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Computational function prediction is one of the most important problems in bioinformatics
as elucidating the function of genes is a central task in molecular biology and genomics.
Most of the existing function prediction methods use protein sequences as the primary
source of input information because the sequence is the most available information for
query proteins. There are attempts to consider other attributes of query proteins. Among
these attributes, the three-dimensional (3D) structure of proteins is known to be very useful
in identifying the evolutionary relationship of proteins, from which functional similarity can
be inferred. Here, we report a novel protein function prediction method, ContactPFP,
which uses predicted residue-residue contact maps as input structural features of query
proteins. Although 3D structure information is known to be useful, it has not been routinely
used in function prediction because the 3D structure is not experimentally determined for
many proteins. In ContactPFP, we overcome this limitation by using residue-residue
contact prediction, which has become increasingly accurate due to rapid development in
the protein structure prediction field. ContactPFP takes a query protein sequence as input
and uses predicted residue-residue contact as a proxy for the 3D protein structure. To
characterize how predicted contacts contribute to function prediction accuracy, we
compared the performance of ContactPFP with several well-established sequence-
based function prediction methods. The comparative study revealed the advantages
and weaknesses of ContactPFP compared to contemporary sequence-based methods.
There were many cases where it showed higher prediction accuracy. We examined factors
that affected the accuracy of ContactPFP using several illustrative cases that highlight the
strength of our method.

Keywords: function prediction, residue contact prediction, gene function, functional genomics, protein
structure, PFP

1 INTRODUCTION

Proteins are working molecules in a cell. Virtually all cellular functions are carried out mainly by
proteins. Therefore, elucidating the biological function of proteins is a central problem in molecular
biology, biochemistry, genetics, and genomics. Ultimately, the function of proteins needs to be
determined by experiments. However, in the process of experimental elucidation of protein function,
computational function prediction is very useful for guiding experiments by, for example, helping
biologists construct hypotheses in designing experiments.
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As sequencing the whole genome has become a standard
experimental protocol for studying an organism, many protein
sequences are now available in various databases (Sayers et al.,
2021), and many of them remain unannotated. Thus, there is an
increasing need for computational function prediction. Indeed,
computational function prediction has been one of the most
extensively studied topics in bioinformatics (Hawkins and
Kihara, 2007). Conventionally, protein function annotation has
been performed through sequence similarity search tools, which
use BLAST (Altschul et al., 1990) or FASTA (Lipman and
Pearson, 1985), and motif searches (Bairoch and Bucher, 1994;
Mistry et al., 2021). In addition to such sequence-based methods
(Hawkins et al., 2006; Chitale et al., 2009; Jain and Kihara, 2019),
other approaches have been explored, which use omics-data
(Obayashi et al., 2019; Szklarczyk et al., 2019), phylogenetic
profiles (Pellegrini et al., 1999), and 3D structures of proteins
(Sael and Kihara, 2010; Sael and Kihara, 2012; Zhu et al., 2015).
As also observed in recent community-wide assessments for
computational function prediction, the Critical Assessment of
Function Annotation (CAFA), methods that combine different
information sources by machine learning often showed relatively
strong prediction performance (Khan et al., 2019; You et al.,
2019).

In this work, we used protein 3D structure information for
inferring the function of proteins. It has been long known that the
3D structures are better conserved than protein sequences during
evolution (Chothia and Lesk, 1986), and thus they help capture
distant functional relationships of proteins (Das et al., 2021).
However, the 3D structure information has not been much used
in practice in function prediction because the 3D structure has
not been determined experimentally for many proteins. However,
the situation has been changing due to recent progress in the
protein structure prediction field, which has made significant
improvements in amino acid residue contact and distance map
prediction (Greener et al., 2019; Xu, 2019; Jain et al., 2021;
Maddhuri Venkata Subramaniya et al., 2021). It may be noted
that the accuracy of models by Alphafold (Jumper et al., 2021),
the top-ranked structure prediction method in the recent Critical
Assessment of techniques in protein Structure Prediction (CASP)
(Abriata et al., 2019), often reach the level of experiments, such as
X-ray crystallography. By using such a recent protein structure
prediction method, it is now possible to compensate for the
limited availability of the structural information of proteins.
Thus, we now have an unprecedented opportunity for
structure-based functional inference for nearly all proteins in
genomes since their amino acid sequences are available, even if
their 3D structures are not.

Here, we explore how protein structure information,
particularly amino acid contact information, can contribute to
the accuracy of function prediction. To do so, we developed a new
protein function prediction method, ContactPFP. In ContactPFP,
instead of performing sequence-based database search, a query
protein is compared with proteins in a database in terms of
predicted contact maps. Since an amino acid contact map is, in
principle, sufficient to build a 3D structure of the protein, using
contact maps is conceptually equivalent to considering 3D
structure similarity. We benchmarked ContactPFP on a

dataset of 9,642 proteins and compared its performance with
sequence-based function prediction methods that performed
among the top in CAFA. The benchmark revealed the
strengths and weaknesses of ContactPFP. We report the
performance of ContactPFP relative to several key parameters.
Also, to characterize ContactPFP’s performance, we discuss
examples where ContactPFP showed its strengths and cases
where ContactPFP did not perform as well as the sequence-
based methods that were compared against.

2 MATERIALS AND METHODS

2.1 Overview of the ContactPFP Method
Figure 1 shows the workflow of ContactPFP. For a query protein
sequence, ContactPFP constructs a multiple sequence alignment
(MSA) using HHblits (Steinegger et al., 2019), that is, run against
the Uniclust30 database (Mirdita et al., 2017) with a parameter set

FIGURE 1 | Overview of ContactPFP. From an input protein sequence,
residue-residue contact information is predicted with trRosetta, which is
represented as a graph. Then, the graph is compared with contact map
graphs in a database using GR-Align. Proteins in the database are
sorted by graph similarity to the query and GO terms are extracted from top
hits.

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 8962952

Kagaya et al. Contact Map-Based Function Prediction

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


of “-n 3 -id 99 -cov 50 -diff inf”. Then, using the MSA, residue-
residue distance prediction (a distance map) is computed for a
query using trRosetta (Yang et al., 2020). The predicted distance
map of the query is then compared with contact maps of proteins
in the reference database using the GR-Align algorithm (Malod-
Dognin and Prẑulj, 2014). Since GR-Align compares contact
maps of proteins, predicted distance maps were converted to
contact maps, or contact graphs, where nodes represent amino
acid residues and edges connect residue pairs that are closer than
a distance cutoff value. As the distance cutoff values to define a
contact, we used 8, 10, and 12�A between between Cβ atoms. For a

given contact distance cutoff (e.g., 8�A), we define a residue pair as
“in contact” if the probability that the pair has the cutoff distance
or closer between each other is 0.5 or larger.

The reference database was constructed from Swiss-Prot (The
UniProt Consortium, 2021). Sequences shorter than 20 residues
and longer than 2000 residues, which made up 1.1% of the all
sequences, were excluded. For the remaining 555,378 proteins
(98.9%), contact graphs were computed as described above. Using
GR-Align, the query contact graph is compared with all contact
graphs in the reference database, which are then ranked by graph
similarity to the query. In GR-Align, two contact graphs are
aligned so that the similarity score of the graphs, which considers
graphlet distribution similarity of mapped nodes, is maximized.
This graphlet degree similarity can capture the local similarity of
contact graphs. A graph similarity score by GR-Align ranges from
0 to 1.0, with 1.0 indicating an exact match in graphlet
distributions. Proteins in the reference database that have a
similarity score of 0.5 or higher by GR-Align were considered
as hits. GO terms from hits were collected and weighted by the
sum of the graph similarity scores of hits that have the GO terms.
The score of a predicted GO term i is computed as follows:

GOScore(i) � ∑
k∈Protein hits withGO(i)

Graph SimScore(k) (Eq.1)

FIGURE 2 | Influence of parameters on the prediction performance of ContactPFP. Parameters were examined that determine the definition of hits in the contact
map database search. The y-axis shown is the average Fmax score computed for the four test sets in the four-fold cross validation. In each plot, three distance cutoffs, 8,
10, 12 �A, were used that defined residue contacts. The bar indicates the standard deviation calculated from four-fold cross validation. (A) Raw contact map graph
comparison score. From a database search result, we only considered retrieved proteins with a specified graph similarity score or higher. The average standard
deviation was 0.002. (B) Selecting top N hits by the raw score. In this scheme, we only selected top N hits as specified on the x-axis regardless of their scores. The
average standard deviation was 0.002. (C) Z-score of the contact map graph comparison score. In this scheme, we chose hits to consider by the Z-score of the graph
similarity score relative to the score distribution of the entire reference database. The average standard deviation was 0.002.

TABLE 1 | The average Fmax score of ContactPFP and the other four methods on
the benchmark dataset.

Method Fmax Wins by ContactPFP

ContactPFP 0.638 -
Phylo-PFP 0.662 5,357 (55.6%)
ESG 0.634 5,452 (56.5%)
PFP 0.586 5,940 (61.6%)
PSI-BLAST 0.574 6,386 (66.2%)

The count of benchmark proteins in which ContactPFP performed better than the other
methods is shown in the third column. For ContactPFP, the top 2 hits from a search were
used to extract GO terms.
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where k is a hit (i.e., graph similarity score > = 0.5 to the query)
that has the GO term i in its annotation. Finally, predicted GO
terms for a query is normalized by the highest score among them,
so that the most confident GO term has a score of 1.0.

2.2 Constructing the Function Annotation
Database
GO terms for proteins in the reference database were compiled
from 12 data sources. The primary database used was the
UniProtKB/Swiss-Prot. GO terms with IEA (Inferred from
Electronic Annotation) evidence code (Boutet et al., 2016)
were also included because considering IEA gave a higher
function prediction accuracy than excluding them in our
previous works (Chitale et al., 2009; Hawkins et al., 2009). In
addition to UniProtKB/Swiss-Prot, we integrated annotations
from UniPathway (Morgat et al., 2012), TIGRFAMs (Haft
et al., 2013), SMART (Letunic et al., 2021), Reactome (Jassal
et al., 2020), PROSITE (Sigrist et al., 2013), ProDom (Bru et al.,
2005), PRINTS (Attwood et al., 2012), PIRSF (Nikolskaya et al.,
2006), Pfam (Finn et al., 2016), InterPro (Finn et al., 2017) and
HAMAP (Pedruzzi et al., 2015). This database extension
contributed an additional 8,727 GO terms to our reference
database. We showed in our previous work that this
annotation expansion has a positive effect on function
prediction performance (Khan et al., 2015).

2.3 Constructing the Benchmark Dataset
We started from representative sequences in UniRef50 (Suzek
et al., 2015) (22 October 2019 version). We filter out entries that
do not fall within lengths of 100–2000. We only considered the
entry names that existed in the 11 November 2019 version of
Swiss-Prot. We kept only entries with at least one experimentally
verified GO Term in all three categories. To remove the potential
redundancy of annotations in the dataset, we only kept one
protein from homologous proteins from different organisms.
For example, among the two entries, ZRT1_SCHPO and
ZRT1_YEAST, which were originally included in the
representative sequences, we kept only ZRT1_SCHPO. The
ortholog proteins were identified by the common mnemonic
protein identification code, e.g.,“ZRTI”. Further, to remove the
sequence redundancy, we performed sequence clustering by
MMseqs2 (Steinegger and Söding, 2017) with a 25% identity
and a 80% coverage (--min-seq-id 0.25 -c 0.8). As a result, we had
9,642 sequences in the benchmark dataset.

2.4 Existing Methods Used as Reference
To characterize the performance of ContactPFP, we compared it
with four sequence-based methods, PSI-BLAST (Altschul et al.,
1997), PFP (Hawkins et al., 2009), ESG (Chitale et al., 2009), and
Phylo-PFP (Jain and Kihara, 2019). PSI-BLAST is considered the
baseline of function prediction methods. We selected PFP, ESG,
and Phylo-PFP because they are sequence-based methods that
performed well in CAFA challenges (Radivojac et al., 2013; Jiang
et al., 2016; Zhou et al., 2019). Our group, who used these three
methods, were among the best teams in the series of CAFA
challenges. PFP, ESG, and Phylo-PFP use PSI-BLAST search
results in different elaborate ways: In PFP, GO terms extracted
from PSI-BLAST hits are scored by the sum of the negative
logarithm of E-value of the hits. Thus, GO terms from hits with
smaller E-values are scored higher. Up to 20,000 hits were
considered. In ESG, the top hits of the first PSI-BLAST run
are used to perform a second round of database search. In Phylo-
PFP, retrieved sequences were ranked by considering both raw
E-value and the edge distance on a phylogenetic tree constructed
for the sequence. In ESG and Phylo-PFP, raw scores of predicted
GO terms are normalized to a range between 0 and 1.0 by the
highest score observed for the target protein.

These sequence-based methods identify the query itself as the
top hit in a database search. To avoid taking GO terms from the
query itself for PFP, ESG, and Phylo-PFP, we removed the query
and all hits that had an E-value of 0.0 in the last round of PSI-
BLAST before extracting GO terms. These excluded proteins were
also removed from the hit list of ContactPFP. For PSI-BLAST, we
extracted GO terms from the top 10 hits (except for the query
itself and hits with 0 E-value) in the third iteration of a PSI-
BLAST run and assigned a score of 1.0 to all the predicted terms.

3 RESULTS

3.1 Effect of the Residue-Contact Definition
and the Fold Similarity
To start with, we examined how two important hyperparameters
in ContactPFP, the definition of residue-residue contacts and
choices of top hits from a database search, affect the function
prediction accuracy (Figure 2). When constructing a graph from
residue distance prediction, a choice of residue distance cutoff
needs to be made. A larger distance connects more residue pairs
making more edges in a contact graph, while a smaller cutoff
would highlight densely connected domains (Yuan et al., 2012).

TABLE 2 | The average Fmax score and Smin score in the three GO categories.

Method Fmax Smin

ALL CC MF BP ALL CC MF BP

ContactPFP 0.638 0.718 0.728 0.606 95.042 16.294 12.319 66.341
Phylo-PFP 0.662 0.75 0.759 0.641 98.985 15.067 13.376 70.48
ESG 0.634 0.714 0.746 0.598 106.368 16.541 13.227 76.673
PFP 0.586 0.698 0.689 0.562 117.773 18.055 16.365 82.991
PSI-BLAST 0.574 0.655 0.678 0.544 281.223 44.163 38.382 198.695

CC, cellular component; MF, molecular function; BP, biological process.
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We tested three distance cutoffs between Cβ atoms, 8, 10, and
12�A, to define residue-residue contacts. The latter parameter, the
choice of top hits, decides which proteins from the database
search to use for extracting GO terms for annotating the query
protein. Increasing this similarity level reduces the number of hits
to consider while decreasing the cutoff leads to an increased
number of hits.

To examine the effect of the parameters, we performed a four-
fold cross validation. In combination with the distance cutoffs, we
examined three different ways to select top hits from a search
(Figure 2). The Fmax score shown in the panels in Figure 2 are
the average values of the four test sets used in the cross validation.
In Figure 2A, we used the raw graph similarity score from GR-
Align to select hits from a database search. Retrieved proteins in a
search that have a similarity score lower than a specified cutoff
were discarded. Among the four scores examined, 0.3, 0.5, 0.7,

and 0.9, the highest Fmax score of 0.555 was observed when a
graph similarity score of 0.7 was used in combination with a
distance cutoff of 12�A. In Figure 2B, we used the top N hits from
a database search to extract GO terms regardless of their graph
similarity score. The highest Fmax score, 0.638, was achieved
when the first two hits were used (i.e., n = 2) with a distance cutoff
of 12�A. In the last panel, Figure 2C, we considered the Z-score of
the graph similarity score to select top hits. The highest Fmax
score, 0.571, was achieved with a Z-score of 7 using a residue
distance cutoff of 12�A. In each panel in Figure 2, the standard
deviations from the four-fold validation were small, 0.002, and
the best parameter combinations were consistent across the four-
fold.

Overall, the combination of 12�A for the distance cutoff and
using the top 2 hits showed the best performance among the
conditions tested. Therefore, we report the results with this

FIGURE 3 | Comparison of Fmax score of individual target proteins. To be precise, they are F-score of each protein using the score cutoff that yielded the Fmax
score of the benchmark dataset. Each point represents a protein in the benchmark dataset. (A) Comparison between ContactPFP and Phylo-PFP; (B) Comparison
between ContactPFP and ESG; (C) comparison between ContactPFP and PFP; (D) Comparison between ContactPFP vs. PSI-BLAST.
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condition in the subsequent sections. Regarding the contact
distance cutoff, 12�A showed the best performance in all three
panels, which is consistent with what the GR-Align paper
reported (Malod-Dognin and Prẑulj, 2014).

3.2 GO Term Prediction Performance of
ContactPFP
We now report the overall performance of ContactPFP in Table 1
in comparison to the other four methods. Two values are reported
in Table 1. In terms of the average Fmax score (the left column),

ContactPFP’s performance was the second-highest, slightly lower
than Phylo-PFP. ESG, PFP, PSI-BLAST followed in this order.
Breakdown of the performance in the three GO categories
(Table 2) showed essentially the same trend. ContactPFP was
the second in Cellular Component, the third in Molecular
Function, and the second in the Biological Process.

On the other hand, when predictions given to individual target
proteins were compared between two methods (Table 1, the right
column), more than half of the proteins (55.6%) had predictions
with a higher Fmax score by ContactPFP than Phylo-PFP.
ContactPFP also had more wins over ESG, PFP, and PSI-

FIGURE 4 | Function prediction accuracy relative to structural features of target proteins. (A) and (B), Fmax score of ContactPFP relative to the precision of contact
prediction. Each point is corresponding to a protein which has an experimentally determined structure. There were 1,029 proteins of them. (A) Fmax score relative to the
precision of all predicted contacts. Contacts are defined for residue pairs that have a Cβ distance within 12 �A from each other. The average precision was 0.801. (B)
Fmax score relative to the precision when we considered the top L/5 predicted long-range contacts, which were defined as contacts that are 24 residues or more
apart on the sequence. L is the length of a protein. Contacts were defined as residue pairs that have their Cβ atoms placed within 8 �A. The average precision L/5 long
precision was 0.908. (C) Comparison of the performance between ContactPFP using predicted contacts and ContactPFP that uses accurate contacts taken from the
experimentally determined structures. Contacts are defined for residue pairs that have Cβ atoms within 12 �A from each other. Fmax scores of the 1,029 targets that have
PDB structures were compared. (D) The effect of the fraction of disordered regions in proteins to the Fmax score. We used fldpnn to predict residues in disordered
regions.
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BLAST. Thus, in this head-to-head comparison, ContactPFP was
the best. To understand how the performance of the methods
differ, we showed the Fmax score of individual target proteins by
ContactPFP and each of the other methods in scatter plots
(Figure 3). The scores seem not to distribute randomly.
Rather, they show an interesting pattern of a “mirror-imaged
N-shape”, where there are a substantial number of targets with
around 1.0 Fmax as well as other targets with around 0.1 by
ContactPFP. This distribution implies that ContactPFP may have
both a characteristic strength and weakness when compared with
the other methods.

In Table 2, we also presented the Smin score of the five
methods. Smin evaluates remaining uncertainty/missing
information from predicted GO terms (Jiang et al., 2016). The
lower, the better prediction. In terms of Smin, ContactPFP is the
best among the all five methods when all GO categories, MF, or
BP are considered. ContactPFP was the second in the CC category
following Phylo-PFP.

3.3 Effect of the Contact Prediction
Accuracy
We examined how contact prediction accuracy affects to the GO
prediction accuracy in ContactPFP. For this analysis, we used
1,029 targets in the benchmark dataset, which have an
experimentally determined protein structure that covers more
than 80% of the residues in the target protein. If we consider
precision of all predicted contacts (Figure 4A), all the targets fall
into contact precision around 0.8 (the average: 0.801), and we
found no correlation between the Fmax score. The conclusion
was the same when we only considered long-range contacts
predicted within the top L/5 scores (Figure 4B); no
correlation was observed.

In Figure 4C, we further examined what would happen if we
used completely accurate contacts for targets that were taken
from experimentally determined structures. Interestingly, the

Fmax score was higher when predicted contacts were used.
The Fmax score of ContactPFP using predicted contacts and
accurate contacts were 0.744 and 0.658, respectively. This is
mostly because we use the reference database of proteins with
predicted contacts. Similar proteins are likely to have similar
predicted contact patterns, either accurate or inaccurate, and the
similarity can be captured by contact graph comparison.

3.4 Effect of Disordered Regions
We were also curious how ContactPFP performs for proteins that
have intrinsic disordered regions (IDRs) because an IDR does not
usually form residue contacts. In Figure 4D, we examined Fmax
scores of target proteins relative to the fraction of IDRs in a
protein. IDRs were predicted with fldpnn (Hu et al., 2021). To
make disorder predictions more reliable, we used SPIDER3-single
(Heffernan et al., 2018) to predict secondary structure of proteins
and only considered residues which were also predicted as loops
(class C) SPIDER3-single as the final disorder residues. We did
not observe clear correlation between Fmax scores and the
fraction of IDRs.

3.5 Case Studies
In this section, we discuss cases that illustrate ContactPFP’s
performance relative to sequence-based methods.

3.5.1 Case 1: Outer Membrane Porin G
The first example shows a successful prediction by ContactPFP
for outer membrane porin G (UniProt ID: P76045). This protein
is present in the outer membrane of E. coli, for which GO terms
such as “cell outer membrane” (GO: 0009279) are annotated in
the CC category. This protein is transmembrane and transports
sugars from outside to inside the cell. This corresponds to
“maltose transporting porin activity” (GO: 0015481). For this
protein, ContactPFP showed a high prediction accuracy, a Fmax
score of 0.754, while it was 0.083, 0.140, and 0.085 for PFP, ESG,
and Phylo-PFP, respectively. Table 3 shows predicted correct and

TABLE 3 | Predicted GO terms for outer membrane porin G (UniProt ID: P76045).

Correct GO terms Confidence Score

ContactPFP Phylo-PFP ESG PFP

MF GO:0015481 Maltose transporting porin activity - - - -
MF GO:0015478 oligosaccharide transporting porin activity - - 0.001 -
MF GO:0015288 porin activity 1.000 0.283 0.090 0.250
BP GO:0034219 carbohydrate transmembrane transport - 0.432 0.053 0.490
BP GO:0006811 ion transport 1.000 0.458 0.087 0.510
CC GO:0009279 cell outer membrane 1.000 0.345 0.092 0.380
CC GO:0045203 integral component of cell outer membrane - 0.099 0.062 0.110
CC GO:0046930 pore complex 0.473 0.099 0.090 0.110

Incorrect GO terms ContactPFP Phylo-PFP ESG PFP

MF GO:0046872 metal ion binding - 1.000 0.272 1.000
BP GO:0007155 cell adhesion - 0.975 0.161 1.000
CC GO:0005737 cytoplasm - 1.000 0.097 0.920

All correct GO terms assigned in the UniProt entry are listed. For incorrect GO terms, GO terms that illustrate the difference betweenContactPFP and the other methods are shown. Scores
assigned to GO terms by the methods were normalized by the highest GO term score for this target protein. Thus, 1.0 means it is the top (i.e., most confident) prediction by the method for
this protein.
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incorrect GO terms by the methods. ContactPFP was able to
predict three out of four correct GO terms with the highest score
of 1.0 and the remaining term (pore complex) with a score about
half of the highest score (0.473). In contrast, Phylo-PFP, ESG, and
PFP assigned low scores to the correct terms and instead selected
wrong GO terms that do not exist in the UniProt entry with the
highest (1.0) or with high scores over 0.9.

In Figure 5, we analyzed how the correct GO prediction was
possible by ContactPFP. The query protein has the β barrel fold,
which was well predicted by trRosetta (Figures 5A,D). With the
accurate contact prediction of the query, ContactPFP was able to

identify two other outer membrane proteins, YaiO
(YAIO_ECOLI) and probable N-acetylneuraminic acid outer
membrane channel protein NanC (NANC_ECOL6) from
E. coli O6:H1, that also have a β barrel fold (Figures 5B–F).
These two proteins have correct GO terms, GO:0009279 (cell
outer membrane), GO:0015288 (porin activity), GO:0006811 (ion
transport), GO:0046930 (pore complex), and GO:0008643
(carbohydrate transport), which is a parent, more-general term
of a correct term, GO:0034219 (carbohydrate transmembrane
transport). Since these top 2 most similar structures were used for
GO term transfer, ContactPFP was able to make the correct GO

FIGURE 5 |GO prediction by ContactPFP for outer membrane porin G (P76045). The first three panels (A–C) and the subsequent panels in the second row (D–F)
are predicted residue contacts and resulting protein structure models. (A) The predicted contact maps of the query, OMPG_ECOLI (P76045). Residue pairs predicted to
be in contact are shown in yellow. (B) The predicted contact maps of YAIO_ECOLI (Q47534), the most similar contact map with the GR-align score of 0.733 (C) The
predicted contact maps of NANC_ECOL6 (P69856). The second closest contact map with the GR-align score of 0.658. GO terms of these two proteins were used
for the prediction. (D) The predicted structure of OMPG_ECOLI (P76045) was generated by trRosetta (rainbow) superimposed with PDB structure 2X9K (gray). The root
mean square deviation (RMSD) of the model to the native is 3.63 Å. (E) The predicted structure of YAIO_ECOLI (Q47534) was generated by trRosetta (rainbow). For this
protein, no experimental structure has been reported. (F) The predicted structure of NANC_ECOL6 (P69856) was generated by trRosetta (rainbow). No experimental
structure was reported for this protein. (G) The top hits for OMPG_ECOLI by PSI-BLAST search against Swiss-Prot. The query itself is shown in the first position. Funsim
functional similarity scores (Schlicker et al., 2006; Hawkins et al., 2009). The three categories of each protein compared with the query are shown in the top row in a color
scale. The y-axis shows the sequence similarity in the form of -log10 (E-value). The proteins that have incorrect GO terms listed in Table 3 are marked with symbols: *,
“metal ion binding” (GO: 0046872); #, “cell adhesion” (GO: 0007155); and †, “cytoplasm” (GO: 0005737).
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predictions in Table 3. The query protein has been reported to
have low sequence similarity with other porin proteins with
similar functions (Subbarao and van den Berg, 2006). Indeed,
the E-value of these two proteins to the query was over 125 and
thus they were not able to be detected by PSI-BLAST. Figure 5G
shows the top 50 hits by PSI-BLAST. As shown, this query does
not have similar sequences in Swiss-Prot. All the hits have almost
0 -log (E-value) scores. To conclude, in this example functionally
related proteins were only retrieved by the similarity of structure
but not by sequence.

3.5.2 Case 2: Leucine-Rich Repeat-Containing
Protein 10
This is another successful example of ContactPFP, where it
predicted more accurately than the sequence-based methods.
The reason for this success was different from the first case.
The query is a Leucine-rich repeat-containing protein 10 of mice
(UniProt ID: Q8K3W2). The function of this protein includes
“actin binding” (GO: 0003779), “alpha-actinin binding” (GO:
0051393), “cardiac muscle cell development” (GO: 0055013), and
the protein is localized in the “nucleus” (GO: 0005634),
“cytoskeleton” (GO: 0005856), “mitochondrion” (GO:
0005739), “sarcomere” (GO: 0030017), and “myofibril” (GO:
0030016). As shown in Table 4, ContactPFP predicted all GO
term correctly with the highest confidence score, 1.0. For this
protein, ContactPFP showed a high prediction accuracy, a Fmax
score of 1.000, while it was 0.131, 0.115, and 0.160 by PFP, ESG,
and Phylo-PFP, respectively.

The correct GO term predictions by ContactPFP were
transferred from the two most structurally similar proteins
shown in Figure 6B,C,E,F. The query and these two proteins
have a horse-shoe fold, a typical fold for proteins with Leucine-
rich repeats. These two structures have high graph similarity
scores of 0.917 (LRC10_BOVIN) and 0.914 (LRC10_HUMAN),
respectively. These two proteins also have significant sequence
similarities with E-value of 8e-59 and 1e-59, with the third and
the second hits as shown in Figure 6G. However, the poor
prediction accuracy by the sequence-based methods occurred

because there are many other proteins with significant sequence
similarity, which do not have common GO terms with the query.
As shown in Figure 6G, all top 50 hits have an E-value of 10–40 or
smaller, but only a few of them have correct GO terms. As a result,
incorrect GO terms (shown in symbols) that frequently appear in
the top 50 hits accumulated higher scores. Thus, in this case, the
structure information was able to select the most functionally
relevant proteins among proteins that are similar in sequence but
not in function.

3.5.3 Case 3: Cyclin-dependent Kinase Inhibitor 4
The last one is the opposite case where ContactPFP did not
perform as well as the other sequence-based methods. The query
is Cyclin-dependent kinase inhibitor 4 in Arabidopsis
(KRP4_ARATH, Q8GYJ3). This protein has GO annotations
of “cyclin-dependent protein serine/threonine kinase inhibitor
activity” (GO: 0004861), “negative regulation of cell cycle” (GO:
0045786), “negative regulation of cyclin-dependent protein
serine/threonine kinase activity” (GO: 0045736),
“nucleoplasm” (GO: 0005654), “nucleus” (GO: 0005634), and
“cytoplasm” (GO: 0005737) (Table 5). As shown in Table 5,
ContactPFP predicted only one term among the correct terms
and instead predicted wrong terms, including actin filament
binding and organization (GO:0051015, GO:0007015), and
microtubule (GO:0005874), which was worse than the other
three sequence-based methods. The Fmax score of ContactPFP
was 0.127, while Phylo-PFP, ESG, and PFP had a high Fmax score
of 0.995.

According to UniProt, more than half of residues are
annotated as disordered. Therefore, it is highly likely that
predicted contacts (Figure 7A) and structures (Figure 7D) are
incorrect. Furthermore, the top two structures selected by
ContactPFP have a long, straight helical structure, which is
not similar overall to the predicted structure of the query.
Indeed, these two retrieved proteins, TPM3_HUMAN (Figures
7B,E) and TPM_CHAFE (Figures 7C,F) do not have any
common GO terms with the query protein. In contrast, about
a dozen top hits by sequence similarity search are functionally

TABLE 4 | Predicted GO terms for Leucine-rich repeat-containing protein 10 (UniProt ID: Q8K3W2).

Correct GO terms Confidence Score

ContactPFP Phylo-PFP ESG PFP

MF GO:0003779 actin binding 1.000 0.582 0.129 0.070
MF GO:0051393 alpha-actinin binding 1.000 0.521 0.129 0.010
BP GO:0055013 cardiac muscle cell development 1.000 0.521 0.129 0.020
CC GO:0005634 nucleus 1.000 0.315 0.257 0.180
CC GO:0005856 cytoskeleton 1.000 0.201 0.129 0.050
CC GO:0005739 mitochondrion 1.000 0.210 0.129 0.040
CC GO:0030017 sarcomere 1.000 0.178 0.129 0.010
CC GO:0030016 myofibril 1.000 0.155 - 0.010

Incorrect GO terms ContactPFP Phylo-PFP ESG PFP

MF GO:0005524 ATP binding - 1.000 - 1.000
BP GO:0006952 defense response - 0.478 0.127 1.000
CC GO:0030054 cell junction - 0.360 0.861 0.130

See the caption in Table 3.
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highly similar to the query, which is reflected in the high Fmax
scores of Phylo-PFP, ESG, and PFP (Figure 7G). Thus, to
conclude, this is an example where incorrect protein structure
prediction led to the failure of ContactPFP’s function
prediction.

3.6 Ensemble Methods
ContactPFP’s characteristic prediction performance discussed in
Figure 3motivated us to develop ensemble methods. Particularly,
the primary focus is to improve predictions for proteins where
ContactPFP did not perform well but other conventional
methods achieved higher Fmax scores. Combining ContactPFP
with other methods also makes sense from a biological point of
view because the former uses protein structure information,

which is complementary with the latter that uses sequence
information.

We constructed ensemble methods of all possible
combinations of the methods starting from single methods
to a combination of all five methods (Figure 8A; Table 6).
When multiple methods are combined, scores of GO terms
from the combined methods were simply averaged. The
highest average Fmax score, 0.699, was achieved by a
combination of three methods, ContactPFP, Phylo-PFP, and
PSI-BLAST. Compared with the Fmax of the lone ContactPFP,
0.638, it is a 9.6% improvement. From Figure 4A, we can see
that the top methods all include ContactPFP as its ensemble
component, which implies it is complementary to the other
methods.

FIGURE 6 | Illustration of GO term predictions by ContactPFP for Leucine-rich repeat-containing protein 10 frommouse (LRC10_MOUSE, Q8K3W2). Residue pair
contact prediction of (A) The query, LRC10_MOUSE; (B) Leucine-rich repeat-containing protein from bovine, LRC10_BOVIN (Q24K06), and (C) Leucine-rich repeat-
containing protein from human LRC10_HUMAN (Q5BKY1). The following three panels, (D–F), are the corresponding predicted structures of these three proteins,
respectively. The color shows the orientation of the proteins from the N-terminus to the C-terminus from blue to red. There are no experimentally determined
structures for these proteins. (G) The top 50 hits for the query by PSI-BLAST against Swiss-Prot. Funsim scores compared with the query protein are shown in the top
row in a color scale. The leftmost column is the query itself. The protein names associated with the “incorrect GO terms” listed in Table 4 are marked with the
corresponding symbols, *, “ATP binding” (GO:0005524); #, “defense response” (GO: 0006952); and † “cell junction” (GO:0030054).

Frontiers in Bioinformatics | www.frontiersin.org June 2022 | Volume 2 | Article 89629510

Kagaya et al. Contact Map-Based Function Prediction

https://www.frontiersin.org/journals/bioinformatics
www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics#articles


Figure 8B shows the Fmax score distribution of the best
ensemble method and the five individual methods.
ContactPFP’s distribution has a characteristic peak at a low
Fmax score of around 0.1. This peak disappeared when
combined with other methods, which is the main reason why
the performance improved by the ensemble method. In the score
comparison of individual proteins (Figure 8C), we can also see
that many proteins with a low score around 0.1 by ContactPFP
improved by the ensemble method.

One thing which drew our attention is that the top combination
included PSI-BLAST,which performed theworst among thefive non-
ensembled methods. To examine why adding PSI-BLAST improved
the performance, we compared the ensemble of ContactPFP with
Phylo-PFP with the ensemble of ContactPFP with PSI-BLAST
(Figure 8D). We compared PSI-BLAST with Phylo-PFP because
the latter was the best single method among the methods we
compared (Figure 3A). From this plot, we selected two target
proteins where ContactPFP + PSI-BLAST performed significantly
better than ContactPFP + Phylo-PFP. APOE_HUMAN,
Apolipoprotein E of Human, is one such example. The Fmax
score of ContactPFP + Phylo-PFP was 0.234, while that of
ContactPFP + PSI-BLAST was 0.801. This protein has 164 GO
annotations. By PSI-BLAST, most of the GO terms were found at
least once in the top 10 sequences thus all the GO terms had a score of
0.931 (because this is howGO terms are scored in PSI-BLAST). These
GO terms were found also in the sequences retrieved by Phylo-PFP
and ContactPFP. However, the GO terms were found infrequently in
the retrieved sequences and thus received a low score. The same
mechanism was observed for DNJA3_HUMAN, DnaJ homolog
subfamily A member 3, which had an Fmax score of 0.213 by
ContactPFP + Phylo-PFP and 0.988 by ContactPFP + PSI-BLAST.

3.7 Computational Time
In Figure 9 we show the computation time of ContactPFP. In our
computational environment, the entire ContactPFP pipeline took
approximately 15 min for a 500 residue-long protein. Figure 8 also
shows the breakdown of the time needed for five steps in
ContactPFP. The computational time for running trRosetta and

reference database search by GR-Align grows as the protein length
increases. Particularly, the computational time for using trRosetta
grows sharply, and it exceeds the time for the reference database
search when the query protein is longer than 500 residues.

4 DISCUSSION

ContactPFP developed in this work identifies proteins with
similar contact maps and transfers their functions to the
query. Despite the knowledge that protein structure and
function are closely related, protein structure information has
not been effectively used for automatic protein function
prediction mainly because of the low coverage of
experimentally determined structure information for proteins.
It is now possible to employ structure prediction methods to
cover structure information of remaining proteins that have no
experimentally determined structures. ContactPFP showed a
slightly lower average Fmax score than one of the best
sequence-based methods, Phylo-PFP, but had more wins over
Phylo-PFP when predictions for individual proteins were
counted. Thus, overall, we could say ContactPFP performed
on par with Phylo-PFP. Combining ContactPFP in ensemble
methods with sequence-based methods successfully achieved
higher accuracy than the individual methods. In the current
work we used simple averaging to ensemble scores from
different methods. It would be worthwhile to explore other
approaches beyond averaging, such as learning-to-rank, or
even other signals that might indicate that a given query
protein will benefit more from sequence similarity instead of
structural similarity.

Since ContactPFP is based on database search, it can predict any
GO terms, including very rare ones, as long as proteins found by a
search have such GO annotations. This is very important for practical
use of a function prediction method and is different from recent
machine learning-based methods (Kulmanov and Hoehndorf, 2020;
Wan and Jones, 2020; You et al., 2021), which need training on a
dataset of proteins with a limited set of abundant GO terms.

TABLE 5 | The detail of predicted GO terms for Cyclin-dependent kinase inhibitor 4 (UniProt ID: Q8GYJ3).

Correct GO terms Confidence Score

ContactPFP Phylo-PFP ESG PFP

MF GO:0004861 cyclin-dependent protein serine/threonine kinase inhibitor activity - 1.000 0.923 1.000
BP GO:0007049 cell cycle - 0.141 0.923 0.100
BP GO:0045786 negative regulation of cell cycle - 0.274 0.923 0.300
BP GO:0045736 negative regulation of cyclin-dependent protein serine/threonine kinase activity - 0.292 0.346 0.410
CC GO:0005654 nucleoplasm - 0.486 0.553 0.640
CC GO:0005634 nucleus - 1.000 0.617 1.000
CC GO:0005737 cytoplasm 0.988 0.053 0.005 0.180

Incorrect GO terms ContactPFP Phylo-PFP ESG PFP

MF GO:0051015 actin filament binding 1.000 0.004 - 0.010
BP GO:0007015 actin filament organization 1.000 0.001 - -
CC GO:0005874 microtubule 0.988 0.002 - 0.010

See the caption in Table 3.
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Besides proving practical usefulness, we have a couple of
important findings. Through comparison with sequence-
based methods, we observed the strengths and the
weakness of ContactPFP, which would apply to any
function prediction methods that use predicted protein
structures. The notable strength is that, as illustrated in the
first case study, ContactPFP can often identify distantly
related proteins by considering structural similarity, which
leads to more accurate function prediction than sequence-
based methods. ContactPFP was also able to select the most
relevant proteins among proteins that are similar in the
sequence (the second case study). On the other hand,
weaknesses originate from the accuracy and current
challenges of protein structure prediction. Structure-based
retrieval does not work well when predicted structures

(predicted contact maps) are not accurate. Also, handling
intrinsically disordered proteins is a challenge because all
disordered proteins look alike, and it is hard to distinguish
functionally similar ones by their structures. An interesting
finding is that the structure-based approach showed
complementary strengths from sequence-based methods
(Figure 3), and thus it is effective to construct an ensemble
approach with other methods.

We compared simplified protein structure representations,
residue contact maps as graphs, instead of directly using the
three-dimensional structures. The comparison of contact maps
made it possible to scan the reference database within a realistic
amount of time, although it still took about 20 min for prediction
on one query protein. A further speed up will be possible by using
a different, efficient structure representation, such as the 3D

FIGURE7 | Illustration of GO term predictions by ContactPFP for Cyclin-dependent kinase inhibitor 4 (KRP4_ARATH, Q8GYJ3). The first three panels are predicted
contacts for the query, KRP4_ARATH (A), and the two most similar proteins in terms of the contact pattern, (B) TPM3_HUMAN and (C) TPM_CHAFE. The graph
similarity scores by GR-align were 0.677 and 0.673, respectively. Panel D, E, F are predicted structures of these three proteins by trRosetta in the same order as the first
row. (G), The top 50 hits for the query by PSI-BLAST against Swiss-Prot. Funsim scores compared with the query protein are shown in the top row in a color scale.
The most left column is the query itself. The proteins that have incorrect GO terms listed in Table 5 are marked with symbols, *, “actin filament binding” (GO: 0051015); #,
“actin filament organization” (GO: 0007015); and †, “microtubule” (GO: 0005874).
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FIGURE 8 | The prediction performance of ensemble methods with ContactPFP. (A) The average Fmax score of ensemble methods with ContactPFP. Results of all
the combinations of 1–5 methods are shown. Patterns in the bar graphs show the number of methods combined. The bars are sorted by their Fmax scores. CPFP,
ContactPFP; PHYLO, Phylo-PFP; BLAST, PSI-BLAST. (B) Fmax score distribution of the ensemble method with ContactPFP, Phylo-PFP, and PSI-BLAST, the
combination with the highest Fmax score, and distributions of individual methods shown in violin plots. The three horizontal bars in a plot indicate the maximum,
median, and minimum values. (C) Comparison of Fmax scores of individual target proteins by the best ensemble method and Phylo-PFP. Each point represents a target
protein in the benchmark dataset. (D) Comparison of Fmax scores of individual target proteins by the ContactPFP + PhyloPFP and ContactPFP + PSI-BLAST.
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TABLE 6 | The function prediction performance of ensemble methods.

# of methods Ensemble name Fmax

ALL CC MF BP

3 CPFP-PHYLO-BLAST 0.699 0.778 0.799 0.679
4 CPFP-PHYLO-ESG-BLAST 0.694 0.774 0.795 0.672
4 CPFP-PHYLO-PFP-BLAST 0.693 0.774 0.786 0.673
2 CPFP-BLAST 0.688 0.758 0.789 0.671
3 CPFP-PFP-BLAST 0.688 0.77 0.788 0.67
5 CPFP-PHYLO-ESG-PFP-BLAST 0.687 0.771 0.784 0.666
3 CPFP-ESG-BLAST 0.684 0.765 0.795 0.665
3 CPFP-PHYLO-ESG 0.683 0.758 0.782 0.661
4 CPFP-ESG-PFP-BLAST 0.682 0.767 0.784 0.662
2 CPFP-PHYLO 0.68 0.749 0.775 0.657
4 CPFP-PHYLO-ESG-PFP 0.675 0.762 0.774 0.652
2 CPFP-ESG 0.674 0.742 0.779 0.647
2 PHYLO-BLAST 0.673 0.758 0.779 0.651
3 PHYLO-ESG-BLAST 0.669 0.753 0.777 0.646
3 CPFP-PHYLO-PFP 0.668 0.751 0.762 0.646
2 PHYLO-ESG 0.668 0.753 0.768 0.644
3 CPFP-ESG-PFP 0.666 0.748 0.764 0.644
1 PHYLO 0.662 0.75 0.759 0.641
3 PHYLO-PFP-BLAST 0.662 0.749 0.762 0.641
4 PHYLO-ESG-PFP-BLAST 0.66 0.75 0.765 0.638
2 CPFP-PFP 0.659 0.739 0.752 0.637
3 PHYLO-ESG-PFP 0.651 0.745 0.747 0.626
2 ESG-BLAST 0.64 0.728 0.76 0.612
3 ESG-PFP-BLAST 0.639 0.732 0.753 0.617
1 CPFP 0.638 0.718 0.728 0.606
2 PHYLO-PFP 0.637 0.736 0.732 0.614
1 ESG 0.634 0.714 0.746 0.598
2 PFP-ESG 0.623 0.728 0.728 0.597
2 PFP-BLAST 0.623 0.728 0.728 0.597
1 PFP 0.586 0.698 0.689 0.562
1 BLAST 0.574 0.655 0.678 0.544

All possible combinations are listed. In the column of ensemble name, CPFP, PHYLO, and BLAST correspond to ContactPFP, Phylo-PFP, and PSI-BLAST, respectively. CC, MF, BP
corresponds to Cellular component, Molecular Function, and Biological Process, respectively.

FIGURE 9 | The cumulative computational time of ContactPFP. The time is decomposed into five steps: The database search with HHblits, the distance map
prediction by trRosetta, converting a predicted distance map to a contact graph, contact graph comparison against the reference database by GR-Align, constructing
GO term list from a hit list, are reported. The times are reported in the wall-clock time (seconds). All computations were performed on CPU, 2 AMD EPYC 7252 cores (16
cores in total) with 128GB RAM. The following 13 proteins were used, which have a length between 100 and 800 amino acids. The length of each protein is shown
in the parenthesis. P0CM71 (98), P9WF14 (150), P69162 (200), B1W5S5 (250), A1YG61 (300), Q6Q972 (350), Q550G0 (400), C5A1K9 (450), Q00456 (500), A1DHW5
(550), A5DX93 (600), Q96QV1 (700), and Q54WZ0 (800). These proteins were chosen because they hit the same number of sequences, 500 (± 10) sequences, by
HHblits.
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Zernike descriptor (Venkatraman et al., 2009; Kihara et al., 2011)
as it was successfully applied for real-time protein structure
database search (Sael et al., 2008; La et al., 2009; Esquivel-
Rodríguez et al., 2015; Han et al., 2017; Aderinwale et al.,
2022).

The development of various bioinformatics tools using
predicted protein structures will progress further in the future
as a more recent method, Alphafold2 (Jumper et al., 2021) made
significant improvements in the modeling accuracy. Function
prediction (Sael et al., 2012) from predicted structures will be one
such major application (Gligorijević et al., 2021). Here, we
showed an approach using global protein structure
comparison, but with structures, we can also identify local
functional sites of proteins (Chikhi et al., 2010; Zhu et al.,
2015; Sit et al., 2019) and predict binding ligands (Shin et al.,
2016; Zhu et al., 2016).
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