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DNA methylation is among the most studied epigenetic modifications in eukaryotes.
The interest in DNA methylation stems from its role in development, as well as its well-
established association with phenotypic changes. Particularly, there is strong evidence that
methylation pattern alterations in mammals are linked to developmental disorders and cancer
(Kulis and Esteller, 2010). Owing to its potential as a prognostic marker for preventive
medicine, in recent years, the analysis of DNA methylation data has garnered interest in many
different contexts of computational biology (Bock, 2012). As it typically happens with omic
data, processing, analyzing and interpreting large-scale DNA methylation datasets requires
computational methods and software tools that address multiple challenges. In the present
Research Topic, we collected papers that tackle different aspects of computational approaches
for the analysis of DNA methylation data. These manuscripts address novel computational
solutions for copy number variation detection, cell-type deconvolution and methylation
pattern imputation, while others discuss interpretations of well-established computational
techniques.

Over the last 10 years, DNA methylation profiles have been successfully exploited to
develop biomarkers of age, also referred to as epigenetic clocks (Bell et al., 2019).
Epigenetic clocks accurately estimate both chronological and biological age from
methylation levels. DNA methylation age and, most importantly, its deviation from
chronological age have been shown to be associated with a variety of health issues. More
recently, a second generation of epigenetic clocks has emerged. The new generation of clocks
incorporates not only methylation profiles but also environmental variants, such as smoking
and alcohol consumption, and they outperform the first generation in mortality prediction and
prognosis of certain diseases. In our collection, the review by Chen et al. compares the first and
second generation of epigenetic clocks that predict cancer risk and discusses pathways known
to exhibit altered methylation in aging tissues and cancer.

Differentially methylated regions (DMRs), that is genomic regions that show significant
differences in methylation levels across distinct biological and/or medical conditions (e.g.,
normal vs. disease), have been reported to be implicated in a variety of disorders (Rakyan et al.,
2011). As a result, identifying DMRs is one of the most critical and fundamental challenges in
deciphering disease mechanisms at the molecular level. Although DNAmethylation patterns remain
stable during normal somatic cell growth, alterations in genomic methylation may be caused by
genetic alterations, or vice versa. However, standard DMR analysis often ignores whether
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methylation alterations should be viewed as a cause or an effect.
Rhamani et al. discuss the effect of model directionality, i.e.
whether the condition of interest (phenotype) may be affected
by methylation or whether it may affect methylation, in
differential methylation analyses at the cell-type level. They
show that correctly accounting for model directionality has a
significant impact on the ability to identify cell type specific
differential methylation.

Different cell types exhibit DMRs at many genomic
regions and such rich information can be exploited to
infer underlying cell type proportions using deconvolution
techniques. DNA methylation-based cell mixture
deconvolution approaches can be classified into two main
categories: reference-based and reference-free. While the
latter are more broadly applicable, as they do not rely on
the availability of methylation profiles from each of the
purified cell types that compose a tissue of interest, they
are also less precise. Reference-based approaches use DMRs
specific to cell types (reference library) to determine the
underlying cellular composition within a DNA methylation
sample. The quality of the reference library has a big impact
on the accuracy of reference-based approaches. Bell-Glenn
et al. present RESET, a framework for reference library
selection for deconvolution algorithms exploiting a
modified version of the Dispersion Separability Criteria
score, for the inference of the best DMRs composing the
library, contributing to de facto standards (Koestler et al.,
2016). In short, RESET does not require researchers to
identify a priori the size of the reference library (number
of DMRs), nor to rely on costly associated purified cells’
mDNA profiles.

Within a cellular population, the methylation patterns of
different cell types and at specific genomic locations are
indicative of cellular heterogeneity. Alterations of such
heterogeneity are predictive of development as well as
prognostic markers of diseases. Computational methods
that exploit heterogeneity in methylation patterns are
typically constrained by partially observed patterns due to
the nature of shotgun sequencing, which frequently generates
limited coverage for downstream analysis. One possible
solution to overcome such limitations is offered by Chang
et al. presenting BSImp, a probabilistic based imputation
method that uses local information to impute partially

observed methylation patterns. They show that using this
approach they are able to recover heterogeneity estimates at
15% more regions with moderate sequencing depths. This
should therefore improve our ability to study how
methylation heterogeneity is associated with disease.

Finally, recent studies have shown how the associations
between Copy Number Variations (CNVs) and methylation
alterations offer a richer and hence more informative picture
of the samples under study, in particular for tumor data
characterized by large scale genomic rearrangements (Sun
et al., 2018). Consequently, recent technological and
methodological developments have enabled the possibility to
measure CNVs from DNA methylation data. The main
advantage of DNA methylation based CNV approaches is that
they offer the possibility to integrate both genomic (copy
number) and epigenomic (methylation) information. Mariani
et al. propose MethylMasteR, an R software package that
integrates DNA methylation-based CNV calling routines,
facilitating standardization, comparison and customization of
CNV analyses. This package, built into the Docker
architecture to seamlessly mange dependencies, includes four
of the most commonly used routines for this integrated analysis,
ChAMP (Morris et al., 2014), SeSAMe (Zhou et al., 2018),
Epicopy (Cho et al., 2019), plus a custom version of
cnAnalysis450k (Knoll et al., 2017), overall enabling analysis
of comparative results.

All the topics in this issue, although limited to specific aspects
of DNA methylation analysis, highlight the importance of
research in this field, the associated computational challenges
and illustrate the significant impact that this type of data will
likely have on preventive medicine.
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