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Annotating and proofreading data sets of complex natural behaviors such as

vocalizations are tedious tasks because instances of a given behavior need to be

correctly segmented from background noise and must be classified with minimal

false positive error rate. Low-dimensional embeddings have proven very useful for

this task because they can provide a visual overview of a data set in which distinct

behaviors appear in different clusters. However, low-dimensional embeddings

introduce errors because they fail to preserve distances; and embeddings

represent only objects of fixed dimensionality, which conflicts with vocalizations

that have variable dimensions stemming from their variable durations. To mitigate

these issues, we introduce a semi-supervised, analytical method for simultaneous

segmentation andclusteringof vocalizations.Wedefine agiven vocalization typeby

specifying pairs of high-density regions in the embedding plane of sound

spectrograms, one region associated with vocalization onsets and the other

with offsets. We demonstrate our two-neighborhood (2N) extraction method on

the task of clustering adult zebra finch vocalizations embedded with UMAP. We

show that 2N extraction allows the identification of short and long vocal renditions

from continuous data streams without initially committing to a particular

segmentation of the data. Also, 2N extraction achieves much lower false

positive error rate than comparable approaches based on a single defining

region. Along with our method, we present a graphical user interface (GUI) for

visualizing and annotating data.
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1 Introduction

Many real-world bioinformatics problems are best dealt with using semi-supervised

approaches (Käll et al., 2007; Peikari et al., 2018; Wrede and Hellander, 2019), in

particular when supervised and unsupervised methods are either unfeasible or

unsuitable. For example, supervised learning is impractical when for a given task no
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training data is available or when the task definition is unclear,

e.g., during explorative analysis. On the other extreme,

unsupervised learning may provide interesting information,

but perhaps not in a way that best suits a user, e.g., the

components discovered in a data set may not be of the

granularity of interest. The goal of semi-supervised learning is

to combine the best of both supervised and unsupervised

approaches to provide maximally useful insights with minimal

human effort.

Animal behavior is an example domain well suited for semi-

supervised learning, as each individual animal exhibits its own

repertoire of complex actions. The task of segmenting behavioral

sequences into their constituent parts is particularly challenging

in the vocal space, because many vocal behaviors such as

birdsongs consist of re-occurring elements that tend to be

hierarchically organized (Sainburg et al., 2019) and that

contain long-range structure (Markowitz et al., 2013). Here

we set ourselves the goal of rapidly clustering the different

types of vocalizations emitted by an individual songbird. For

this type of problem, dimensionality reduction techniques come

in handy because they allow to display even high-dimensional

data points such as complex vocal utterances on a two-

dimensional computer screen (Sainburg et al., 2019;

Kollmorgen et al., 2020; Sainburg et al., 2020). However, in

distance-preserving embeddings such as t-SNE (Maaten and

Hinton, 2008) or UMAP (McInnes et al., 2018), the distance

between two points in the plane only approximates the true

distance between the pair of vocalizations in the higher-

dimensional space of the original data (Kollmorgen et al.,

2020). In fact, embedding distances are not perfectly preserved

because local neighborhoods in two dimensions are much

smaller than the true neighborhoods in the high-dimensional

space. How to efficiently deal with such embedding distortions

remains a bottleneck in data browsing, proofreading, and

annotation tasks (Chari et al., 2021).

Moreover, natural vocalizations tend to have variable

durations, which clashes with the rigid dimensionality of

embeddings. Although there are workaround techniques such

as zero padding, these depend on segmenting the signal into

foreground and background as a preprocessing step, which tends

to introduce errors caused by background noises. For example,

when a background noise occurs just before or after a

vocalization, that vocalization might be missed or inferred as

being too long; and similarly, when a noise happens between two

vocalizations, these might be interpreted as a single vocalization

instead of as a pair. In general, to deal with the segmentation

problem as a pre-processing step acts against end-to-end

extraction of vocalizations from raw data. All these caveats

and challenges limit the widespread adoption of

dimensionality reduction techniques for annotating and

proofreading vocalizations.

In general terms, the goal of our data annotation task is to

extract flexibly defined and variably sized events from a

continuous data stream. Our approach to vocal clustering is

somewhat orthogonal to previous approaches where automated

classifiers are optimized for the assignment of pre-computed

segments to labels, either in a supervised (Tachibana et al., 2014;

Nicholson, 2016; Goffinet et al., 2021; Steinfath et al., 2021;

Cohen et al., 2022) or unsupervised manner (Sainburg et al.,

2020; Goffinet et al., 2021). The goal there is to identify an

efficient workflow that minimizes human involvement. In

contrast, our aim is to place the human expert in the center

of the process along the lines of modern visual analytics (Thomas

and Cook, 2006; Cui, 2019). We want to provide the flexibility of

exploring and navigating audio data while visually extracting

diverse vocalizations in a fast and intuitive workflow.

We address the problem of clustering zebra finch

vocalizations, which is to distinguish the diverse vocalizations

they produce from all other sounds in the environment. In

essence, the task is to correctly identify in midst of noise, all

vocalizations including their types, their onset times, and their

offset times. To robustly extract variable vocalizations from

possibly distorted embeddings, we introduce for each

vocalization type a pair of distinguishing feature sets, one

anchored to the onset of the vocalization and the other to the

offset. Hence, unlike traditional approaches, where vocalizations

are represented by single dots in the embedding plane (Sainburg

et al., 2019; Kollmorgen et al., 2020; Sainburg et al., 2020; Goffinet

et al., 2021; Steinfath et al., 2021), in our workflow, vocalizations

are represented by pairs of dots. Also, because we extract

vocalizations without segmentation as a pre-processing step,

our definition of vocalizations by their onset- and offset-

anchored feature sets implicitly solves the segmentation problem.

2 Methods

2.1 Datasets and sound preprocessing

Our data stem from single-housed birds (n = 2) recorded

with wall-mounted microphones as described in Canopoli et al.

(2014) or from a pair (n = 1) of birds which wore harnesses

carrying accelerometers that signal body vibrations stemming

from self-produced vocalizations (Anisimov et al., 2014).

Although all birds have been recorded in acoustically isolated

environments, the extraction of vocal units problem is in species

such as the zebra finch that produce not just harmonic sounds

but that also emit broadband vocalizations which can resemble

non-vocal sounds (Figure 1; Supplementary Figure S1).

We sampled sound (and vibration) signals at 32 kHz and

computed log-power spectrograms using the short-time

Fourier transform in 512-sample Hamming windows and

hop size among adjacent windows of 128 samples

(i.e., 4 ms). We pre-segmented the data into sound intervals

(assuming that without sound there is no vocalization) by

thresholding the spectral power of microphone signals in the
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range 312 Hz to 8 kHz and of accelerometer signals (illustrated

in Figure 3D) in the range 312 Hz to roughly 4 kHz. The

threshold for sound interval extraction (Figure 1) was set to

5 standard deviations above the average spectral power

calculated during periods of silence.

2.2 Neighborhood extraction from 2d-
embedded spectrogram snippets

2N extraction was performed by dividing the spectrograms

(within sound intervals) into spectrogram snippets of fixed width

in the range of 12–16 columns (corresponding to snippet durations

of 48–64 ms). The snippet duration is a variable that a user can

adjust; in general, snippets should be large enough to yield robust

separation of different vocalization types in the embedding plane

and small enough to be able to cleanly slice a vocalization without

cutting into adjacent vocalizations. The hop size between adjacent

segments was given by one column (i.e., 4 ms), Figure 1. To the first

data snippet associated with a sound interval, we ascribed a time lag

� 1 . The onset time δon of that snippet precedes the sound interval

onset by δon � 4 spectrogram columns (i.e., 16 ms, Figure 1).

Similarly, to the last snippet of a sound interval we associated a

time lag � −1 ; the offset time of that snippet exceeds the sound

interval offset by δoff � 6 (i.e., 24 ms). These choices ensured that

brief silent gaps before and after syllables were included in the

defining characteristics of a vocalization. By definition, the second

snippet of a sound interval had a time lag of d � 2 (i.e., 4 ms) and the

second-last snippet had a time lag of d � −2 (i.e., −4 ms), etc. This

dissection of the data into snippets resulted in a total of 581k

snippets for the day-long recording of the bird shown in Figure 1

(given the chosen snippet duration of 64 ms).

We then embedded the snippets into the plane using UMAP

(McInnes et al., 2018) and visualized high-density

neighborhoods associated with a given time lag d, as follows:

We drew a small disk of radius r around every point (Figure 2A,

red dots) in the embedding plane that had a time lag of either d or

d + 1 if d was positive (onsets), and either d or d − 1 if d was

negative (offsets). Thresholding the number of overlapping disks

per pixel with a density threshold ϑ revealed supra-threshold

(high-density) regions of points, which we refer to as

neighborhood-defining blobs (Figure 2A, outlined in blue).

The blobs for d � 1 are shown in Figure 2B.

By changing the lag value d, blobs were interactively moved

to unique regions along the 1d manifold of a vocalization type

where no points from other vocalizations could be found (the

latter we verified by visually inspecting spectrograms associated

with a given neighborhood using our GUI). The points falling

FIGURE 1
The task of extracting vocalizations is to correctly detect the onsets and offsets (dashed lines) of vocalizations and to determine their type (A–E)
amidst diverse non-vocal sounds (noise). Shown is a time-frequency log spectrogram of adult zebra finch song. Our approach to extraction of
vocalizations is to first extract sound intervals (based on threshold crossings of sound amplitude) and to dissect these into 64-ms long snippets (light
blue bars) with 60 ms overlap among adjacent snippets. To achieve robustness to segmentation errors, we consider each snippet a potential
onset or offset of a vocalization. The first snippet associated with an amplitude threshold crossing precedes the threshold crossing by a small margin
δon (free parameter). The shown spectrogram was produced by concatenating two recording segments (at the second black dotted line), chosen to
illustrate the diversity of vocalizations and noises.
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into a selected onset-related blob (Figure 2A, filled symbols) were

then associated with that vocalization type. The vocalization

onset times were given by the timestamp of the chosen

snippets (i.e., the earliest snippet in case several adjacent

points were found) minus the chosen time lag d (the smaller

lag in case blobs were defined by two time slices). The time

differences between the extracted vocalization onsets and the

start times of the underlying sound intervals are shown as a

cumulative density in Figure 3A. The analogous density for

vocalization offsets relative to sound-interval endings is shown

in Figure 3B and Figures 3C,D show the population averages.

2.2.1 2N extraction algorithm
In the following, we describe the detailed extraction procedure

of vocalizations, starting with their onsets. Extraction is

parameterized by three variables: a time lag, a radius , and a

density threshold ϑ . The 2N extraction algorithm consists of the

following steps:

1) Define an integer time lag d> 0 as small as possible (start

with � 1 ).

2) Identify all points in the embedding plane associated with

this lag.

3) Replace each identified point with a disc of radius r and sum

up these discs, yielding a 2d density.

4) Identify the regions where the 2d-density exceeds a threshold.

These regions we refer to as blobs, they are the defining

characteristics of vocalization onsets.

5) Change d, r, and ϑ to place and shape the blob such that it

defines a uniquely characteristic region of the vocalization of

interest. Ideally, choose d close to zero such that the blob is

close to the onset.

6) Repeat steps 1–5 up to K times to define diverse onset blobs

for a given vocalization type (typically, K � 1 because there is

a unique blob for each vocalization type).

7) Identify all points inside the K blobs. These points uniquely

define the onsets of the extracted vocalizations given by their

FIGURE 2
Two-neighborhood (2N) extraction of vocalizations from dense spectrogram embeddings. (A) Schematic illustrating the definition of a blob.
After projecting all data snippets into the plane using UMAP, we replace the points corresponding to upward threshold crossings (d � 1 , red circles,
first light blue bar in Figure 1) by large, filled disks (light red) of radius r that we sum up. All pixels at which the sum exceeds a given threshold ϑ (blue
horizontal bar) are grouped into a blob (delimited by blue dashed line). All points that fall into this blob correspond to extracted vocalization
onsets, including points that were dissected at a lag different from d (black filled squares). (B) Projected data snippets (black dots) from a one-day long
recording. The onset blobs corresponding to the time slice d � 1 are shown in color (different colors for different vocalization types). The yellow
arrows point to indistinguishable snippet embeddings stemming from different vocalization types. The letters A-E indicate manually chosen onset
slices “+” and offset slices “−” for each vocalization type (same lettering as in Figure 1). The cluster labelled ‘N’ (gray) is a noise cluster without distinct
onset and offset behavior, this cluster was ignored. The small blue blob next to the A+ blob is an onset variant of the introductory note, which can
either be included in the definition of A+ (introductory note) or excluded. (C), (D) Spectrograms of example syllables taken from blob D+ (C) and blob
E+ (D). Same bird as in Figure 1.
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timestamps minus the anchoring time lag di of the underlying

blob ( i � 1, . . . , K ).

In this procedure, the optimal choices of radius r and

threshold ϑ depend on the local density of points and should be

individually chosen for each vocalization type and each blob.

Essentially, the radius should be chosen as large as possible to

not miss any onsets and likewise the threshold should be as low

as possible to make the blob as large as possible to maximize

the number of points harvested. However, a blob should not

extend into points associated with confounding vocalizations,

so a bit of manual fine-tuning is required for each

vocalization type.

When all onsets of a vocalization type are defined, we

perform the analogous definition of offsets; the lags of offset-

defining blobs satisfy < 0 ; the parameters d, r, ϑ, and K of offset

blobs needed similar fine-tuning in practice. Once both onset and

offset blobs are defined for all vocalizations, we extract the

vocalizations as the spectrogram regions delimited by an onset

and a subsequent offset. Cases in which an onset was followed by

an offset of another type were discarded. Also discarded were

onsets following an onset with missing intervening offset (and

vice versa, discarded were offsets following an offset with missing

intervening onset). In the three birds analyzed, we extracted 5, 7,

and 9 vocalization types per bird, respectively. We then visually

inspected the extracted spectrograms and manually corrected

segmentation and clustering errors. That is, onset and offset

times were manually adjusted by an expert in 4-ms steps to the

nearest true onset or offset; and, misclassified vocalizations were

assigned to the correct vocalization type or to noise (we observed

neither, see Section 2.3).

2.2.2 Practical notes
In all adult zebra finches examined, we managed for each

vocalization type to find distinct onset and offset blobs. We

carefully selected each blob as close as possible to its extreme

position, i.e., as close as possible to the onset resp. offset of the

associated sound interval. In nearly all birds, we found at least

one point cloud in the embedding plane corresponding to

non-vocal noise; in this cloud it was impossible to select both

onset and offset blobs, presumably because noise tends to be

unstructured, i.e., for noise there were no distinct time lags to

amplitude threshold crossings at which noise snippets

appeared more similar with each other than with snippets

at other lags. We therefore extracted noise segments as the

time intervals from the extracted onset until the ending of the

underlying sound interval or the next vocalization onset,

whichever came first.

FIGURE 3
2N-extracted vocalizations (black curve) are similarly segmented as human-extracted vocalizations (red). (A) Shown is the cumulative
percentage of vocalizations with an onset that falls within a given time lag (x-axis) following a sound amplitude threshold crossing. (B) Same for
offsets that are within a given time lag preceding a sound-amplitude threshold crossing. Same bird as in Figure 1. (C,D) Cumulative percentage
averaged across n = 4 birds. The insets in D show typical errors made by 2N extraction (green bars), which is to interpret a string of two calls as a
single call (here labelled ‘B’, green bounding box) or to introduce segmentation errors (red bars) from too generous inclusion of surrounding noises
(blue bounding box), data taken from an accelerometer-recorded bird. (A–D) Segments extracted by amplitude threshold crossings (dashed) trivially
display no time lag whatsoever.
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2.3 Evaluation measures

In all birds, all 2N-extracted vocalizations were correctly

classified into their types, as revealed by visual inspection of

spectrograms. However, we observed occasional segmentation

errors, where syllable onsets or offsets slightly deviated from the

assessment by an expert. To calculate the precision of 2N

extraction, an expert determined for all 2N-extracted

vocalizations of a given type the fraction f of correctly

classified 4-ms time bins.

The goodness of the implicit segmentation obtained with 2N

extraction was evaluated by comparing the onset times of the

extracted sound intervals to the corresponding onset times of the

manually curated vocalizations, shown as a cumulative density in

Figure 3A. The same procedure was performed for offsets, shown

in Figure 3B. Averages of onset and offset cumulative densities

are shown in Figures 3C,D, the less deviation between 2N-

extracted and human-annotated segments, the better the

segmentation performance.

To quantify the benefits of defining vocalizations from both

ends instead of just one, we repeated the same calculation for 1N-

extracted vocalizations that were defined by considering only the

onsets blobs or only the offset blobs rather than both. In the

onset-anchored 1N baseline, we extracted a vocalization from the

time difference Δt � ta − tb, where tb is the timestamp of a point

in the onset blob minus the selected time lag d and ta is the end of

the underlying sound interval or the timestamp of the next point

in an onset blob, whichever came first. Analogously, in the 1N-

offset baseline, we extracted a vocalization from the timestamp of

a given point in the offset blob minus the selected (negative) time

lag d , backwards, until the previous point in an offset blob or the

beginning of the underlying sound interval, whichever came first

(going backwards in time). The corresponding extraction errors

ϵ � 1 − f are shown in Figure 4 for diverse vocalization types and

birds.

3 Results

The first step of our extraction method is to detect sound

intervals (as opposed to intervals of silence). In line with other

approaches (SAP http://soundanalysispro.com, Avisoft http://

www.avisoft.com), we assume that very often (but not

necessarily always), a vocalization onset corresponds to a

lower (low-to-high) threshold crossing of sound amplitude,

and an offset corresponds to an upper (high-to-low) threshold

crossing. In other words, we assume that either before or after a

vocalization there are brief periods of silence, implying that

sound intervals often begin and end with vocalizations. We

then densely dissect the sound spectrograms associated with

sound intervals into overlapping snippets (Figure 1). By

considering each snippet as a potential vocalization onset or

offset, the vocal segmentation problem remains unresolved at

this processing step (it will be resolved at a later step).

We then project all spectrogram snippets into a plane, similar

to the continuous UMAP embeddings in Sainburg et al. (2020).

FIGURE 4
2N-extracted vocalizations achieve higher precision than their 1N-extracted counterparts. The fraction of extracted (4-ms) time bins that are
misclassified (extraction errors) is shown for diverse methods: 2N extraction and either onset-anchored (on) or offset-anchored (off) 1N extraction.
(A) For each vocalization type, the error is lower when vocalizations are extracted from two neighborhoods than when extracted from one
neighborhood. Same bird as in Figures 1, 2. (B) Same data, averaged over all syllable types and after normalizing by the error rate of 2N extraction
(shown is average ± std across vocalization types). The retrieval error of 1N extraction is 2–4 times higher than that of 2N extraction. (C) Normalized
relative extraction error (average ± std across 4 birds). 2N extraction achieves 3–6 times fewer errors.
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However, in our case, the first snippet of a sound intervals

protrudes the sound-interval onset by δon and the last snippet

protrudes the offset by δoff (Figure 1), which makes

vocalizations appear as distinct 1D structures in the

embedding plane with clear boundaries rather than as a single

excessively long 1d structure as in Sainburg et al. (2020).

Provided that for a given vocalization type, there are

sufficiently many vocal renditions that are precisely segmented

by sound amplitude, the corresponding snippet embeddings will

lie close to each other in the embedding plane and form a dense

cloud of points. In general, we expect to find an extended cloud of

points in the embedding plane for each vocalization type that

ranges from self-similar onset snippets on one end to self-similar

offset snippets on the other.

Among the cloud of onset-related points, we will also find

points that display a nonzero lag to the nearest threshold crossing

of sound amplitude. Namely, due to noise, we expect that some

vocalizations are not cleanly segmented by sound amplitude but

that instead are preceded or followed by a suprathreshold noise,

which means that the time lag to an amplitude threshold crossing

can be arbitrarily large. Such noisy vocalizations can nevertheless

be correctly extracted with our method because for extraction we

rely not on prior segmentation but on similarity with cleanly

segmented renditions.

In short, to extract vocalizations of a given type, we define in

the embedding plane a dense region of points (a blob) associated

with the onsets of this vocalization type, and a blob associated

with the offsets of that type. Blobs are defined by points of a given

lag value d, see Figure 2A (d � 1 for onsets and d � −1 for

offsets). To minimize effects of embedding distortions and to

disambiguate confounding vocalization types, we set a blob’s lag

variable to a suitable value. We set the size of a blob as a function

of the local density of points by adjusting two parameters: a

radius r and a threshold. The radius r sets the size of the disks

that are placed at the locations of the embedding points and the

threshold ϑ sets the height that the summed disks must exceed for

a pixel to be included in a blob (Figure 2A), for details, see

Methods Section 2.2.1.

The extracted vocalizations are then defined as the

spectrogram chunks that start at the timestamp of a point in

an onset blob minus the blob’s lag value d and end at the

timestamp of the first subsequent point within an offset blob

minus the blob’s lag value, i.e., we extract vocalizations simply

within the shortest (lag-corrected) time intervals between pairs of

points in an onset and an offset blob. Importantly, we harvest all

points within a blob, including points that were sliced at different

time lags than the blob defining lag. Therefore, although the

definition of vocalizations depends on the time lags to amplitude

threshold crossings, the harvesting is oblivious of these lags, and

so our method can correctly extract vocalizations that are not

cleanly segmented by sound amplitude.

When during this extraction process, an onset of a given type

is followed not by an offset of the same type but by another type

of event such as either an onset, the end of the sound interval, or

the end of the file, we simply extract a vocalization from the onset

until one time bin before the said event. Alternatively, when the

onset is followed by an offset of another type, we extract no

vocalization (to maximize precision1).

We illustrate our extraction method on a one-day-long

recording of an isolated male zebra finch. We sliced the

recorded sounds intervals into more than half a million

snippets of 64 ms duration each that we embedded into the

(2d) plane using UMAP. As can be seen in Figure 2B, snippets

from different syllables can appear indistinguishable in the

embedding plane, either 1) because a bird repeats an

indistinguishable sub-syllable or note in a different context

(i.e., as part of a different syllable as illustrated in Figure 2:

parts of syllables E and D), or 2) because of UMAP projection

errors (i.e., when nearest neighbors are hallucinated (Kollmorgen

et al., 2020)—the latter we visually found to be quite common).

When such non-discriminability occurs ateither an onset or an

offset, the respective snippet loses its distinguishing characteristic

for that syllable (Figure 2B, yellow arrows). This situation is quite

common in zebra finches that tend to sing different syllable types

with indistinguishable endings. This ambiguity implies that the

spectrogram snippets near an upper threshold crossing do not

uniquely define the ending of that syllable type (presumably the

same is also true for some syllable onsets). As a workaround to

such repetitive structure inherent in birdsong (and language for

that sake), our method provides the freedom to define syllable

endings and beginnings at fixed time lags away from threshold

crossings, at places within a syllable where the defining snippet

becomes unique for that syllable.

Using our GUI (Supplementary Material), users can

increase and decrease the lag variable d to observe the

blobs move around in the embedding plane until they reach

a region in the plane where there are no confounding points

from other vocalization types. Such confounding points can be

recognized thanks to the elongated 1d-structure of

vocalizations in the embedding plane (Sainburg et al.,

2020): the confounding points are the ones where two

different 1d-structures come too close to each other (see

Figure 2B, yellow arrows). For example, the bird in

Figure 2B produced two very long and complex song

syllable types in rapid succession, whereby the second type

(E) displayed an additional small down sweep at the syllable

beginning, making it clearly distinct from Syllable D only by

virtue of this down sweep (Figures 2C,D). As a result, the

endings of syllables D and E in the embedding plane coincided

with each other, which is why we had to define the offset-

anchored blob E-not far from the onset-anchored blob E+ in a

region where it was distinct from any neighborhood of D-, to

make sure the endings of syllable D are not confounded with

parts of syllable E.

For the bird shown in Figures 1, 2B, about 96.6% of

extracted vocalizations had cleanly segmented onsets and
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about 98.7% had cleanly segmented offsets (i.e., onsets and

offsets coincided with sound amplitude threshold crossings).

In another bird, also recorded with a microphone and kept

alone in a soundproof box, clean segmentation was even more

frequent (99.9% for onsets and 99.0% for offsets, respectively).

However, in birds housed in pairs and recorded with a wireless

accelerometer mounted to their back, the fraction of cleanly

segmented vocalizations was much lower (down to 72% for

onsets and 89% for offsets, respectively). Thus, the level of

noise depends strongly on the recording method, but our

method allows harvesting vocalizations even in noisy

situations.

3.1 Performance evaluation

How good are the extracted vocalizations? We computed two

performance measures associated with the extraction procedure:

1) The quality of the segmentation in terms of the time differences

of extracted onsets and offsets relative to gold standard human

annotations; and 2) the clustering performance in terms of the

false-positive error rate of misclassified time bins, again assessed

by human experts (see Methods).

With regards to 1) the quality of the segmentation, for the

bird shown in Figures 1, 2B and for both onsets and offsets, the

time lags to threshold crossings were similarly distributed for 2N-

and for human-extracted vocalizations (Figures 3A,B),

suggesting that 2N extraction extracts vocalizations from

background noise in similar manners as humans do. For both

onsets and offsets in this bird, the largest time lags to amplitude-

threshold crossings were up to 1 s long. In all birds tested (n =

2 mic and n = 2 accelerometer birds), we found similarity

between 2N-extracted vocal segments and the human gold-

standard counterparts, constituting a big improvement over

simple sound amplitude thresholding (i.e., defining onsets and

offsets as lower and upper crossings of sound amplitude

thresholds, respectively, Figures 3C,D).

Some disagreements were seen when data was noisy; namely,

we observed a tendency in human evaluators to segment the

offsets earlier, which we found was often due to double misses

that occurred in strings of calls where both an offset and the

following onset were missed, leading to the hallucination of a

much longer call than there actually was (Figure 3D). We do not

evaluate workarounds for such problems but propose to fix them

by detecting for each vocalization type the outlier renditions of

excessively long durations and by discarding these. The shorter

segmentation errors within 10–20 ms of true syllable offsets were

almost always caused by inclusion of respiratory or movement

artifacts near syllable boundaries (Figure 3D) and very rarely

were they caused by truncations of parts of syllables, which would

be more detrimental for subsequent feature-based syllable

analysis. In summary, our method provides improved vocal

segmentation compared to simple sound amplitude

thresholding, in particular when recordings are noisy as in

pair-housed birds recorded with animal-borne sensors.

With regards to 2) the clustering performance, an expert

evaluated the precision of 2N extraction in terms of the

fraction of 4-ms time bins that were assigned to the correct

vocalization type. We were particularly interested in

comparing our findings to a baseline of extracting

vocalizations not from two defining (sets of) regions in the

embedding plane, but from only a single region, either

anchored to the onset or the offset, but not both. In these

1N extraction baselines, we extracted vocalizations from a

point in a blob until either the next point in the blob or until

the end of the sound interval, whichever came first (see

Methods).

We found that 2N extraction outperformed 1N extractions

by a large margin, achieving 3–6 times fewer extraction errors

(Figure 4). The superior precision of 2N extraction came only

at a minimal cost of lower recall. Namely, for the bird shown in

Figure 1, 2N extraction retrieved almost as many time bins as

did 1N extraction, namely 99.6%. On average (n = 4 birds), the

fraction of time bins retrieved with 2N extraction was 96.9%

relative to the mean number of bins retrieved with 1N

extractions (averages across onset- and offset-based 1N

extraction methods). Thus, the added benefit of much lower

extraction error came only at a minimal cost of potentially

retrieving fewer vocalizations. Thus, in terms of extraction

performance, it pays off to extract vocal units in terms of two

sets of defining characteristics, one anchored to the onset and

the other to the offset. In terms of manual processing time, 2N

extraction comes at the obvious cost of twice the workload

compared to 1N extraction. However, given that 2N extraction

can be routinely done within less than five minutes for an

experienced user, irrespective of the size of the data set, this

overhead seems negligible in practice.

4 Discussion

We presented a simple and intuitive method for extracting

arbitrary vocal units in embeddings of a continuous stream of

data. Embedding methods such as UMAP and t-SNE have

been criticized for the distortions they can create, especially in

genomic data (Chari et al., 2021). While we find similar

distortions in vocal data, our workaround is to flexibly

define vocal units based on regions in the embedding plane

that are far from ambiguities and presumably also from

distortions.

Our key contribution is to identify vocalizations via two sets

of characteristics near the onsets and offsets, rather than through

a single set of characteristics tied to either the onset, the offset, or

even the entire vocalization. The benefits of this dual recognition

are better segmentation and higher clustering performance,

because 2N extraction is designed to suppress errors resulting
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from vocal ambiguities, cage noises, and embedding distortions.

The method works best when onset and offset defining blobs are

sufficiently far apart such that there is no overlap between them.

2N extraction is flexible and can be tailored to meet specific

user requirements such as correctly detecting syllable variants

even when they are composed of sub-syllables forming a small

unwanted silent gap, which birds sometimes produce. Short gaps

can be ignored for example by smoothing sound amplitudes

before computing sound intervals (which our GUI allows). With

smoothed amplitudes, split syllables are robustly extracted when

the defining neighborhoods are tied to the stable sub-syllable

parts (rather than the gap).

2N extraction makes most sense on large data sets because there

is only a time penalty for computing the embedding but virtually no

overhead for defining the onset and offset blobs. We routinely

calculated UMAP embeddings of up to 1 million sound snippets

using standard desktop PCs with 32 GB of RAM. Since our method

is not tied to a particular embedding method, we expect it to work

also on other planar embedding types (we obtained similar results on

t-SNE (Maaten and Hinton, 2008) embedded data).

2N extraction is a very flexible annotationmethod, providing 4 +

4 degrees of freedom for each vocalization type: the radius, the

threshold, the lag, and the number of blobs (for each onset and

offset). As noted, the defining regions of a vocalization type need not

constitute a connected set. For example, we could have chosen to

combine syllables D and E in Figure 1 into a single syllable type by

defining its onset characteristic in terms of the two blobs labeled D+

and E+ in Figure 2. Thus, our GUI provides the user with high

flexibility of defining vocal units, which minimizes the need for

postprocessing including the correction of segmentation errors.

Our human-centered workflow is in line with other semi-

supervised methods in bioinformatics (Wrede and Hellander,

2019) that focus on reducing knowledge-requiring and time-

consuming algorithmic optimization. For the problem of

extracting vocalizations, we see it as an advantage that users

can resolve ambiguous situations by making an informed

decision after exploring the full vocal repertoire (such as

deciding whether some vocalizations belong to the same type

or not as in Figure 1, syllables D and E). Such fine decisions are

part of critical data assessment (Thomas and Cook, 2006; Cui,

2019) and are common when working with animal data.

Currently, our method requires a pre-segmentation into sound

intervals, as otherwise we do not obtain the time lag d needed for

defining blobs and for extracting vocal units. In data that is so noisy

that there are barely any vocalizations that are cleanly segmented by

sound amplitude, our method is not trivially applicable. We would

recommend trying to use another sound feature than sound

amplitude to obtain blobs as in Figure 2A: Provided the feature

identically dissects a significant number of vocalizations, high-

density regions of dots should emerge in the embedding plane,

which would make our method applicable.

We imagine that our approach to extraction of

vocalizations can generalize to biological and physical

processes other than vocalizations. Namely, we believe that

our approach will work well for the extraction of units in

natural processes that contain rigid elements that sequentially

unfold in variable sequences and at variable speeds. The

duration of entities of interest should be typically longer

than the snippet size. When overlapping data snippets from

such processes are projected onto the plane, elongated

structures will result, ideally displaying uniquely defining

beginnings and endings as in Figure 2B. Our method might

also work for spatial rather than temporal data, provided that

the same requirement of repetitive sequential structures

applies. We hope that our GUI can be of use to researchers

wanting to adopt our methods for their work and as a basis for

further developments.
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