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How we interact with computer graphics has not changed significantly from viewing 2D
text and images on a flatscreen since their invention. Yet, recent advances in computing
technology, internetworked devices and gaming are driving the design and development of
new ideas in other modes of human-computer interfaces (HCIs). Virtual Reality (VR)
technology uses computers and HCIs to create the feeling of immersion in a three-
dimensional (3D) environment that contains interactive objects with a sense of spatial
presence, where objects have a spatial location relative to, and independent of the users.
While this virtual environment does not necessarily match the real world, by creating the
illusion of reality, it helps users leverage the full range of human sensory capabilities.
Similarly, Augmented Reality (AR), superimposes virtual images to the real world. Because
humans learn the physical world through a gradual sensory familiarization, these immersive
visualizations enable gaining familiarity with biological systems not realizable in the physical
world (e.g., allosteric regulatory networks within a protein or biomolecular pathways inside
a cell). As VR/AR interfaces are anticipated to be explosive in consumer markets, systems
biologists will be more immersed into their world. Here we introduce a brief history of VR/
AR, their current roles in systems biology, and advantages and disadvantages in
augmenting user abilities. We next argue that in systems biology, VR/AR technologies
will be most useful in visually exploring and communicating data; performing virtual
experiments; and education/teaching. Finally, we discuss our perspective on future
directions for VR/AR in systems biology.
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BACKGROUND

We see the world in three dimensions (3D), because we have binocular vision, meaning our left and
right eyes see slightly different views of an object-a topic explored since Euclid’s 3rd century BCOptics
and physician Galen’s 2nd century AD On the Use of the Different Parts of the Human Body, to da
Vinci’s (1452–1519) Trattato della Pittura (Art of Painting). The first device that produced 3D-effects
utilized binocularity by using two mirrors centered at 45° reflecting specific images to each eye.
Invented in the 1830s by Charles Wheatstone, it was called the reflecting mirror stereoscope, from the
Greek skopion and stereo (see solid). Conceptually, Virtual Reality (VR) was first described by
computing pioneer Sutherland (Sutherland, 1965), who created arguably the first VR head-mounted
display (HMD)—a large and bulky device that required mounting to the ceiling and could cause
severe injury if it fell on a user, which was nicknamed the Sword of Damocles (Sutherland, 1968).
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However, the actual term Virtual Reality was coined later in the
1980s, when Visual Programming Lab of computer scientist Jaron
Lanier began producing the first commercially available VR
headsets and gloves. Since then, efforts to integrate the human
body naturally into the virtual experience have driven significant
advances in VR and Augmented Reality (AR) human-computer
interfaces (HCIs), which mainly consist of input devices, output
displays, and various hardware and software parts. We
summarize these technologies in Table 1.

Notable within these efforts, CAVE Automatic Virtual
Environments (CAVEs) were introduced in the 90s (Cruz-
Neira et al., 1992) by projecting stereoscopic images on walls
and floor of a room-sized cube. A CAVE can be thought of like
Star Trek’s Holodeck (Chu and Quek, 2013), though the name
refers to the metaphor of Plato’s cave in the Republic (Plato and
Shorey, 1930) where a philosopher contemplates perception,
reality, and illusion. Inside a CAVE, users wear Liquid-Crystal
Display (LCD) shutter glasses and a head-tracker and interact
with objects using a wand-like device to gain immersion that

utilizes a full range of human vision with much wider field-of-
view (FOV) and enhanced perceptive depth and shape perception.
Later on, for massive data, large, ultra-high-resolution matrices of
multiple displays (either monitors or projectors) called
Powerwalls were also developed (Papadopoulos et al., 2015).
Powerwalls and CAVEs are attractive as collaborative
environments in which several investigators can
simultaneously interact with VR objects. Yet, they are
expensive to build, maintain and upgrade, occupy considerable
space, and require many displays and massive processing power,
making them cost-prohibitive. Thus, with these available
technologies VR was not commercially popular to go
mainstream (Wohlgenannt et al., 2020).

Until recently, VR was even considered a “dead technology”
(Slater and Sanchez-Vives, 2016). However, recent technological
advances, especially in gaming products including Oculus Rift
(Menlo Park, CA), HTC VIVE (Taiwan), and PlayStation VR
(San Mateo, CA), have enabled VR to finally have good enough
performance at relatively cheaper prices, creating a positive

TABLE 1 | Input tracking and output display technologies in consumer-level VR/AR systems.

INPUT TRACKERS

Track user position (x, y, z) coordinates and orientation (yaw, pitch, roll angles) as users move about (either all or some)
“User position” may be body movements, head-rotations, or gestures
Feed tracking information back to the computer for real-time display updates (e.g., 3D mouse (wand) or data gloves)

Types
Generally use 3D computer vision, sync pulses and laser lines, or inertial measurement units to recognize movements, gestures and positioning to achieve intuitive tracking
Full-body Tracking
e.g., Microsoft Azure Kinect DK (Redmond, WA), Sony PlayStation Camera (San Mateo, CA), OptiTrack (Corvallis, OR), Intel RealSense Depth Cameras (Santa Clara, CA),
OpenCV OAK (Palo Alto, CA), HTC Vive Tracker (Taiwan)
Hand & Arm Motion Tracking
e.g., Sony PlayStation Move (San Mateo, CA), Sony Dualsense Controller (San Mateo, CA), UltraLeap Trackers (United Kingdom)
Eye and Facial Tracking
e.g., Tobii Face Trackers (Sweden), VIVE Facial Tracker (Taiwan)

Important Features
Update rate (times/second) user position and orientation estimates sent to the computer
Latency user position and orientation recording and transmission time for display response
Accuracy and Resolution of user position and orientation
Range volume within which user position and orientation can be measured
Ease of use, size, and weight

OUTPUT DISPLAYS

Display a three-dimensional virtual world (usually stereoscopic) from the user’s eye positions, to create the perception that the virtual scene is independent of user movements

Types
HMD systems
Higher Resolution (pixel density), high upgrade rate and low latency head-tracking
Render only user views instead of the entire scene, by placing small high-resolution displays directly in front of the user’s eyes, creating immersion at a fraction of the cost of
larger displays
e.g., HTC Vive (Taiwan); Microsoft Hololens (Redmond, WA); Oculus Rift and Quest (Menlo Park, CA); Sony Playstation VR (San Mateo, CA); Valve Index (Bellevue, WA); HP
Reverb G2 (Palo Alto, CA)
Commodity 3D TVs/stereo-enabled computers with low-cost 3D glasses and software
Low-cost
Limited to screen area
Human eye can utilize a much larger field-of-view (FOV)
Spatial Displays
e.g., Sony Spatial Reality Display (San Diego, CA), Acer ConceptD 7 SpatialLabs (Taiwan)
Mobile Devices
e.g., iOS devices with ARKit (Cupertino, CA), Android devices with ARCore (Mountain View, CA)

HARDWARE AND SOFTWARE

Manage input/output; Analyze incoming data; Compute and render 3D-graphics based on input tracker feedback
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feedback loop between companies that develop more advanced
technologies and expanding consumer demand, which led to a
tremendous jump in VR technology (Wohlgenannt et al., 2020;
Kugler, 2021). For context, commercial VR systems in 2016
required expensive and difficult setups including an HMD
headset, controllers, and sensors connected to an external
high-graphics computer. However, some current new
generation VR sets such as Oculus Quest 2 (Menlo Park, CA)
and HTC VIVE Focus series (Taiwan), generally referred as
stand-alone VR systems, or all-in-one solutions, do not even
depend on any external computer system (Wohlgenannt et al.,
2020), increasing accessibility further. Coupled with very recent
developments such as the popular metaverse concept that
combines multiple elements of VR/AR and internet
technologies to achieve an extended reality by blending
physical and digital worlds together (Lee et al., 2021), we
anticipate that VR/AR technologies will finally go mainstream.

VR/AR IN SYSTEMS BIOLOGY

In systems biology, we often seek to provide new insights that
weave data on molecules, pathways, cells and tissues to whole
organisms, populations, and ecosystems in multiple time- and
length-scales. Furthermore, new high-throughput–omics
experimental techniques are producing massive and diverse
multi-omics datasets (Gillette et al., 2020; Kalayci et al., 2020;

Petralia et al., 2020; Marx, 2021; Satpathy et al., 2021), and
detailed data capture is boosted further by advances in
supercomputers and tracking sensor technologies. Parallel
increases in processor speeds and data storage enable
computational analyses of these data (Schadt et al., 2010).
New or updated visualization technologies are needed to
explore and communicate these datasets. While not new in
scientific visualizations (Bryson, 1996; Simpson et al., 2000),
VR technologies offer novel avenues to these unprecedented
new data communication needs. However, much remains to
be answered on when and how to use VR/AR technologies in
systems biology.

To help answer these questions for different use cases, we first
provide a summary of the advantages and disadvantages of using
VR technologies inTable 2. Notably, their greatest advantage is in
providing unparalleled presence—the sense of being inside of and
interacting with the virtual environment (Slater and Wilbur,
1997; Schubert et al., 2001; Sutcliffe et al., 2005). Therefore, we
recommend utilizing VR/AR technologies when spatial presence
and immersive interactivity with the content makes a difference
in addressing user needs. User comprehension may become
somewhat limited in 2D above domain-specific data type and
size thresholds, leading to data occlusions. In such cases,
immersion enables 3D-navigation and provides the necessary
perceptive depth to enhance comprehension. For example, for
multi-dimensional data, user studies have reported significantly
better performance for immersive 3D vs. 2D environments for

TABLE 2 | Advantages and Disadvantages of VR technologies.

ADVANTAGES

1 Unparalleled presence—sense of being inside the virtual environment Slater and Wilbur, (1997); Schubert et al. (2001); Sutcliffe et al. (2005). Increased by:
a User movements and interactions Balakrishnan and Sundar, (2011), which enhance learning Cummings and Bailenson, (2016) and working memory-based
performance McKendrick et al. (2016)

b User tracking, spectroscopy and wider FOV (significant increase) Cummings and Bailenson, (2016)
c Overall immersion (moderate increase) Cummings and Bailenson, (2016)
d Image quality and resolution (low increase) Lee, (2004)
e Update rate (potentially effective but is less studied)

2 Stereoscopic depth cues are beneficial in exploring complex 3D/multidimensional 3D+ data Slater et al. (1996); Greffard et al. (2014); McIntire and Liggett, (2014). 2D-vis
cannot provide spatial depth cues McIntire and Liggett, (2014)
Increased Peripheral vision provides a rich set of cues, permitting more natural and thus quicker interactive explorations of high dimensional and dynamic data

3 Full user attention, as users cannot second-screen VR Wirth et al. (2007)
4 Complete stimuli control within a safe, standardized, and reproducible environment, offering unprecedented opportunities for studies that cannot be performed in the real
world Tarr and Warren, (2002)

5 Moving beyond keyboard/mouse, supports natural modes for navigation or gestures such as flying/grasping
6 Users can investigate multiple regions or explore correlations between data that are nearby in space-time without clutter, updated in real-time based on their movements

and views
7 Collaborative environment. Colleagues at multiple locations can meet, make eye contact (with their avatars), and explore objects together. As big data often involves many
researchers in remote locations, this can help tremendously in team efforts

DISADVANTAGES

1 HCI learning curves can pose barriers for new/occasional users (e.g., HMDs limit ability to interact with mouse/keyboard)
2 User isolation from surroundings can cause a lack of situation awareness (imagine wearing an HMD on the subway). While see-through headsets can solve such problems,
they are awkward to wear in public

3 Some users may feel motion sickness/nausea, though increasing peripheral vision greatly reduces these
4 Users may experience neck pain and stress if wearing for long periods
5 Some technical & conceptual challenges need to be addressed to improve presence:

a Increased distance perception Renner et al. (2013)
b Quick updates with low latency
c Real-time delivery with high performance
d Rapid feedback on user actions at specific locations

6 VR is unnecessary for systems that are simple, small, where additional depth cues may not be needed, and vital or useful
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certain analysis tasks (Etemadpour et al., 2013). As researchers
working at the interface of biology and data visualization, based
on our own experience in this domain, and observations on the
general trends in VR applications in biology that we briefly
summarize here, we anticipate their utilization in three main
areas in systems biology: 1) visually exploring and
communicating data; 2) performing virtual experiments; and
3) education/teaching and discuss them below.

Visually Exploring and Communicating Data
Systems biology visualizations are generally abstract
representations, far from real-world objects. For instance,
cellular pathway graphs are often cartoon representations. Yet,
they suffice in helping understand the biological phenomena they
represent. In VR environments, users interpret such abstractions
as real objects, and the imagery has a lasting impact on our brains.
Furthermore, we can interact with the virtual objects in ways that
are not possible in the real world at multiple scales, from single
molecules (Leinen et al., 2015), protein-drug complexes (Norrby
et al., 2015) biomolecular networks (Liluashvili et al., 2017) to
organs (Mirhosseini et al., 2014); navigate through them
(Bellmund et al., 2016), or dynamics (Nakano et al., 2016). VR
technologies thus open the door to benefit diverse phenomena
that involve 3D spatial reconstructions, from localizations and
dynamics in the human brain (Calì et al., 2016) to interactions in
retinal pathology (Aaker et al., 2011) and volumetric studies in
digital pathology (Farahani et al., 2016; Liimatainen et al., 2021).
More recently, single-molecule localization microscopy (SMLM)
in immersive VR has been used to visualize biological structures
as point clouds at the molecular scale (e.g., vLUME by Spark et al.,
2020). Some of these recent SMLM tools can be further extended
to other similarly multidimensional spatially localized point
clouds (e.g., Genuage tool by Blanc et al., 2020).

In systems biology, the knowledge, visualization, and
exploration of related 3D structural data often play an
important role. To explore and understand the function of
macromolecules (proteins, RNA, and DNA) and their
complexes from their 3D structural models, molecular
graphics is shifting to VR (Tse et al., 2011; Nakano et al.,
2016; Ratamero et al., 2018; Cassidy et al., 2020; Todd and
Emsley, 2021). Some of these applications further integrate
relevant structural knowledge with domain-specific (Norrby
et al., 2015), or genomics datasets (Zhang et al., 2019). While
some molecular viewers work in CAVE environments (Block
et al., 2009), others utilize latest HMDs (Leinen et al., 2015), game
engines such as Unity and gesture devices such as Kinect and
Leap Motion (Probst and Reymond, 2018; Zhang et al., 2019) or
even voice recognition (Sabir et al., 2013) to activate commands;
or provide web-based VR without head-tracking or advanced
interactions (Li et al., 2014; Cassidy et al., 2020). Parallel efforts
are also on-going to study the chemical fingerprints of DrugBank
compounds in VR environments (Probst and Reymond, 2018).

VR is useful even when exploring abstract systems-level data
that do not contain 3D-localizations. For example, researchers
often employ complex network visualizations which may require
many viewpoints due to clutter, and navigation issues. Several
studies suggest stereoscopy alone (Ware and Mitchell, 2008;

Greffard et al., 2014; Kwon et al., 2015; Kwon et al., 2016) or
combined with rotation (Sollenberger and Milgram, 1993) or
motion cues (Ware and Mitchell, 2008) enhances performance
in comprehension, helps present graphs better than 2D-displays
(Sollenberger and Milgram, 1993) and enables low user error rates
(Ware andMitchell, 2008). For example, Supplementary Figure S1
shows a relatively large network in 2D, and Supplementary Video
S1 in 3D.While both are generated using the network visualization
tool iCAVE (Liluashvili et al., 2017; Kalayci and Gümüş, 2018),
within iCAVE users can further interactively explore the 3D or
stereo versions from multiple perspectives. Visualizations from
multiple perspectives reportedly make different aspects of a
system more salient (Ellis et al., 1991). Similarly, the BigTop
tool (Westreich et al., 2020) renders Manhattan plots from
genome-wide association studies (GWAS) in 3D.

More recently, VR is used to explore multidimensional -omics
datasets in systems biology including cytometry, transcriptomics,
epigenomics, proteomics and their combinations, in the form of
abstract data clouds. For example, single-cell RNA sequencing
data analysis often includes a dimensionality reduction step,
where cell populations are projected in 2D or 3D space to
explore cellular heterogeneity. Visualizing such datasets in 3D
can be more informative as it decreases the possibility of
collapsing similar cell types and clusters. A recent tool,
CellexalVR, allows visual exploration and analysis of such
dimensionality reduction plots and associated metadata in
immersive VR (Legetth et al., 2021). Other tools for the same
purpose include starmapVR (Yang et al., 2020), singlecellVR
(Stein et al., 2021) and Theia (Bressan et al., 2021). These
platforms often include additional modalities such as on-the-
fly clustering, or visualization of dynamic changes in RNA
velocity. While singlecellVR and starmapVR are web
applications that enable visualizations using low-cost and
easily available VR hardware such as Google Cardboard (Yang
et al., 2020; Stein et al., 2021), CellexalVR involves GPU-
accelerated performance and in-session on-the-fly calculations.
StarmapVR further enables simultaneous visualization of spatial
transcriptomics data from matching histological images. We
anticipate that in the near future we will witness further
developments in VR tools for the visual exploration of spatial
transcriptomics datasets.

Performing Virtual Experiments
For research studies that cannot be performed in the real world,
VR provides a safe, standardized, and reproducible environment
that is as life-like as possible (Tarr and Warren, 2002). In
addition, we can break the laws of optics and physics, or
disconnect real life sensed by the user’s body from the world
the user is experiencing (Tarr and Warren, 2002). Researchers
have been using such VR properties to study, modify or enhance
behavior. For example, neural processes research that links
biology and behavior in different species, from insects to
humans (Ravassard et al., 2013; Aghajan et al., 2015; Acharya
et al., 2016) has used VR to help understand sensory cues that
carry information on the virtual worlds or refine the rules that
link a subject’s actions to changes in their world. In addition to
assisting in understanding human behavior, research can in turn
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inform how VR environments can be improved in design for
increased human engagement. For example, studies suggest that
the socially networked nature of VR should be considered in tool
design, as numbers of remote users in virtual spaces increase
(Kruzan and Won, 2019; Jeong et al., 2021).

In systems biology, virtual experiments can help develop and
improve scientific thinking skills. Virtual reformulations of
experiments in the form of games to be solved have already
proven efficiency in tackling scientific problems. For example, the
tools Foldit (Foldit, 2022) and Eterna (Eterna, 2022) have
gamified the protein folding and RNA structure prediction
problems (Das et al., 2019), and thereby enabled more
individuals to perform virtual experiments by engaging the
online gaming community whose members may have little to
no scientific knowledge. Yet, these gamers have successfully
solved real-world problems in relatively short time scales
(Cooper et al., 2010; Khatib et al., 2011; Eiben et al., 2012;
Horowitz et al., 2016; Koepnick et al., 2019). Similarly, the
tool EyeWire has gamified mapping neural circuits in the
brain to understand vision, where players try to virtually map
3D neuron structures to serial electron microscopy image data
from animal brains (Das et al., 2019; EyeWire, 2022). This game
has so far attracted more than 150 K gamers who helped reveal 6
new neuron types and many undiscovered brain circuits
(EyeWire Into the Brain, 2022). VR environments open
exciting new possibilities of such gamification of virtual
scientific problems both for scientists with little coding
experience, as well as for non-scientists, and the
communication between these two communities. We have
already started to observe the first examples of such tools in
computational chemistry, where Shannon et al have introduced
molecular dynamics VR game to encourage users to explore the
reactivity of a specific chemical system (Shannon et al., 2021), and
an intuitive VR platform called Nanome presented by Kingsley
et al., where the users explore and modify chemical structures
collaboratively to work on structural biology and molecular drug
design problems (Kingsley et al., 2019). The next several years will
witness an increasing number of tools that gamify virtual
experiments in the VR environments. Note that in online
gaming communities, VR is increasingly blended with social
media functionalities, and thus gamified systems biology VR
tools will likely need to consider such additional functionalities
that are critical for remote users.

Education/Teaching
VR environments can help learning in systems biology areas that
involve complex 3D information (Salzman et al., 1999;
Mikropoulos and Natsis, 2011), user-interactivity and/or high
computational skills. For example, understanding protein
structure traditionally involves physical modeling kits or
projections of the 3D structures into 2D. However, the ability
to create, alter, and rotate a chemical structure in real time in 3D
canmake it easier to understand abstract concepts (Limniou et al.,
2008). Similarly, annotated 3D web-based anatomy atlases help
teach complex structures such as artery networks or bronchial
trees. Earlier interactive 3D-renderings of these systems used
desktops with standard screens due to the costs of VR processors

and displays (Li et al., 2012), while later technologies have enabled
stereoscopic immersive 3D with real-time interactivity (Kockro
et al., 2007). Randomized user studies show that stereo-enhanced
3D-tools are useful in learning anatomy and are well-received by
students (Kockro et al., 2015; de Faria et al., 2016). Similarly,
integrating AR technology reportedly has positive impact on
student learning in biology (Weng et al., 2020).

Recent technological advances in VR have substantially
increased their potential utility in learning. Biological concepts
currently constitute ~5% of academic publications on VR
(Morimoto and Ponton, 2021). Relatively popular educational
platforms include those that simulate biological and chemical
experiments within VR environments, such as VRLab Academy
(United Kingdom), Labster (Denmark), and ClassVR
(United Kingdom). Advances in gaming have expanded VR
applications in education as well. For example, the tool Peppy
provides a Unity-based VR gaming engine to understand protein
structures and their dynamics in undergraduate biochemistry
classes (Doak et al., 2020). Similarly, Pepblock Builder VR tool
provides a gamified interface for researchers who are not
advanced in the computational skills required for protein
design (Yallapragada et al., 2021). Many educational VR
experiences exist in popular gaming platforms that recreate
biological systems, such as The Body VR, where players move
in the bloodstream to observe human cells and learn how
organelles function (The Body VR LLC, 2016), and InCell VR,
where players fight to stop a virus invasion in human, while
learning about cell and organelle microstructures (Luden.io,
2015). We anticipate that gaming-based VR tools will similarly
be developed for learning multi-omics datasets at a systems level.
Further research will then be necessary to understand the full
potential impact of VR in learning systems biology.

DISCUSSION

The recent explosion in VR/AR technologies has coincided with
extended work-from-home practices due to the coronavirus
disease 2019 global pandemic. These developments have
lowered resistance to virtual technologies and in fact created a
pressing need for virtual, collaborative workspaces in research.
Coupled with the explosive increase in datasets collected from
multi-omics high-throughput experiments, VR/AR technologies
offer attractive new opportunities for visual data exploration and
communication in systems biology. However, to develop the most
useful tools, systems biologists need to conduct their own user
studies and get familiar with design practices within virtual spaces
for improved human perception (Cleveland and McGill, 1987).
With deeper understandings of the brain and visual perception,
content creation and best practices will be established, and
adoption will increase. Further technological improvements
(higher frame rates, efficient information storage and rendering;
increased data transfer with less bit rates; game engines; graphics
cards) will aid challenging visualizations such as dynamic networks
or multi-scale systems, integrated with data annotations and on-
the-fly calculations. Visualization outcomes will in turn guide
future research protocols.
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VR application development is already easier with HMDs and
input devices that offer game engine-compatible free software
development kits. These render information from internetworked
devices that collect and exchange data with sensors and network
connections (Rose, 2014; Akyildiz et al., 2015; Open Hybrid,
2022) or from integrating multiple technologies (e.g., healthcare
in cyberspace (Rosen et al., 2016)). We anticipate that new
technologies will further eliminate discomforts and limitations
of modern VR headsets such as their bulkiness and weight.
Towards this end, current studies include using skin sensory
interfaces, such as nanowire-based soft wearable HMIs (Wang
et al., 2021), and thin and light-weight holographic optics with
high performance sunglasses-like near-eye full-color displays, as
developed by Facebook Reality Labs (Maimone andWang, 2020).
Such new technologies may remove the barriers between the
virtual and real worlds further by eliminating headset use, thereby
converging VR/AR (Kugler, 2021).

In summary, we are currently at a critical juncture for VR/AR
use in systems biology, as they are finally on the verge of going
mainstream. We anticipate that the current trends towards
utilizing low-cost VR/AR systems will continue. Still, for
certain research areas, interactive 3D applications in Web3D
will likely suffice. For some applications, AR will be preferable,
as it allows users to overlap virtual data onto the real world in
relatively simpler set-ups such as smartphones, without the need
of HMDs, and provide more control of their surroundings
(Garcia-Bonete et al., 2019). VR will likely remain
advantageous in applications that require better immersion
and realism (Garcia-Bonete et al., 2019). Barriers for access
to VR/AR visualizations in systems biology will likely remain,
however, for researchers from underdeveloped countries, and
which will need to be addressed. At the same time, with the
increasing trends in gamification within the VR environments
(Shannon et al., 2021), barriers for scientists with low
computational expertise and non-scientists in conducting
their own virtual experiments will decrease. As user

community grows and commercial VR/AR technologies
expand, we expect the range of their systems biology
applications will also continue to grow, opening possibilities
for significant advancements in understanding and
communicating disease-associated mechanisms, running
virtual experiments, and education, and help boost the
development of new therapies. Of course, the best way to
gauge possibilities is to explore them!
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