss function that favors nearest neighbors. The form of this
loss to be used during gradient descent training is
L � (1 − d

D+ϵ)2 � (d−DD+ϵ)2. In addition to the accuracy promoted
by the sampling approach described above, this loss function will
also encourage high resolution for close sequences (small values
of D) for the facilitated detection of single nucleotide base
changes, while permitting lower resolution between highly
divergent sequences. The ϵ ~ 1 regularizes the loss for
vanishing phylogenetic distances.

FIGURE 1 |Overview of Step 1: The construction of a latent space that represents known V4 sequences and their alignment distances with reduced dimensionality
while maintaining a high degree of accuracy.
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The gradient descent training iteratively continued
adjusting distances within the space until the changes to the
average loss function with each iteration fell below five
significant digits. Finally, we note that the metadata was
carried through the process since each Silva/Genbank
sequence in the matrix was a known V4 sequence, so each
10-dimensional vector used in the training was associated with
a known V4 and its taxonomic identity. Additional
mathematical and algorithmic details for the calculation of
D and for the Gradient Descent and its subfunctions are given
in the Supplementary Material.

2. The second step was to train a deep learning algorithm so
that it could take any V4 sequence and map it into the previously
built latent space. A convolutional neural network was trained
using the 117,161 known unique bacterial V4 sequences and their
corresponding 10-dimensional vectors in the sequence space.
This V4 encoder was a subtype of convolutional neural
networks that is fully convolutional (e.g., Long et al., 2015;
Maggiori et al., 2016) sometimes also referred to as a fully
convolutional network (FCN) with a total of 90 layers, 32 of
which were convolutional. A max-pooling layer was inserted after
the first two convolutions to reduce the size of the network and
encourage translational invariance for spatial motifs. All
convolutional layers (except the last) were followed by batch
normalization to stabilize training, and a ReLU activation. The
final convolution produced the 10-dimensional vector encoding
that matched the target 10-dimensional vector for each input
sequence. We show a spreadsheet with all 90 layers in the
Supplementary Material. As for all trained deep learning
algorithms, the trained neural network can generalize and
produce 10-dimensional vectors even for sequences not
included in the training set, in this case, if new and previously
unknown V4 sequences are found experimentally. We trained
this CNN encoder within the PyTorch framework using an Adam
optimizer with learning rate = 0.0001, a loss function that was
simple Euclidean distance between the 10-dimensional output
and the precomputed 10-dimensional embeddings. Each training
batch of 200 training samples were randomly sampled from the
117,161 V4 SG dataset, training with a total of 50,000 batches.

3. The next step was to use the latent space and the trained
convolutional neural network to identify and measure the
abundance of the sequences obtained from microbiome
experiments. Sequence obtained from paired reads from a
microbiome sample were presented to the trained
convolutional neural network and mapped into the correct
position in the latent space. Note that this now comprised a
rapid classification process that was accomplished without any
explicit pairwise alignment of the sequences from themicrobiome
experiment. After each sequence was mapped, the result was a
collection of sequences from the microbiome experiment
represented as clusters in the latent sequence space. In
Figure 2, below we present an overview of this step, and of
the next and final step in the process, the denoising.

4. The final step was denoising by examining the experimental
microbiome data for possible sequencing errors and finalizing the
number of V4 ASVs and their abundance. To separate actual
sequence variants from sequencing errors, our denoising process
began with analyzing the relative abundances of closely related
sequences. Reads with sequence that occurred only once in the
microbiome sample were eliminated. For each remaining
sequence, a determination was made whether to consider it a
valid unique bacterial sequence variant or if it likely originated as
a sequencing error from a more abundant “parent” sequence. To
identify candidate parent reads, a fast Nearest Neighbor search
was done in the latent space using NanoFlann (https://github.
com/jlblancoc/nanoflann). A maximum of 20 nearest neighbors
were selected that were within at least a 15 bp radius in the latent
space and that were at least 20-fold more abundant than the
sequence under consideration. For each of these parent
candidates the edit distance was computed using Edlib
package (Šošic and Šikic, 2017) and only candidates with less
than 1 bp difference per 64 bases (98.5% match) were retained. If
a sequence had no candidate parents after this process, it became
an identified V4 ASV. Otherwise, remaining candidate parents
were sorted by edit distance and the closest was selected as the
likely parent (in event of a tie, the more abundant was favored).
The child sequence was now considered to be a likely sequencing
error originating from the parent sequence. Once the process was

FIGURE 2 | Analysis of Experimental Sequence Data: Paired reads from microbiome data were input to the trained neural network for identification. Resulting
clusters were analyzed for abundance and correction of likely sequencing errors resulting in output of each unique ASV and its corresponding abundances.
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completed, the parent-child relationships were traversed until a
sequence was identified that had no parent. Each sequence that
had no parent was then considered an identified V4 ASV and its
children and any grandchildren were then included into its
abundance count.

Standard chimera removal was accomplished using the
VSEARCH package uchime_denovo command. Since the
latent space training in the previous step had been conducted
with known V4 sequences, and the phylogenetic metadata from
the Silva/Genbank sequence matrix was carried through for each
10-dimensional vector during that latent space training, the 10-
dimensional vector for each resulting ASV in the latent space was
readily associated with phylogenetic information for its exact or
closest-associated known V4.

Analysis on Mock Community Data Sets
Two sets of experimental microbiome data for mock
communities were then analyzed using these methods. First,
the data were processed as in step 3 above and mapped by the
trained convolutional neural network. Next, they were processed
through step 4 for denoising and finalization of the ASVs. These
data sets were chosen from the mockrobiota resource (Bokulich
et al., 2016; http://caporaso-lab.github.io/mockrobiota/) for
samples that were created by sequencing bacterial mixtures of
known abundance and composition in order to rigorously assess
the performance of the method by using data for which the results
to be obtained are known. Mock 16 (Schirmer et al., 2015) was
selected to determine the robustness of the method for identifying
ASVs on a complex mixture of known composition, containing
49 bacterial and 10 archaeal species. Mock 12 (Callahan et al.,
2016) was chosen to examine the method across extreme
variation in concentration across the bacterial mixture. The
Mock 23 (Gohl et al., 2016) was chosen to give additional
statistical basis for abundance estimation and average speed
measurements on a relatively small and less complex data set.
Since it does not exceed the Mock 16 for diversity or the Mock 12
for concentration range, the analysis in addition to speed is shown
in the Supplementary Tables S5, S6. Each ASV identified for
each data set was validated by BLAST to confirm DERSI’s
taxonomic identification.

In most cases, the bacterial genomes contain more than one
copy of the 16S gene, and these additional copies may be
identical or varied in their V4 region sequences. In order to
provide a high level of rigor to the expected sequences and
their abundances, we therefore deemed it necessary in our
analysis to calculate the expected number of V4 sequences by
looking at the genomes of each bacterium and to adjust the
expected number of ASVs for each bacterium. In some cases,
the V4 sequences were identical between two different
bacterial genomes, and the number of expected ASVs was
accordingly reduced. In a few cases, full bacterial genomes
were not yet available and best estimates were made based on
numbers and sequences of closely related bacterial genomes.
The expected numbers of ASVs and OTUs depends upon
knowing how many variants are present in each genome.
And while copy number does not affect the number of
ASVs, it does affect the expected abundance measures.

Therefore, both the number of expected ASVs and their
expected % of the total composition were adjusted to reflect
the genomic composition of the mock community.

While these mock community data sets are intentional
compositions, previous work on these data sets has also
demonstrated the presence of unintentional contaminants (e.g.,
Callahan et al., 2016; Edgar, 2016; Nearing et al., 2018).
Calculating precision and recall for this type of data requires
determining exactly how a useful number can be rigorously
generated, given that unintended contaminants are present in
these data. A prior review of microbiome algorithms chose to
calculate precision based on perfect matches to a reference
sequence considered true positives versus noisy (less than
100%) matches to known sequence considered false positives
(Caruso et al., 2019), and we have based our approach largely
upon this. A second method was also presented that considered
all unexpected sequences to be false positives, and therefore was
likely to confound the accuracy of the experimental protocol and
its susceptibility to contamination with the accuracy of the
algorithms.

At very low concentrations it becomes very challenging to
assess false positives versus minor contaminants, and VSEARCH
has been previously shown to identify large numbers of such
sequences. Given the difficulty in assessing whether this shows
exceptional sensitivity to low abundance contaminants or a
severely elevated false positive rate, we chose to apply several
filters to the sequences that do not have a 100%match to a known
V4. We eliminated ASV/OTUs: 1) with less than 92% identity to
the closest known V4 sequence; 2) or with less than 0.01%
abundance and less than 99% identity to the closest known
sequence; 3) or with less than 0.001% abundance and less than
100% identity. At this level of stringency, those V4 sequences
found at very low concentrations are highly likely to be false
positives since at 99% identity they will be only one or two bases
different from a known V4 sequence.

Of the remaining ASVs/OTUs those identified at 100% to a
known sequence are considered to be true positives whether
intentionally added to the mock community or not. The
complete set of sequences to be used for calculating recall
numbers was the union of all such unique V4s with a 100%
match to a known sequence found by all four compared
algorithms.

Since we have conducted a genomic analysis to identify
expected values for each of the V4 sequences from the
intentionally input bacterial genomes, we are able to make a
comparison of the identified values to the expected values. A
Bhattacharyya coefficient (Bhattacharyya, 1943) was computed
over the abundances detected for both mockrobiota data sets to
give a measure of the overall accuracies of the abundance
estimates made by each algorithm. The Bhattacharyya
coefficient provides a divergence measure between two
multinomial populations and so is suitable to describe the
differences between the population of expected sequence
abundance values for the input mock community with the
second multinomial population being the values of those
sequence abundance values reported by the algorithm being
tested.
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Data Sets for Speed Comparison
The Mock 23 was included to give additional statistical basis for
average speed measurements on a relatively small and less
complex data set. We also included the Mock 12 and Mock 16
data, and these show increasing size.

Finally, to assess the speed performance on much larger data
sets than afforded by these mock communities, we selected the
first 1,072 samples from the Goodrich et al. (2016) microbiome
data set. Since this is a human biologically identified data set the
exact expected composition of the bacterial community and
associated abundances are not known and therefore a full
analysis against expected values was not performed, it was
only used for the speed comparisons.

Data Sets for Phenotypic Analysis
The motivation for the development of the DERSI method was
greater accuracy in the determination of ASVs combined with
high speed. However, to demonstrate that this approach also
supports phenotypic analysis, we chose several previously
published data sets for which to compare to published results
for experimental data sets where the exact composition of the
bacterial mixture is not known but the correct phenotype for the
overall sample is known.

We selected two microbiome datasets that used 16S V4
sequence from an analysis of the effects of water
decontamination method and choice of bedding material on
the fecal microbiome of mice (Bidot et al., 2018). We selected
the first data set of fecal microbiome samples for mice in which
both groups use corncob bedding but one group was given
autoclaved water and the other group water purified by
reverse osmosis. The second data set of fecal microbiome data
was from mice who were given either paper bedding and water
purified by reverse osmosis or corncob bedding and water
purified by autoclaving.

The third set of microbiome data was chosen from
Mezzasalma et al. (2018) comprising multiple microbiome
samples from three grape cultivars grown in the same
vineyard. Each sample was taken from a different vine and
consisted of consisted of a small bunch of grapes. The cultivar
was the phenotype to be predicted. The original V3–V4 reads
were trimmed to obtain the V4 sequencing data from this
experiment.

A fourth set of microbiome data for phenotypic analysis was
taken from a study of chicken ceca transplantation (Glendinning
et al., 2022). Microbiome samples from two ceca obtained from
donor chickens of the Roslin broiler breed were transplanted into
chickens of the Ross broiler breed. Additional chickens received
sham transplantations with saline as controls. Subsequently, the
microbiome samples from the transplant recipient chickens, the
two donor ceca and the controls were sampled and sequenced
using the V4 region of the 16S.

For all phenotype data sets, the V4 sequence reads were input
to the DERSI trained convolutional neural network. The output
data was then normalized using a trimmed mean and taking the
logarithm, followed by the denoising process described in step 4
above. PCA was then used to map each normalized sample into a
3D space for comparison to published results.

Benchmarks
The analysis of the diverse Mock 16 and the extreme
concentration variation Mock 12 data sets was benchmarked
against three widely used methods for microbiome analysis: an
OTU method, VSEARCH (Rognes et al., 2016) and two ASV
method DADA2 (Callahan et al., 2016) and UNOISE3 (Edgar,
2016). VSEARCH was chosen since it has been widely used for
OTU analysis, has been benchmarked against other algorithms
and is included in the QIIME2 microbiome pipeline. DADA2 has
been widely recognized as themost sensitive method for detection
of ASVs in multiple benchmarks and is also included in the
QIIME2 pipeline where it can be optionally selected. UNOISE3 is
private source software with a freeware 32-bit executable and has
been shown to give near comparable results to DADA2,
sometimes with greater specificity. VSEARCH and DADA2
were run using QIIME2, and the 32-bit UNOISE3 software for
Linux was downloaded from https://drive5.com/usearch/
download.html as part of the overall USEARCH package.

Speed for all four methods was measured on the same
System76 Oryx Pro Laptop using a Linux operating system
(Ubuntu 20.04). Multiple steps were included in the speed
measurements, including preprocessing and dereplication,
identification of ASVs/OTUs, denoising to correct potential
sequence errors, chimera removal and abundance calculations.

Parameters for Each Algorithm for Analysis
and Speed Comparisons
These are the details of the steps and parameters used for
comparison of the algorithms for the mock community
analysis and the speed comparisons. Primers were removed
from the mock community data sets Mock 16 and Mock 23
using multiple sequence alignment against our expanded Silva
database using mothur. Primers were not present in Mock 12.
Pooling of samples is an option for some algorithms, however, we
did not pool samples for these benchmarks in order to be close to
DADA2’s process and ensure a fair comparison.

DADA2 was run as included with its particular
preprocessing methods and defaults in QIIME2 except for
forward and reverse quality trimming. The only parameters
changed were the forward and reverse truncation, determined
by inspecting Q values for each data set (all other parameters
were left at their defaults):

mock12 -p-trunc-len-f 180 -p-trunc-len-r 140
mock16 and mock 23 -p-trunc-len-f 200 -p-trunc-len-r 180
Goodrich study -p-trunc-len-f 200 -p-trunc-len-r 140.

For VSEARCH, UNOISE3 and DERSI, after removing
primers, we performed the identical merging and quality
filtering so they would each receive the same input. This was
accomplished using the vsearch command --fastq_mergepairs to
merge pairs, with the following settings: -fastq_ascii 33;
--fastq_minlen 180; --fastq_minovlen 20; --fastq_maxdiffs 12;
--fastq_qmin 0; --fastq_qminout 0’; --fastq_qmax 41;
--fastq_qmaxout 41; --fasta_width 0; --fastq_maxns 0. We
then used the vsearch command --fastq_filter to quality filter,
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with following settings: --fastq_maxee 1.0; --fastq_minlen 225;
--fastq_maxlen 275; --fastq_maxns 0; --fasta_width 0.

The above two steps were common to VSEARCH, UNOISE3
and DERSI to ensure that each received the identical input to
dereplication. Each algorithm used its own dereplication method
but VSEARCH, USEARCH (UNOISE3) and DERSI’s
dereplications are equivalent. All three algorithms dropped
singletons. Reads were dereplicated using the vsearch/usearch
command: --fastx_uniques --minuniquesize 2. OTUs/ASVs
abundances were produced for VSEARCH with the following
commands: vsearch --cluster_size {} --id 0.97 and then vsearch
--uchime_denovo. For UNOISE3 the USEARCH commands:
usearch -unoise3 (all default settings; this does error
correction) usearch -otutab (this constructs abundances
querying original sequences including singetons). For DERSI,
dereplicated reads were encoded by the neural network, and these
embeddings were then used for error correction as described in
step 4 above. Chimera removal used vearch --uchime_denovo.

RESULTS

Latent Space Creation and Use
Training during Step 1 of the method continued until the loss
function achieved an average value of 0.1101 and the variation at
each iteration fell below five significant digits. The resultant latent

space is a dense, structured, 10-dimensional point cloud for all
known V4 sequences that reflects their aligned distances from
each other to a very high degree of accuracy.

A visualization of this space is shown in Figure 3 using PCA to
project the 10-dimensional space into three dimensions. In the
visualization, each dot represents a unique V4 sequence, and its
proximity to other dots accurately reflects their sequence
similarity. It can be seen that there are distinguishable groups
of closely related sequences. Archaea, for example, are shown in
green and are clearly more closely related to each other than to
other V4 sequences, as would be expected from molecular
phylogeny. Since the latent space created by this method lends
itself to this type of visual representation, it also enables the
results of the analysis of experimental data sets that are mapped
into this space by the trained convolutional neural network to be
projected onto this overall visualization. We show this in
Figure 3A for the Mock 12 data set and in Figure 3B for the
Mock 16 data set. It can be visually observed that the Mock 16
represents a highly diverse set with members distributed widely
over known bacterial genome space. In contrast, theMock 12 data
set that consisted primarily of Bacterioidies and Firmicutes,
shows a much more compact distribution.

Analysis of the Mock-16 Data Set
For the initial evaluation and testing of our new V4 deep learning
encoding approach DERSI, as well as for comparisons to the other

FIGURE 3 | The 10-dimensional V4 Latent Space: The latent space of all known bacterial V4 sequences projected into three dimensions using PCA for visualization;
the Archeal V4s clearly separate from other V4s. In (A) we show the projection of the mock 12 community sequences as mapped by our V4 encoders onto the overall
bacterial latent space. It can be visually observed that the mock 12consists of a relatively small number and not especially diverse set of bacteria. In (B), we projected the
highly diverse mock 16 community as mapped by the V4 encoder and this much greater diversity is readily observed. This demonstrates the ability of the method to
produce results that can offer informative visualizations.
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widely used identification and quantitation algorithms DADA2
UNOISE3 and VSEARCH, we chose the Mock-16 data set
because of its significant phylogenetic breadth, as it contains
59 species, 10 of which are Archaea. Although DNA from each of
the 59 species was added in equal amounts, bacterial species vary
in the copy numbers of the 16S gene and may have sequence
variation among those copies for the V4 regions. Some species
also share identical V4 regions. We have therefore calculated the
expected number of unique V4s in the mock community as 63,
details are shown in Supplementary Material.

A comparison of the output from analyzing the Mock-16 data
set with DERSI, DADA2, UNOISE3 and VSEARCH is shown in
Table 1. As detailed in the Materials and Methods for the
calculation of precision and recall, some sequences identified
at very low concentrations and with no exact matches to a known
sequence were eliminated from consideration since it cannot be
determined if they are false positives or represent actual
contaminants of novel sequences in very low amounts.

Each ASV identified was validated by BLAST to confirm
DERSI’s taxonomic identification, and all taxonomy was found
to be accurate. In our Supplementary Material, we provide the
details of how each unique ASV identified maps to a bacterial
species or group.

The output from DERSI, UNOISE3 and DADA2 shows
virtually the same ASVs until the read count is below 31 reads
per ASV. This is ~0.006% of a very large read count for a single
sample (~520,000 reads). Below this level each algorithm finds a
slightly different set of ASVs. DERSI finds 14, DADA2 finds 12,
VSEARCH finds 11 andUNOISE3 finds 12, with DERSI retaining
a slightly higher fidelity at these lower levels. We also note that in
some cases with this set of experimental data the sequencing
method itself failed due to no/low productivity of certain primer
sets resulting in lack of detection by all three algorithms. It has
been previously noted that the primers used for the V4 region do
not amplify all V4s with equal efficiency resulting in some ASVs
or OTUs that were not found in the sequence data (Allaband
et al., 2019).

VSEARCH tends to combine very closely related ASVs into a
single OTU, which can obscure the presence of closely related
species, for example, it has put Chlorobium phaeobacteroides
strain DSM 266, Chlorobium phaeovibrioides DSM 265 and
Chlorobium limicola strain DSM 245 into a single OTU
(Supplementary Material). This is in keeping with the

VSEARCH algorithm intended to predict at an OTU level
rather than at the finer-grained prediction of ASV methods.

Row 2 of the table contains ASVs that were not intentionally
included in the mock community but are detected and have 100%
match to a known bacterial sequence. These are not closely
related to the original input organisms and should not be
considered false positives, but likely arise from inadvertent
contamination. Many of these have been previously described
(Callahan et al., 2016) in the original analysis of the data set. We
have therefore included them in the precision and recall analysis.
We note that our algorithm DERSI does slightly better at
detecting such potential contamination.

Overall, VSEARCH performs considerably less well than
DERSI. While UNOISE3 and DADA2 perform relatively well,
DERSI has the best precision and recall of the four algorithms on
the mock 16 data set.

Analysis of the Mock-12 Data Set
For the second major test of our new algorithm, we analyzed the
data set listed as Mockrobiota Mock-12 since it has a 5-log unit
variation in the input abundances (see Table 2 first column). As
was true for Mock 16, the exact expected abundance may vary
from the input percentage of the bacteria due to multiple copies
within a genome and sequence variation in these multiple copies
(see Supplementary Table S3 for details). Three of the five
genomes in the most abundant two categories and two of the
genomes in the lowest abundance category have multiple V4
regions. A number of the species input still do not have a
complete genome in GenBank and in those cases the copy
number was estimated based on closely related genomes. We
show the resulting likely number of input V4s in Table 2 as the
expected count. The read abundance data does not vary
significantly from the expected abundance based on this
approximation (for a full list of expected abundances for each
bacterial species, see the Supplementary Material). Each ASV
identified was validated by BLAST to confirm DERSI’s taxonomic
identification, and the taxonomy provided was found to be
correct.

The analysis of the four algorithms follows similar outcomes to
that seen in theMock-16 analysis. DERSI and UNOISE3 create an
identical list of ASVs until the read count is below 17 or 0.0012%,
at which point DERSI performs significantly better. Whereas
VSEARCH tends to combine closely related V4s into single OTUs
(more details in SupplementaryMaterial). DERSI and UNOISE3
find two genomes, one (Bacteriodes fragilis) at the 0.01–0.1%
abundance category and one genome (Eubacterium rectale DSM
17629) in the second lowest abundance category that DADA2
folded into another ASV. UNOISE3 misses all, while DADA2
misses four of the genomes in the lowest abundance category.
DERSI and VSEARCH find seven of the 13 of the lowest
abundance ASVs or OTUs in the input data set; note that
none of the algorithms find any of the other six, they appear
to be missing from the set of reads.

In rows 7 and 8 of Table 2, we present a summary of sequences
identified in the mock community that were not expected based
on the intended bacterial inputs but match a known V4 at 100%
identity, and therefore likely represent contaminants. These

TABLE 1 | Algorithm performance on complex bacterial mixture in the mock
16 data.

V4 variants DERSI DADA2 UNOISE3 VSEARCH

Added to Mock 16
Found/expected

60/63 59/63 60/63 48/63

Contaminants (>0.001%)
Found/expected

21/22 21/22 19/22 17/22

False Positives (>0.01%)
Found

1 6 1 3

Precision/Recall 99/95 93/94 99/93 96/76
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appear only at the two lowest concentrations. All four algorithms
find the two most abundant contaminants (Enterococcus hirae
andAnaerostipes caccae). Whereas, DERSI finds 10, VSEARCH 8,
DADA2 two and UNOISE3 0 of the low level contaminants.

As shown in rows 9 and 10 of Table 2, DERSI identifies 0,
UNOISE3 2, VSEARCH 2, and DADA2 eight ASVs or OTUs that
have no known match at 100% and meet the criteria for false
positives.

The calculated precision and recall show that DERSI has the
highest precision and the highest recall of the four algorithms. In
fact, DERSI achieves 100% precision results on the Mock 12 for
ASV identification, and for recall, DERSI misses only six of the
lowest abundance V4s that appear to be actually missing from the
input sequence data.

Abundance Analysis
In Table 3, we present a summary of the accuracy of all four
algorithms in correctly identifying the known abundance across
the full mock 12, 16 and mock 23 data sets. Expected values were
created by examining both copy numbers of the 16S gene, and
whether the bacterial genomes contained multiple copies, some of
which may be variant within the V4 region.

To rigorously compare the results for each algorithm to the
expect values we applied the Bhattacharyya coefficient. The
Bhattacharyya coefficients computed for each algorithm
compare the abundances to the expected values for the input
mix of bacteria over the entire data set; higher scores are better.
Details of abundances for each individual bacterium in each data
set can be found in Supplementary Material. VSEARCH does
not perform as well as the other algorithms, likely due to the OTU
approach to grouping. The accurate performance of DERSI is
nearly identical to UNOISE3 exceeding UNOISE3 by only 0.02
overall, an amount that is statistically insignificant. DERSI does

very slightly better compared to DADA2 in reproducing expected
abundances, but there are only very slight variations among the
three algorithms.

Benchmark for Speed
We compared our algorithm, DERSI, to DADA2, UNOISE3
and VSEARCH on four data sets using the same laptop and
present the results in Table 4. The size of each data set is given
by the number of V4 sequence reads. One of the known
advantages of the OTU algorithm VSEARCH is its speed,
and indeed VSEARCH shows the best performance across
all data sets. Of the ASV methods, our algorithm DERSI
was the most rapid. We note that UNOISE3 is initially
faster than DADA2 but loses this advantage for the largest
data set. The UNOISE3 denoising algorithm itself is a very
rapid step but outputs only a list of ASVs without abundances.
The step to determine abundances in the USEARCH package is
much slower than the error correction but is included in the
measure since DERSI outputs both a list of ASVs and their
abundances as do DADA2 and VSEARCH. We conclude that
DERSI offers a speed advantage across a broad range of data
set sizes.

Phenotypic Prediction
Since DERSI was designed and optimized for accuracy in
identifying ASVs and their abundance, it is desirable to show
that this approach is still able to support phenotypic prediction
that relies on all the data for each sample as a whole. There are no
phenotypes associated with mock communities so to examine the
effectiveness of DERSI on experimental data of unknown
bacterial composition, but known sample phenotype, we
reanalyzed four published data sets to compare phenotypic
predictions to published results. All results are shown as

TABLE 2 | Algorithm performance across extreme abundance variation in the mock 12 data.

V4 variants DERSI found/expected DADA2 found/expected UNOISE3 found/expected VSEARCH found/expected

Added at >10% 2/2 2/2 2/2 2/2
Added at 1–10% 7/7 7/7 7/7 3/7
Added at 0.1–1% 4/4 4/4 4/4 4/4
Added at 0.01–0.1% 4/4 3/4 4/4 2/4
Added at 0.001–0.01% 4/4 3/4 4/4 3/4
Added at 0.0001–0.001% 7/13 4/13 0/13 7/13
Contaminant at 0.001–0.01% 2/2 2/2 2/2 2/2
Contaminant at 0.0001–0.001% 10/10 2/10 0/10 8/10
False positive at 0.01–0.1% 0 7 1 1
False positive at 0.001–0.01% 0 1 1 1
Precision/recall 100/87 77/67.5 92/50 94/67

TABLE 3 | Bhattacharyya coefficient comparing abundance estimates to
expected values.

Data set DERSI DADA2 UNOISE3 VSEARCH

mock 12 99.78 99.61 99.79 87.77
mock 16 96.24 96.00 96.29 91.12
mock 23 98.86 98.45 98.75 98.75

TABLE 4 | Speed in Seconds of Each Algorithm on four data sets.

Data set Sequence reads DERSI DADA2 UNOISE3 VSEARCH

mock23 329,358 13 316 15 5
mock16 592,231 22 427 60 11
mock12 2,040,485 48 813 93 29
Goodrich 467,643,460 7,548 12,387 21,080 847
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scatter plots using the first three principal components produced
by PCA.

In Figure 4A, the results of cecal transplants between breeds of
chickens are presented. One group (shown in red) represents
sham transplants using saline solution and are the same breed as
the transplant recipients. The other group shows two cecal
transplant donor microbiomes in black from a different
chicken breed than sham and actual donors, and the

transplant recipients in blue. It can clearly be seen that the
microbiome of the recipients is very similar to the donor
microbiomes with which they group. This matches the results
shown in the original publication.

In Figure 4B, we show the normalized results from DERSI on
the grape cultivar microbiome data (Mezzasalma et al., 2018). The
microbiomes from the three cultivars are linearly separable. Our
analysis shows that our increased accuracy for sequence variants

FIGURE 4 | Phenotypic Analysis: Each dot represents a sample from previously publishedmicrobiome data that was processed by DERSI into a set of ASVs. These
were then normalized and plotted using PCA. The axes represent the first three principal components. In (A), we the results of a chicken cecal microbiome
transplantation experiment. Clear separation was achieved between controls and the transplant recipients whose microbiomes cluster with their donors. In (B), we show
a grape microbiome experiment; each cultivar sample was a small bunch of grapes collected from the Alpine Italian Vineyard. Each cultivar is linearly separable,
exceeding the results in the original publication in which two of the three cultivars overlapped. In (C), we show the impact of choice of water purificationmethod onmouse
microbiomes, the two groups of microbiomes are separable. In (D) we show the separation of microbiomes of mice using paper bedding with osmosis purified water in
blue, to microbiomes of mice using corncob bedding and autoclaved water. Although the separation is relatively narrow, the distance between groups does exceed that
of the original publication. In all of these cases, DERSI’s output matched or exceeded that of previously published results showing that the method does support
phenotypic analysis.
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and abundance clearly also supports effective phenotype
prediction since it readily separates the microbiomes for all
samples from the three different cultivars in the Italian Alpine
Vineyard, whereas in the initial published analysis only one
cultivar (Sauvignon Blanc, yellow) could be cleanly separated
from the other two.

In Figures 4C,D, we show the results of phenotypic prediction
on two microbiome datasets from an analysis of the effects of
water decontamination method and choice of bedding material
on mice (Bidot et al., 2018). In C, a PCA of the microbiome
composition for two phenotypic groups, mice who shared the
same bedding type but whose water was purified either by
osmosis or by autoclaving. The two water phenotypes clearly
assort from each other and are represented by two distinct
groups. This meets or slightly exceeds the separation shown in
the original publication. Similarly, in the panel at right we show
mice who used paper bedding with osmosis purified water
compared to the microbiomes of mice who used corncob
bedding and autoclaved water. The separation between the
two groups appears to surpass that in Bidot et al. (2018).

Taken together, all four results support the conclusion that the
accuracy for sequence variants and abundance shown for DERSI
also supports quality phenotypic analysis that can match or
exceed published results.

DISCUSSION

To our knowledge, this is the first demonstration of the use of
latent space with a deep learning algorithm to make sequence
identifications, and moreover to be able to distinguish closely-
related sequence variations with single base accuracy. The first
step is a gradient descent training to form the latent space. This
10-dimensional space is an embedding of all of the sequences that
reflects their phylogenetic distance and is far more information-
rich than a typical two-dimensional phylogenetic tree while still
having reduced dimensionality. It becomes a reference
component of the method and is not repeated when
microbiome samples are being analyzed. This training need
only be redone when the collection of known V4 sequences
has grown to the extent that the reference space needs to be
refreshed.

The process of training the convolutional neural network
similarly creates a tool that becomes a stable part of the
method and is not repeated with each analysis run. Any
machine learning effort can be divided into two phases: 1) a
design and construction phase using training data and 2) a
deployment phase for predicting on new data. The first phase
is where the permanent structure and elements of the tool are
decided. For DADA2, VSEARCH, and UNOISE3, the equivalent
process consists of algorithmic structure but without any pre-
trained results; they must establish transitions probabilities
(DADA2) or k-mer features (VSEARCH, UNOISE3) with
every analysis run. In the example of a neural network,
including our convolutional neural network, an architecture is
chosen by a human before any processing of data and then the
network weights are fixed by the training procedure. This

construction phase is done only once for DERSI. Thereafter
the NN runs in its deployment phase, and it is standard
procedure to assess neural network speed and performance
including only its inference on new data, as we have done on
the four data sets for the benchmark. While there is additional
time devoted to the original development of the tool, for the runs
on data, DERSI was clearly the most rapid algorithm.

Some run time choices may also affect speed. We provide end
to end processing time for speed tests, from fastq files to OTU/
ASV abundance output, since this is the time a user will
experience running these algorithms. To be consistent with
DADA2, we employed denoising on a sample-by-sample basis
for VSEARCH, USEARCH UNOISE3, and DERSI (rather than
the much faster pooling of all reads into a single “super sample”).
The sample-by-sample approach helps preserve ASVs that might
otherwise be folded into close and more abundant variants. On
the other hand, besides speed, the pooling approach does have the
benefit of suppressing false positives (along with some true
positives just mentioned), on average elevating signal over
noise. Some advantages and disadvantage of pooling of
samples and sample-by-sample analysis are further discussed
by Edgar, (2016). The choice can largely be experimentally
driven. Both DERSI and UNOISE3/USEARCH could utilize
the pooling of samples instead of the single sample approach
we have used for the benchmarks here, and that would likely
greatly enhance the speed of both relative to the other algorithms.

We also note that our DERSI process is single threaded. The
other three algorithms are implemented in their software as
multi-threaded, so that much of their process can run in
parallel. There is no algorithmic barrier to multi-threading the
DERSI algorithm and that would also further enhance its speed.

Programming language choice and operating system may also
impact speed. Marrizoni et al. (2020) compared several
microbiome pipelines on two different operating systems and
found some differences in actual results among versions of the
same pipeline available for Mac OS and Linux. Deep learning
algorithms are also able to readily leverage GPUs which are fast
relative to CPUs, but it is unlikely that the others used in our
comparison could do so to great advantage.

Our convolutional network maps each sequence to the 10-
dimensional space that has been previously optimized to capture
both global and local phylogenetic sequence structure associated
with a large rRNA V4 database. Even without further potential
enhancements, it is this approach that enables the analysis of each
V4 data set to be accomplished with excellent speed, while still
providing the best available accuracy.

We are also unaware of any deep learning algorithms being
integrated into methods for sequencing error correction,
particularly removing sequencing noise while resolving true
genomic variations. While our error correction method bears
some similarity to the algorithmic approach of UNOISE3 the
major difference lies in the fact that clustering to find nearest
neighbors, and to seed potential ASVs occurs in the 10-
dimensional latent space leveraging the locations in that space
that have been assigned to each sequence by the trained CNN.
The analogous step in UNOISE3 (and in VSEARCH) uses kmers
to find nearest neighbors.
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At the time that many mock communities were added to the
Mockrobiota resource, not all bacterial species used had full
genomic sequence, and a few of the bacteria used still lack
complete genomic sequence. Since most bacteria have multiple
copies of the 16S gene, we adjusted our expected abundances
using not merely the percent of the bacteria that was used in
creating the mock community, but also how the genomic copy
number and the number of variants affect the expected
abundance. In the few cases where the genomes are still not
fully known, we used closest relatives to approximate the genome
copies. While previous studies compared the abundances found
among different algorithms, we did not find any prior work that
utilized the genomic information about copy number and
number of variants for the genomes intentionally added to the
mock community.We also note that we did not attempt to correct
the expected abundance percentages given that each mock
community appeared to have some bacterial contaminants.
There is no accurate way to know the true abundance of the
contaminant. Our use of the Bhattacharyya coefficient to
compare expected abundances of the intentionally added
sequences to the abundances found for them by each
algorithm would be expected to slightly lower the scores of all
algorithms due to contaminants but would have impacted all of
them equivalently so the comparisons would be expected to be
valid. Since most of the algorithms performed quite well at
abundance estimation, the impact of this appears to be quite
small. Moreover, despite the differences among the algorithms in
precision and recall, the three ASV methods are all near equally
good at abundance estimation, likely because most of the
differences occurred at the lowest concentration levels that
would least impact the coefficient over the entire data set.
While the coefficient showed a slim and likely statistically
insignificant advantage for DERSI over the others, the results
do clearly demonstrate that DERSI is able to at least match the
best available algorithms for accurate abundance estimation.

The dimensionality of the latent space was chosen empirically
by starting with three and increasing. We found 10 dimensions
achieved high precision and recall, good abundance recovery and
equaled or matched the best available current methods for the
analysis of the microbiome mock communities. In the future if
applying the method to longer sequences, it might become
necessary to use a higher dimensionality for the latent space,
potentially incurring somewhat higher computational overhead
in the one-time training for the embedding of all know sequences
of the chosen length, but should not have much impact on the
mapping into the space that is a rapid step using the trained CNN
that occurs when using the method on microbiome data sets.

Since Zhao et al. intended to improve phenotypic prediction
without an intermediate prediction of ASVs, they leveraged deep
learning to classify each individual sequence read for its
likelihood to belong to a phenotypic class. Our approach was
fundamentally different, although our encoder has a
convolutional architecture, it is usedfor mapping sequence
reads into a latent space that has reduced dimensions. The
reduced dimensions of the latent space enables computational
efficiencies. Our output is analogous to the separately trained
word embeddings that have been a critical ingredient supporting

recent advances in natural language processing (NLP). These
word embeddings serve as compact representations of word usage
that encode the contents of a document while reducing
dimensionality and are the input for larger neural network
such as BERT (Devlin et al., 2019). Our sequence embeddings
are analogous in that they are trained to faithfully represent a
biological sequence (instead of a word or phrase). This paper
focuses primary on the quality of those embeddings, as judged by
their usefulness in recovering true biological sequences in mock
communities. In the future, for phenotype studies, it would be
possible to develop even more powerful neural networks that
leverage these embeddings further for phenotypic classification,
just as BERT leverages its word embeddings to classify
documents. In the current work, we have demonstrated that a
simple purely linear network (i.e., Principle Component
Analysis) on the output ASVs for each sample is sufficient to
recover the phenotypic structure of the samples and obtains at
least equivalent or slightly improved results compared to
previously published work.

Moreover, creating a latent space using these methods for the
full 16S sequence should enable a 16S latent space to be used with
multiple convolutional neural networks, each trained to map a
different variable region of the 16S gene into the full 16S latent
space. This would offer a significant advancement in the ability to
directly compare microbiome studies conducted by sequencing
different variable regions of the 16S gene and enabling more
informative meta-analysis of the underlying biology, although
some caution would be warranted due to technical differences in
the amplification of diverse sequences (e.g., Bukin et al., 2019;
Darwish et al., 2021). As full-length 16S sequencing becomes
more economical and accurate, a convolutional neural network
could also be trained on the full length rather than just the
variable regions.

In fact, the method should be generalizable to many types of
experiments that rely on sequence identification in addition to
microbiome analysis, making this a promising area for future
research to fully explore the applicability of these methods to
additional biological studies. For example, rather than a latent
space intended for microbiome analysis, one could be created
from all known sequences for any particular protein or enzyme
family and applied to proteomics data. In addition, metagenomic
analysis is currently very computationally burdensome and
accuracy is challenging for low abundance organisms.
Potentially DERSI could shift that burden away from the
individual metagenomic experiments and onto the one-time
creation of a very large latent space and the training of
multiple deep learning algorithms. For these more demanding
analyses, reduction even in the one-time computational demands
of initially creating the latent space could be managed by
judicious choice of the metagenomic challenge to address. For
example, rather than full genomes, the system could be applied to
the phylogenetic classification of metagenomic samples by
training a number of individual neural nets on each of a
subset of the 92 core bacterial genes identified by the UBCG
pipeline (Na et al., 2018).

In conclusion, the current work demonstrates that our Deep
Learning for Rapid Sequence Identification (DERSI) algorithm
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that combines a latent sequence space with a deep learning
encoder can match or better the precision and recall of
existing widely accepted methods for microbiome analysis
while performing at greater speed. Potential exists for further
enhancing the speed of the algorithm, and of generalizing the
method to more types of data including metagenomics and
proteomics.
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