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Protein interactions are key in vital biological processes. In many cases,

particularly in regulation, this interaction is between a protein and a shorter

peptide fragment. Such peptides are often part of larger disordered regions in

other proteins. The flexible nature of peptides enables the rapid yet specific

regulation of important functions in cells, such as their life cycle. Consequently,

knowledge of the molecular details of peptide-protein interactions is crucial for

understanding and altering their function, and many specialized computational

methods have been developed to study them. The recent release of AlphaFold

and AlphaFold-Multimer has led to a leap in accuracy for the computational

modeling of proteins. In this study, the ability of AlphaFold to predict which

peptides and proteins interact, as well as its accuracy in modeling the resulting

interaction complexes, are benchmarked against established methods. We find

that AlphaFold-Multimer predicts the structure of peptide-protein complexes

with acceptable or better quality (DockQ ≥0.23) for 66 of the 112 complexes

investigated—25 of which were high quality (DockQ ≥0.8). This is a massive

improvement on previous methods with 23 or 47 acceptable models and only

four or eight high quality models, when using energy-based docking or

interaction templates, respectively. In addition, AlphaFold-Multimer can be

used to predict whether a peptide and a protein will interact. At 1% false

positives, AlphaFold-Multimer found 26% of the possible interactions with a

precision of 85%, the best among the methods benchmarked. However, the

most interesting result is the possibility of improving AlphaFold by randomly

perturbing the neural network weights to force the network to sample more of

the conformational space. This increases the number of acceptable models

from 66 to 75 and improves the median DockQ from 0.47 to 0.55 (17%) for first

ranked models. The best possible DockQ improves from 0.58 to 0.72 (24%),

indicating that selecting the best possiblemodel is still a challenge. This scheme

of generating more structures with AlphaFold should be generally useful for

many applications involving multiple states, flexible regions, and disorder.
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1 Introduction

Protein-protein interactions are central to all biological

process; knowledge of the molecular details of these

interactions is crucial to understanding and altering their

function. Up to 40% of protein-protein interactions are

considered peptide-protein interactions, with many of these

responsible for vital functions such as cell life-cycle regulation

(Lee et al., 2019). These are interactions between a protein and a

smaller peptide fragment, sometimes referred to as short linear

motif (SLiM), which can be part of a disordered region of a larger

protein. Because peptide fragments display a high degree of

flexibility and are often disordered when unbound,

investigating the molecular details of such interactions, and

even identifying direct interaction at all, has been difficult

both from an experimental and computational point of view.

Specialized solutions have been specifically developed to

investigate peptide-protein interactions (Petsalaki and Russell,

2008; Alam et al., 2017; Öztürk et al., 2018; Johansson-Åkhe et al.,

2021; Lei et al., 2021).

The unprecedented accuracy of AlphaFold (Jumper et al.,

2021) and the recent release of its source code have transformed

the field of computational and structural biology. It is now

possible to achieve highly accurate protein structure

prediction on par with experimental accuracy for many

proteins—58% of human proteins, for example, can be

modeled accurately (Tunyasuvunakool et al., 2021). As a

comparison, the previously experimentally determined

structures of human proteins had 17% accuracy. This, and the

improved methods that will follow in the footsteps of AlphaFold,

will have a significant impact not only on structural biology but

on the whole field of life-science.

Despite the fact that AlphaFold was trained on monomeric

structures, it has demonstrated an impressive ability and stability

to allow manipulation of its input to predict protein

complexes—for instance, using a 200 residue gap to infer a

chain break (Bryant et al., 2022) or using a flexible linker (Ko

and Lee, 2021; Tsaban et al., 2022). However, it is clear that, even

though the input-adapted versions of AlphaFold performed

better than state-of-the-art, the recently released retrained

AlphaFold-Multimer system (Evans et al., 2021) successfully

predicts the interface (DockQ (Basu and Wallner, 2016a) ≥
0.23) for 67% of the cases and at high accuracy (DockQ ≥0.8)
for 23% of the cases on a set of 4,433 non-redundant

interfaces—an improvement over the input-adapted versions

of 60% and 12% for the gap and linker, respectively (Evans

et al., 2021).

Although AlphaFold expertly implements several state-of-

the-art neural network concepts and contributes its own with the

Evoformer layers, the common bioinformatics concept of simple

increased sampling of the conformational space with more

lenient energy terms in search of a global optimum has not

been explored. Repeated sampling of predictions with different

random seeds or parameters is commonly utilized in

bioinformatics methods; examples include Rosetta and

ZDOCK (Raveh et al., 2011; Pierce et al., 2014). For many

neural networks—AlphaFold included—the random dropout

of features inside the network is employed during training of

the network to force it to adapt and learn several different ways to

solve its target function. Activating dropout layers also at

inference would force a network to utilize alternative learned

solutions that might be unused or drowned out when the entire

network retains all its features, tapping into the alternative

learned solutions at the cost of predictive power. This has

been previously suggested for introducing and mapping

uncertainty while creating a model ensemble with no increase

in training time (Gal and Ghahramani, 2016; Lakshminarayanan

et al., 2017).

Here, we demonstrate that AlphaFold-Multimer, which has

been so successful in the prediction of complexes of globular

structures, can also be used to advance the field of peptide-

protein complex modeling and interaction prediction. Without

any modifications, AlphaFold-Multimer performs much better

FIGURE 1
Distribution of model quality as measured by DockQ for the
rank 1 models from each method.

TABLE 1 Thresholds for DockQ measure of docked model quality.

DockQ Model quality

≥ 0.23 Acceptable

≥ 0.50 Medium

≥ 0.80 High
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than state-of-the-art on both peptide-protein complex modeling

and interaction prediction. We also show that AlphaFold can be

improved by randomly perturbing the neural network weights to

force it to sample a larger variety of conformations. By generating

a large pool of models and using the excellent scoring function in

AlphaFold, it is possible to select much better models than the

default setting.

2 Materials and methods

2.1 Dataset

A test set was constructed for the benchmarking of peptide-

protein complex modeling which could also be used for peptide-

protein interaction prediction. The samples of observed peptide-

protein interaction complexes in the test set were based on the

state-of-the art paper for peptide-protein interaction prediction,

CAMP, by Lei et al. (2021); it consisted of 262 peptide-protein

complexes with experimentally-solved structures in the PDB

(Berman et al., 2000). After selecting one complex

representative per ECOD (Schaeffer et al., 2017) family, the

final redundancy reduced set consisted of 112 peptide-protein

complexes.

A negative set was created for peptide-protein interaction

prediction in the same manner as in Lei et al. (2021) by randomly

pairing 560 peptides and protein receptors from the positive set,

creating a negative set five times larger than the positive.

Although randomly pairing proteins is no guarantee of lack of

interaction, the resulting false negative rate will be statistically

insignificant, especially considering that the proteins hail from

different species; randomly pairing proteins is, as such, a

common practice for constructing negative sets for protein-

protein interaction prediction (Guo et al., 2008; Wang et al.,

2019).

This scheme results in a dataset which can be used to both

evaluate the docking performance on the positive set as well as be

used for benchmarking the capacity to predict whether peptide-

protein pairs interact or not. Both the positive and negative sets

are available as Supplementary Data.

2.2 AlphaFold versions

One input-adapted version of AlphaFold monomer and

several variants of AlphaFold-Multimer were included in the

benchmark, as outlined below:

• AF-gap: This is an input-adapted version using AlphaFold

(Jumper et al., 2021) monomer. The input is adapted by

placing a 200-residue gap between the chains and pairing the

multiple sequence alignments (MSA) diagonally (Bryant

et al., 2022). The models were ranked by the average

plDDT (predicted local distance difference test) of the

peptide as in Tsaban et al. (2022) and selecting rank 1.

• AFmulti-: This is AlphaFold-Multimer version 2.1.0

(Evans et al., 2021). The models were ranked by the

ranking_confidence score and rank 1 was selected.

FIGURE 2
Model quality classes for the different methods. The number
of rank 1 models from eachmethod that has a DockQ score above
the classification thresholds (Table 1).

FIGURE 3
Effects on AlphaFold performance of increasing the number
of recycles and allowing more sampling with dropout. The DockQ
values reported in the top figure is the median DockQ score of the
rank 1 models, and the value reported in the bottom figure is
the median of best DockQ score of all models for each target.
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ranking_confidence is a linear combination of the

interface score ipTM (interface predicted Template

Modeling score) and overall structural score pTM:

0.8ipTM + 0.2pTM. AlphaFold multimer was run with

one or several options from the list below:

– reduced_dbs: using the reduced database setting.

– full_dbs: using the large sequence databases, BFD, and

Uniclust30.

– template: allowing templates as input into AlphaFold.

To ensure that the target protein or very close

homologs were not used as a template, templates

were filtered with BLAST E-values better than 10–20

when searching with the target against PDBSEQ

or for the peptides > 95% sequence identity

over the whole sequence. To allow fair comparison

with InterPep2, templates newer than the

InterPep2 template library (2019-10-14) were also

disallowed.

– v2: AlphaFold-Multimer version 2.2.0 (Evans et al., 2021;

Evans et al., 2022) was run rather than 2.1.0.

So, if a variant of AlphaFold-Multimer is denoted as

AFmulti-v2_reduced_dbs_template, then the AlphaFold-

Multimer version 2.2.0 was run with reduced database

settings while allowing templates passing the template

criteria to be used as input.

The difference between AlphaFold 2.1.0 and 2.2.0 is,

according to the AlphaFold authors, that version 2.2.0 has

been retrained to produce fewer structural clashes while

slightly improving performance. In addition, 2.2.0 generates

more structures by default (Evans et al., 2022). Since

AlphaFold-Multimer version 2.2.0 generates several

structures per model by default, it was also run as restricted

to only produce one structure per model so as to enable a fair

comparison with AlphaFold-Multimer 2.1.0. In this case, a 1 is

added as a suffix to the variant name.

In all cases, AlphaFold was run without the final relaxation

step using Amber to save computational time.

2.2.1 AlphaFold database versions
• Uniclust30 version: UniRef30_2021_06

• Uniref90 from 9 August 2021

• Uniprot, TrEMBL + SwissProt, from 3 November 2021.

• BFD database (Steinegger and Söding, 2018), clustering of

2.5 billion sequences from Uniprot/TrEMBL + SwissProt,

Metaclust, Soil and Marine Eukaryotic Reference Catalog.

Downloaded March 2019. bfd_metaclust_clu_complete_

id30_c90_final_seq.sorted_opt_cs219.ffindex MD5 hash:

26d48869efdb50d036e2fb9056a0ae9d

• Mgnify version: 2018_12

• PDB, mmcif and SEQRES, from 3 November 2021

(restrictions when applied at run-time—see above).

2.3 InterPep2

InterPep2 (Johansson-Åkhe et al., 2020) is a template-based

method for peptide-protein complex structure prediction. It

generates multiple peptide conformations and uses TMalign

(Zhang and Skolnick, 2005) and InterComp (Mirabello and

Wallner, 2018) to find structural templates of interaction,

evaluating them by a random forest regressor. The interaction

template library was constructed from PDB 2019-10-14. Models

for the protein receptors were created using AlphaFold monomer

without template information, and InterPep2 was run with standard

settings. To avoid using the target protein receptor as a template, any

template with a BLAST E-value for the target against PDBSEQ better

than 10–20 was filtered. This filtered the target protein and very close

homologs. Note that it is fine to use homologs and that the main

purpose of this filter is to avoid using the target protein. The random

forest-predicted suitability of the top-ranking template is used as the

score for interaction prediction.

InterPep2 was run without the more computationally intensive

refinement protocols, generating only coarse unrefined models. This

will result in a lower number of sub-Ångström decoys but will have

onlyminor to no effect on the positioning of the peptide at the correct

binding site (Johansson-Åkhe et al., 2020).

2.4 PIPER-FlexPepDock (PFPD)

PIPER-FlexPepDock is a state-of-the-art free modeling

peptide-protein docking method which combines FFT-based rigid-

body dockingwith high-resolution refinement (Alam et al., 2017). It is

based on and builds upon the ClusPro Peptidock method, a previous

attempt at rigid-body docking for peptide-proteins (Porter et al.,

2017). The PIPER-FlexPepDock protocol generates several possible

peptide conformations which are docked on the surface of the

receptor protein through PIPER FFT-based docking (Kozakov

et al., 2006). The 250 candidates with the lowest score from each

of the conformations are all refined using Rosetta FlexPepDock before

being clustered (Raveh et al., 2010). The reweighted_sc scoring term

was used to rank clustered models.

2.5 CABS-dock

CABS-dock utilizes a simulation search with flexible peptide

and receptor for peptide-protein docking (Kurcinski et al., 2015;

Ciemny et al., 2017). In CABS-dock, coarse-grained, randomized,

peptide conformations are randomly distributed around the

receptor and then energy-minimized and docked through

replica exchange Monte Carlo (REMC) simulations, where the

peptide remains completely flexible while the receptor also

remains flexible but restrained toward its input state. This

results in a wide array of plausible docked conformations,
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which are then filtered out to 100 conformations per simulation

trajectory before repeated k-medoids clustering. The consensus

models of the clustering are output as the final predictions.

Although the energy function utilized during the REMC

scheme could be used to evaluate the final models, this score

would be inappropriate as it is used only during sampling; the

final models are chosen with regards to clustering.

2.6 ZDOCK

ZDOCK is a fast and accurate FFT-based rigid-body docking

method which utilizes pairwise statistical potentials; it is a staple

method for benchmarking protein–protein docking performance

(Pierce and Weng, 2008; Moal et al., 2013; Pierce et al., 2014;

Wallner and Mirabello, 2017; Yan and Huang, 2019). In this

study, ZDOCK was used to generate 54,000 decoys for each

peptide conformation generated in the early steps of the

InterPep2 protocol, similar to earlier ZDOCK studies and to

ClusPro Peptidock or PIPER-FlexPepDock (Alam et al., 2017;

Porter et al., 2017; Wallner and Mirabello, 2017). The best-

scoring model was selected as the final prediction.

2.7 CAMP

CAMP is a new deep learning-based method that can predict

binary peptide-protein interactions (Lei et al., 2021). It uses

convolution neural networks and self-attention to extract local and

global information using sequence-based input information such as

PSSM (position-specific scoring matrix) using three iterations of PSI-

BLAST (Altschul et al., 1997) against Uniref90_2019_01 (Suzek et al.,

2015) with E = 0.001 for inclusion, predicted disorder, and binding

using IUPred2A (Mészáros et al., 2018) and secondary structure

prediction using SSPro (Urban et al., 2022). CAMP only predicts if a

peptide and a protein will interact, and thus was only included in the

interaction benchmark study.

2.8 Performance measures

2.8.1 DockQ
The DockQ program was used to assess the quality of docked

peptide-protein complexes (Basu and Wallner, 2016a). DockQ

assesses the quality of a docked complex with regard to ligand

root mean square deviation (LRMSD), the root mean square

deviation of the interface residue conformation (iRMSD), and the

fraction of native contacts recalled (fnat). The quality is measured on

a scale of 0.0–1.0, with 0.25 representingmodels generally considered

acceptably close to native, and 0.8 or above representingmodels with

sub-Ångström quality—see Table 1. DockQ is not a linear measure;

while extremely precise sub-Ångström changes in LRMSD may be

required to increase DockQ-score from 0.7 to 0.8, when requiring

almost perfect structures to achieve a higher DockQ-score, moving a

completely flipped peptide toward roughly the correct binding site

can be sufficient to raise the DockQ-score from 0.1 to 0.2.

2.8.2 Receiver operating characteristic (ROC)
A ROC curve measures a method’s capacity to discover positive

samples versus its number of misclassifications with a sliding score

threshold; it plots true positive rate (TPR) versus false positive rate

(FPR) for different threshold cutoffs.TPR =Recall =TP/P (TP= true

positives, P = total positives in set). FPR = FP/N (FP = false positives,

N = total negatives in set). The ROC area under the curve (AUC) is

frequently used as a measure of classification method performance

(Johansson-Åkhe et al., 2020; Lei et al., 2021).

2.8.3 Precision, recall, and F1
With an unbalanced dataset, TPR-FPR ROC curves and AUC

can be used to benchmark methods against each other; however,

it fails to capture the actual absolute performance of the methods,

for which precision-recall curves and AUCPR (AUC under such

a curve, also referred to as average precision) should be used

instead (Davis and Goadrich, 2006; Saito and Rehmsmeier,

2015). Precision = TP/(TP + FP). Recall = TPR = TP/P. F1 is

the harmonic mean between precision and recall, defined as F1 =

(2 · Precision · Recall)/(Precision + Recall).

3 Results and discussion

In this study, the performance of AlphaFold when extended

to the peptide-protein docking problem was benchmarked both

FIGURE 4
Difference between the maximum and minimum DockQ per
target with and without dropout.
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compared to previously established docking methods and

compared to different ways to run AlphaFold. The benchmark

was performed on a redundancy-reduced version of a recently

published dataset of peptide-protein interactions (Lei et al., 2021)

(see Methods section for details). Included in the benchmark

were multiple versions of AlphaFold—including AF-gap,

AFmulti-reduced_dbs, AFmulti-full_dbs, AFmulti-

reduced_dbs_template, AFmulti-full_dbs_template, AFmulti-

v2_reduced_dbs, AFmulti-v2_full_dbs, AFmulti-v2_full_dbs1,

AFmulti-v2_reduced_dbs_template, and AFmulti-

FIGURE 5
Correlation between method score and DockQ. The score is the ranking confidence.
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v2_full_dbs_template—as well as four existing methods—CABS-

dock (Ciemny et al., 2017), PIPER-FlexPepDock (PFPD) (Alam

et al., 2017), InterPep2 (Johansson-Åkhe et al., 2020), and

ZDOCK (Pierce et al., 2011)—to provide a baseline.

3.1 AlphaFold is best with more data and
sampling, but worse with templates

The model quality of the top ranked prediction from each

method was assessed using DockQ (Basu and Wallner, 2016a).

The median DockQ is 0.47 for the best AlphaFold method,

AFmulti-v2_full_dbs, compared to 0.12, 0.08, 0.06, and

0.04 for InterPep2, ZDOCK, PFPD, and CABS-dock,

respectively—see Figure 1. This clearly indicates that

AlphaFold is much better than previously existing methods.

AlphaFold-Multimer version 2.2.0 does produce more

structures by default, sampling some nearby conformations,

but AFmulti-v2_full_dbs1 is still the highest performer of the

remaining methods, albeit much closer to AlphaFold-Multimer

version 2.1.0 with a median DockQ score of 0.42. AF-gap

performs worse than AlphaFold-Multimer versions, with a

median DockQ of 0.25, but that is expected since it was not

optimized for this task.

Of the different versions of AlphaFold-Multimer tested, the

versions with access to the larger databases (full_dbs) are

consistently superior. However, running AlphaFold without

template information seems better than running it with

template information, especially when also run with a

reduced database size. Previous work has shown that,

although AlphaFold is fully capable of accurately judging the

quality of structures derived from template information

without any MSA information at all, it cannot efficiently

sample the folding landscape without MSAs; if given

template information with no MSA information, AlphaFold

will essentially copy the template (Roney and Ovchinnikov,

2022). As the peptides are small in size, finding significant

sequence matches is difficult and their parts of the paired MSAs

often have a low number of effective sequences. This, in

combination with the fact that the performance loss when

including templates is greater when smaller databases are

used for MSA construction, implies that, when run on

peptide-protein complexes, the protocol will become over-

reliant on using templates to sample starting positions; it

ought in such cases to be run without templates.

By examining the quality in more detail, it can be seen that

AlphaFold-Multimer version 2.2.0 (AFmulti-v2_full_dbs)

produces more medium quality models than the other

methods: 54 compared to only 43 and 30 for AF-gap, and

InterPep2, respectively—see Figure 2. Overall, the best

AlphaFold-Multimer can predict at least an acceptable model

for 68/112 (61%) complexes, while the AlphaFold-Multimer with

TABLE 2 Summary of results for different methods and settings. Corr. is the correlation between reported scores and DockQ, Median DockQ is the
median DockQ when selecting rank 1 for each target. The best values for a particular group are highlighted in bold. *CABS-dock does not output
any score: it only returns ranked models.

Predictor Version Recycles Dropout Corr. Median DockQ

CABS-dock — — — -* 0.05

PIPER-FlexPepDock — — — 0.16 0.06

ZDOCK — — — 0.07 0.08

InterPep2 — — — 0.76 0.12

AF-gap 2.0.0 3 no 0.42 0.25

AlphaFold-Multimer 2.1.0 3 no 0.74 0.40

2.1.0 3 yes 0.72 0.50

2.1.0 3 yes, noSM 0.75 0.53

2.1.0 21 no 0.75 0.43

2.1.0 21 yes 0.70 0.54

2.1.0 21 yes, noSM 0.70 0.55

AlphaFold-Multimer 2.2.0 3 no 0.71 0.47

2.2.0 3 yes 0.67 0.51

2.2.0 3 yes, noSM 0.67 0.50

2.2.0 9 no 0.68 0.49

2.2.0 9 yes 0.71 0.53

2.2.0 9 yes, noSM 0.71 0.50
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least information (AFmulti-reduced_dbs) still produces 61/112

(54%) acceptable models.

3.2 Forced sampling dramatically
improves AlphaFold

Two different methods were employed to force the best

versions of AlphaFold-Multimer tested so far to sample more

of the conformation space than the standard settings allow.

Firstly, the number of recycling steps was incrementally

increased from the default three to explore AlphaFold’s own

ability to improve its sampling by refining its predictions.

Secondly, the dropout layers used during AlphaFold training

were activated at inference and the network was run several times

with different random seeds, producing many structures for final

comparison and evaluation. Similar schemes have been used in

the past to create ensemble methods from single trained models

and have been used with classifiers to estimate model variance

(Gal and Ghahramani, 2016).

As can be seen in Figure 3, both increasing the number of

recycles and producing varied samples by running the network

several times (nstruct> 1) with dropout active have significant

effects on performance, especially when combined. The

improvement increases most rapidly for the first 25 structures

per network model (5 network models × 25 structures each =

125 total) but, for most settings, there is a small but steady

increase in DockQ all the way up to 200 structures (5 × 200 =

1,000 total). We decided to stop at 200 structures in the interest of

time, but it is certainly possible that even more structures could

improve the method even further. The optimal number of

recycles is 21 for v1 and nine for v2. In contrast to dropout,

although increasing the recycles does increase performance, the

increase does not continually improve with additional recycles.

Rather, there are optimal values found within the range sampled

rather than at the minimum or maximum values investigated.

Increasing the number of recycles permits AlphaFold to spend

more cycles refining the same few structures toward its perceived

energy minimum. One reason for the slight reduction in

performance with recycles increased beyond their optimal

values could be that, beyond these many recycles, the

refinement of the peptide conformations starts to converge

too much and the few output samples will be locked into

local energy minima.

Dropout and increased recycles consistently lead AlphaFold

to generate more varied models, including both worse models but

also better models than a single run without dropout. The

difference between the best and worst DockQ is shown in

Figure 4 for each target. In all cases there is a larger spread in

favor of dropout. While dropout increases the sampling, the

correlation between the self-evaluating score and DockQ

decreases somewhat from 0.74 to 0.72 and 0.71 to 0.67 for

v1 and v2, respectively (Figure 5). The correlation is still good

and the better models can be picked out from the rest so that

overall performance increases (Figure 3).

Additionally, combining dropout with increased recycles

seems to restore the ranking performance in terms of the

correlation of AlphaFold-Multimer version 2.2.0 back up to

correlation R of 0.71. For version 2.1.0, the improved method

seems to simply generate more high-quality structures without

any significant change in the scoring correlation to DockQ

(Figure 5). Note, however, that there is still a substantial gap

in median DockQ-score for selected models and best models

generated (Figure 3), indicating that AlphaFold generates much

better models than its scoring function is able to recognize and

that there is potential to improve the method by improving the

model quality assessment of the generated structures.

For the remainder of this study, AlphaFold-Multimer run

with dropout produces 200 structures per neural network model

(5 × 200 = 1,000 structures in total). Whenever AlphaFold-

Multimer-v1 is referenced as being run with additional recycles,

it is run with 21 recycles unless otherwise specified. Similarly,

AlphaFold-Multimer-v2 is run with nine recycles. Note that the

base behavior of AlphaFold is to run three recycles unless

otherwise specified. These specific versions of AlphaFold-

Multimer were selected based on the median DockQ score of

their predictions (Figure 3).

3.3 Greater improvements to AlphaFold by
selective dropout

Even though running AlphaFold-Multimer with dropout

active at inference improved the quality of final predicted

docked peptide complexes, the correlation between AlphaFold

predicted confidence and DockQ became worse (Figure 5). This

is unsurprising, as dropout is not only applied to the evoformer

layers of the network but also to the structure module responsible

for translating the latent representation of the evoformer layers

into the final protein structure, as well as for creating the final

predicted confidence score. Roney and Ovchinnikov (2022)

theorized that the purpose of the evoformer layers is to

provide an initial low-energy guess of the protein structure,

while the structure module refines this guess. If this theory

holds, then including dropout at inference in the early layers

of the AlphaFold network should be enough to introduce

variance in final predictions and explore conformational

space, while including dropout in the structure module might

be used for uncertainty assessment but would have detrimental

effects on final predicted complexes, particularly the score.

To test this hypothesis, AlphaFold-Multimer versions

2.1.0 and 2.2.0 were run again on the entire dataset, using the

best combination of hyper-parameters such as number of

recycles and dropout seen in previous tests. This time,

dropout was applied selectively to all parts of the network

except the structure module, in the hope that the correlation
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between confidence score and DockQ would be retained in

relation to running without dropout, thereby also improving

the selection between generated structures and thus improving

AlphaFold-Multimer for peptides overall. These versions are

denoted with dropout_noSM for dropout but no dropout in

the structure module (SM).

Table 2 shows that, for AlphaFold-Multimer version 2.1.0,

3 recycles, this hypothesis holds true and correlation between

predicted score and DockQ is restored while the overall model

quality is improved with no dropout in the structure module

(noSM); correlation/median DockQ for dropout 0.72/0.50 vs.

0.75/0.53 for dropout + noSM. However, for the optimal

number of recycles (21), no dropout in the structural

model seems to have no effect on the correlation and

median DockQ.

The same table also shows that AlphaFold-Multimer

version 2.2.0 has no benefit from no dropout in the structure

module at all: the performance drops from 0.51 to 0.50 and

0.53 to 0.50 for three and nine recycles, respectively, and

the correlation does not change. We speculate that the reason

version 2.1.0 seems to be more affected by increased sampling

compared to 2.2.0 may be the increased loss term for clashing

models that was introduced in 2.2.0 (Evans et al., 2021). Of

course, the final model should not contain severe clashes

but, during sampling, it might be advantageous to allow

for some structural overlap to enable the method to explore

various predictions, similar to a soft repulsive energy term

that is often used during refinement (Raveh et al., 2011;

Nivón et al., 2013). This might also explain why version

2.2.0 requires fewer recycles to reach optimal performance

than version 2.1.0. As the focus on fine-grained refinement

performance is greater, the number of refinement recycles

required is fewer.

3.4 Complementary performance of
AlphaFold multimer v1 and v2

While both AlphaFold-Multimer versions 2.1.0 and

2.2.0 show higher performance with the increased sampling

through dropout—with 2.1.0 seeing a larger improvement but

2.2.0 already starting at a higher performance level—the two

versions show differences in their overall behavior. Version

2.1.0 performs better at high numbers of recycles and when

the structure module is not subjected to dropout. Version 2.2.0,

on the other hand, seems to require dropout in all layers to

perform optimally, and a generally lower number of recycles is

better.

Since both versions produce predictions in the same

predicted score range and both correlate their scores well with

DockQ, it is simple to construct combination predictors by

allowing the different versions to generate 100 structures each

and then selecting the structure with the overall highest predicted

score (200 structures in total, for fair comparison with other

versions). Such different combinations can be compared to the

versions of AlphaFold-Multimer investigated so far in Figure 6.

Indeed, such a simple combination manages to increase

performance even further than the increased sampling alone,

raising it from median DockQ scores of 0.53 or 0.55 to

0.56 for the best combination. The best combination

(AFm_v1_drpt_noSM_r3 + v2_drpt_r9) consists of the

versions with best correlations between predicted score and

DockQ score, and AFmulti-full_dbs_dropout_noSM and

AFmulti-v2_full_dbs_dropout_recycle9; even though AFmulti-

full_dbs_dropout_noSM_recycle21 is the version of AlphaFold-

Multimer 2.1.0 with the best median DockQ, it is not part of the

best combination. At this point, it seems as though the

correlation between ranking score and DockQ is more

FIGURE 6
Distributions of DockQ scores for final selected predictions for each target from each method. Variations on AlphaFold-Multimer version
2.2.0 aremarked in italics while combinations of versions 2.1.0 and 2.2.0 are marked in bold with full_dbs removed since it is used in all methods. The
abbreviations drpt and r stand for dropout and recycles, respectively. The color is a gradient based on the rank of the median DockQ.
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important than the median model quality of the models

generated, as models are already generated with a far higher

quality than that selected (Figure 7B).

3.4.1 Complementary performance of
AlphaFold-Multimer and InterPep2

While the performance of AlphaFold-Multimer, especially

with the improvements described in this study, is far above the

template-based method InterPep2, both AlphaFold-Multimer

and InterPep2 have scores that correlate well with DockQ. In

addition, AlphaFold-Multimer does not use its templates for

the multimer interaction but only for folding the individual

chains. Thus, if AlphaFold-Multimer is uncertain in its

prediction, it is possible that a template for the interaction

found by InterPep2 can be used. A combination method can

be constructed, using the scores for confident predictions by

AlphaFold-Multimer (ranking_confidence > 0.70) (Evans

et al., 2021) and InterPep2 (ip2_score > 0.40) (Johansson-

Åkhe et al., 2020), to select models in the following

priority: 1) AlphaFold-Multimer model if score is

confident; 2) InterPep2 model if score is confident;

otherwise 3) AlphaFold-Multimer model. This selection

scheme does not differ from previous choices between

using template-based or template-free modeling. The only

difference is that AlphaFold has changed the playing field and

template-free modeling with AlphaFold is now potentially

better than template-based if none of the methods produce

models with confident scores.

FIGURE 7
Performance of different AlphaFold-Multimer versions; InterPep2 is included as a reference to the previousmethods. (A)Distribution of DockQ
scores for first ranked models. (B) Distribution of best possible DockQ score. (C) Distribution of how many of the total 112 targets have first-ranked
models with acceptable, medium, and high quality, respectively.
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The results for the AlphaFold + InterPep2 combo predictor

for peptide-protein docking can be found in Figure 7. The

performance increase from including InterPep2 is surprisingly

substantial, raising the median DockQ from 0.562 to 0.604, even

though InterPep2 by itself produces models with a much lower

median DockQ than all AlphaFold versions tested. This probably

stems from the high correlation between AlphaFold and

InterPep2 predicted scores and DockQ score. Indeed, when

looking at the best models sampled for the best combination

methods, they all reach median DockQ scores in excess of 0.7.

However, the final selected models have median DockQ scores of

only up to 0.6 in the case of the very best combination.

Conformations of higher quality are obviously sampled but

are not selected by the predicted score, indicating yet again

FIGURE 8
Distribution of scores reported by the method for non-binding and binding peptide-protein pairs, respectively, from different versions of
AlphaFold, with CAMP and InterPep2 as reference previous methods.

TABLE 3 Summary of interaction prediction results measured by precision, recall at FPR = 0.01, and FPR = 0.1.

Method FPR = 0.01 FPR = 0.1

precision recall precision recall

CAMP 0.67 0.07 0.43 0.35

InterPep2 0.83 0.21 0.44 0.36

AFmulti-full_dbs 0.85 0.20 0.53 0.48

AFmulti-full_dbs_median 0.84 0.29 0.49 0.46

AFmulti-v2_full_dbs 0.82 0.16 0.54 0.55

AFmulti-v2_full_dbs_median 0.85 0.26 0.55 0.58

AFm_v1_r3+v2_r3 0.79 0.21 0.57 0.60

AFm_v1_r3+v2_r3_median 0.83 0.26 0.58 0.58

AFmulti-full_dbs_median + IP2 0.84 0.29 0.56 0.53

AFmulti-v2_full_dbs_median + IP2 0.85 0.26 0.52 0.56

AFm_v1_r3+v2_r3_median + IP2 0.83 0.26 0.53 0.58
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that, when running AlphaFold with dropout, a remaining

challenge is model ranking.

3.5 Trends in factors contributing to the
performance of AlphaFold

To analyze potential trends in factors that contribute to the

performance of AlphaFold, we correlated the performance with

physiochemical and evolutionary factors that might influence the

results—see Supplementary Figure S1. Apart from the factors that can

be calculated from AlphaFold input data, such as protein lengths and

MSA depths, an updated version of ProQDock (Basu and Wallner,

2016b) was used to calculate the shape complementarity (Sc)

(Lawrence and Colman, 1993) and electrostatic complementarity

(EC) (McCoy et al., 1997) of native and modelled peptide-protein

interfaces; DISOPRED (Jones and Cozzetto, 2014) was used to

estimate the amount of disorder in the peptide in isolation and

FIGURE 9
Performance measures for peptide-protein interaction prediction. (A) ROC curve with the x-axis in log-scale. The values in the legend
correspond to ROC-AUC. (B) Precision recall curve. The values in the legend correspond to PR-AUC.
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Proteus (Basu et al., 2017) to predict disorder-to-order transitions for

the peptide residues upon binding.

Sc for the native peptide-protein interfaces follows a skewed

Gaussian distribution where themajority of the targets have Sc> 0.6,

while the EC for the native interfaces follows a Gaussian centered at

0—see Supplementary Figure S1. This indicates that surface

complementarity is an important factor for native peptide-

protein binding and that many native interactions are not driven

by favorable electrostatic interactions. A comparison of the EC

distribution for the native and AlphaFold models (denoted EC and

EC_v1 in the figure, respectively) reveals that they are significantly

different (p-value < 1-e7) and that the models lack many high EC

peptide-protein interfaces. A potential reason for this could be that

the models are not properly refined because the AlphaFold models

evaluated here are taken straight from the neural network before the

relaxation step using Amber.

As in previous reports (Tsaban et al., 2022), we could not

observe any correlation between model quality and receptor or

peptide length. Neither did the number of effective sequences in

theMSA have any general impact; there are some poor predictions

with relatively shallow MSAs Neff < 100, as expected, but there are

also some poor predictions with Neff > 1,000—see Supplementary

Figure S1. Even though the difference in average DockQ score for

these two groups is quite large—0.19 vs. 0.42—the small sample

size makes the difference insignificant (p-value > 0.1).

Only 16% of the peptides in the test set are predicted to be

almost completely disordered when unbound (more than 75%

of the residues predicted as disordered). The average DockQ

scores for complexes with peptides predicted as disordered

when unbound are lower than the average DockQ score for

the targets with peptides predicted as ordered when

unbound—0.32 vs. 0.43—but the difference is not significant

(p-value > 0.19). Quite a large percentage—58%—of the targets

are predicted to undergo a disorder-to-order transition to

accommodate the binding (peptides with > 25% of its

residues predicted by Proteus to undergo disorder-to-order

transitioning upon binding). Surprisingly, these targets have

a significantly larger average DockQ score compared to the

targets that are not predicted to fold upon binding—0.48 vs.

0.33 (p-value < 0.02).

3.6 AlphaFold can be used for interaction
prediction

Since the AlphaFold-Multimer predicted score correlates

well with the DockQ score of the predicted complexes and

since the median DockQ of predicted complexes for true

interactions is well above the Acceptable DockQ cutoff, it

might be possible to use AlphaFold as an interaction predictor.

FIGURE 10
Pairwise bootstrap values on PR-AUC, corresponding to the percentage of times the method on the X-axis has a higher PR-AUC than the
method on the Y-axis when sampling the data with replacement (n = 10,000).
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The positive set used to assess the complex model quality above

wasmergedwith the negative set containing peptide-protein pairs that

do not bind (see Materials and Methods). For AlphaFold-Multimer,

additional methods based on the median score of the generated

models rather than the best score were added, suffixed with _median.

The rationale for using themedian is that it should bemore stable than

the best score, which is based on only one model. The scores for

binding vs. non-binding pairs are shown in Figure 8. In general, pairs

that bind are scored higher than non-binders across all methods.

The precision-recall-AUC (PR-AUC) is 0.64 for

AFm_v1_r3+_v2_r3_median + IP2 compared to 0.61 for

AFm_v1_r3+_v2_r3_median and the best single AlphaFold-

Multimer version (AFmulti-v2_full_dbs_median). Using the

median score improves the PR-AUC from 0.57 to 0.61 for

AFmulti-v2_full_dbs, indicating that picking the median

predicted score rather than the highest predicted score seems

to yield slightly better performance (Figure 9B).

To assess the significance of the PR-AUC values, a bootstrap

procedure in which targets were selected with replacement and the

PR-AUC was recalculated was used. Methods were compared

pairwise and the process was repeated 10,000 times. The

bootstrap values (percentage of times in which one method has a

PR-AUC better than the other) are presented in Figure 10. The

bootstrap value for AFm_v1_r3+_v2_r3_median + IP2 (PR-AUC =

0.64) against AFm_v1_r3+_v2_r3_median (PR-AUC = 0.61) is 67,

and 70 against the best single AFmulti-v2_full_dbs_median (PR-

AUC= 0.61). Using themedian for AFmulti-v2_full_dbs produces a

higher PR-AUC in 73% of the cases. This shows that, although

differences in PR-AUC seem incremental the improvements

investigated here cause the improved methods to produce higher

quality models a clear majority of the time (≥60% for the best

method investigated compared to all others).

Performance for interaction prediction needs to be assessed at

low FPR to enable all-vs-all comparisons with high confidence

predictions without too many false positives. At FPR = 0.01, the

bestmethods recall around 0.26–0.29 (TPR) of the positive examples

with a precision of 0.82–0.85—see Figure 9A and Table 3. The

corresponding score thresholds for the methods are 0.78, 0.50, and

0.78 for AlphaFold-Multimer (v1 and v2), InterPep2, and

AFm_v1_r3+_v2_r3_median + InterPep2, respectively—see

Supplementary Figure S2. For AlphaFold, there is an almost a 1

to 1 correspondence with the precision of the predictions and the

score threshold—see Supplementary Figure S2A—indicating that

that score is a relatively good predictor of the probability of

interaction.

3.7 Example—Improvements for
AlphaFold

Cases where AlphaFold failed were examined to understand why

AlphaFold fails for certain samples as well as why forced sampling

through dropout and the template-based method InterPep2 can help

with prediction quality in these cases. One such example can be seen

in Figure 11A, where AlphaFold has positioned part of the peptide

correctly but has flipped the orientation of the peptide and positioned

the rest of it outside its binding pocket, as if to continue the peptide

chain in that direction. In fact, in 50% of cases where the AFmulti-

v2_full_dbs_dropout_recycle9+IP2 method produced an improved

model of at least acceptable quality while AFmulti-

FIGURE 11
(A) An example from the test set where both forced sampling through dropout and combination with the template-based method, InterPep2,
can improve the prediction. The predictions are of a cytoplasmic actin peptide binding to actin-histidine N-methyltranferase (PDB ID 6v63). The top
predictions by AlphaFold-Multimer positions the very end of the C-terminal in the correct site (top1 prediction in red and native peptide colored
green) but positions the peptide in the opposite direction of the actual fold, leading to most of it binding outside the pocket. The prediction by
InterPep2 (blue) is coarse with some minor clashes but has positioned the peptide inside the correct binding site. Note how both AlphaFold and
InterPep2 have adopted similar folds for the peptide. (B) Scatterplot of AlphaFold-Multimer predicted score versus DockQ for all models generated
for the 6v63 complex. When dropout at inference forces increased sampling, some conformations are sampled in the correct binding pose.
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v2_full_dbs_dropout_recycle9 alone failed, the AlphaFold model

positioned the peptide close to or at the correct binding site but in

the wrong direction.

In this particular case, increased sampling through forced

dropout with AlphaFold-Multimer version 2.1.0 could also result

in the correct conformation being sampled and selected, as AlphaFold

samples were more nearby the conformational space, including the

reverse direction of the peptide (and some conformations half-way

rotated). In fact, the increased sampling for version 2.2.0 also samples

a few high-DockQ conformations, although none of these are scored

high enough to be selected (Figure 11B).

In 33% of improved cases, AlphaFold positioned the peptide

at the binding site of a non-peptide binding partner, either for a

co-factor or another protein chain (dimerization site, for

instance). AlphaFold seems able to model the receptor protein

regardless of the presence of any other binding chains or co-

factors (Jumper et al., 2021; Tunyasuvunakool et al., 2021).

However, as is evident from these examples, the absence of

other binding partners and co-factors from the AlphaFold-

Multimer modeling seems to result in a negative bias on the

docking performance. Co-factors and other binders being absent

from a complex seems to have less effect on the performance of

the purely template-based method InterPep2, perhaps explaining

in part why it is a good complement to AlphaFold-Multimer.

4 Conclusion

We have shown that AlphaFold-Multimer achieves state-of-

the-art performance in both peptide-protein docking and

peptide-protein interaction prediction without modification.

Most interesting, however, is the discovery that forcing

increased sampling of the conformational space by increasing

the number of recycles of the final layers of the network or adding

dropout at inference and running the protocol several times can

significantly improve the performance of AlphaFold.

The improvement median DockQ score when using the

improved sampling strategy is dramatic, from 0.40/0.42 to 0.55/

0.53 for AlphaFold-Multimer versions v1 and v2, respectively. By

combining both versions v1 and v2, it possible to raise the median

DockQ to 0.56; adding a template-based method (InterPep2) for

complexes where AlphaFold produces low confidence predictions

raises the median DockQ as high as 0.60.

These results reinforce the previous findings that AlphaFold is

well-suited for the peptide-protein docking problem which requires a

wider sampling of conformations, especially with ourmodifications to

improve sampling. It should be noted that the improved sampling

protocol presented here is not limited to the peptide-protein docking

problem and should be useful in many AlphaFold applications.

Examples are, for investigating multiple stable conformations, for

larger andmore difficult targets, or for larger assemblies. Additionally,

more variations in the application of dropout at inference could be

investigated, such as different rates of dropout.

Finally, while the improvements presented here are significant,

there is still a large gap between the quality of the bestmodel generated

and the one ranked highest by AlphaFold’s predicted score. As such,

protein model quality assessment remains an important field of

research in protein structure prediction with AlphaFold.
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