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A major challenge in the field of metagenomics is the selection of the correct

combination of sequencing platform and downstream metagenomic analysis

algorithm, or “classifier”. Here, we present the Metagenomic Evaluation Tool

Analyzer (META), which produces simulated data and facilitates platform and

algorithm selection for any given metagenomic use case. META-generated in

silico read data are modular, scalable, and reflect user-defined community

profiles, while the downstream analysis is done using a variety of metagenomic

classifiers. Reported results include information on resource utilization, time-

to-answer, and performance. Real-world data can also be analyzed using

selected classifiers and results benchmarked against simulations. To test the

utility of the META software, simulated data was compared to real-world viral

and bacterial metagenomic samples run on four different sequencers and

analyzed using 12 metagenomic classifiers. Lastly, we introduce “META

Score”: a unified, quantitative value which rates an analytic classifier’s ability

to both identify and count taxa in a representative sample.
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Introduction

Since its inception, the field of metagenomics has proven to be one of the most

challenging arenas of genomics research. Microbial communities are often dynamic, and

the countless tools available for characterization all present their own strengths and

weaknesses. Experimental design choices are frequently made with reagent cost,

availability, and protocol ease in mind, with less emphasis placed on a thorough

understanding of the limitations of a particular sequencer, metagenomic classification
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algorithm, reference database, or the complexity of the sample

itself. Here, we introduce the Metagenomic Evaluation Tool

Analyzer, or “META”, as a solution for predicting and testing

the best approach for a given metagenomic experiment (Table 1).

Users are able to use this modular and easily updateable software

to select, simulate, and compare the performance of different

sequencer/classifier combinations towards more efficient use of

available wetlab resources.

Need and existing work

The difficulty inherent to the rapid and accurate classification

of metagenomic sequencing data is a problem many researchers

have attempted to solve, each publishing their own classification

tools and comparing their performance against peer algorithms

and/or third-party datasets (Ye et al., 2019). New algorithms are

introduced on a constant basis, while older ones are updated

periodically. The steady progression of sequencing platforms, can

also make it difficult for an end user to make an educated

decision regarding the optimal sequencer/classifier pairing.

META was developed to help users select from an ever-

evolving landscape of emerging metagenomic classifier tools

(Park and Kim, 2016). As far as the authors can tell, only two

other platforms have the potential to exist in the same application

space as META: Galaxy and the Open-Community Profiling

Assessment tooL (OPAL). However, while galaxy could provide

the foundation for side-by-side comparisons, there are no

integrated evaluation tools (Afgan et al., 2018), and while

OPAL provides more composition-level metrics for

performance comparison, it lacks interactive data

visualizations or table filtering options for classifier output

(Meyer et al., 2019). Additionally, resource metrics such as

run times and peak memory usage aren’t readily reported in

the native installation state of OPAL, which requires a separate

step of converting it to a Biobox Docker image. META provides

all of these utilities by default, comparing the performance of

more than ten classifiers and utilizing read simulators for the

Illumina (MiSeq and iSeq instruments) and Oxford Nanopore

Technologies (R9 and FLG flowcells) sequencing platforms (Li

et al., 2018; Gourlé et al., 2019). META is openly available and

can be accessed at the following GitHub URLs: https://github.

com/JHUAPL/meta-system, and https://github.com/JHUAPL/

meta-simulator. For users already running Docker, containers

may be accessed at https://quay.io/repository/jhuapl/meta_

system, and https://quay.io/repository/jhuapl/meta_simulator.

Simulated versus real world sequencing
modes

The META bioinformatics analysis pipeline enables the

direct and simultaneous comparison of metagenomic

abundance profiles derived from multiple classifiers using a

TABLE 1 META features and rationale.

META feature Implemented by Enables Achieves

Modular Dockers Futureproofing via ease of updating Recent version-controlled
algorithms

Ease of expanding as new classifiers are published

Classification tools with diverse dependancies

Down-scalable Choice of tools and database size Broader range of deployment options based on available hardware Pre-tested, deployable
bioinformatics

Selection of optimal pipeline at large scale, and deployment on
laptop

Simulation InSilicoSeq and DeepSimulator Read generation from a single source across sequencers Downselection of sequencer and
analysis

Evaluation and selection of analysis algorithms without costly
sequencing

Visualization D3.js Interactive visualizations Ease of use and interpretation

Comparison of classifiers based on simulated or real reads

Resource
estimation

Tracking of compute time, RAM
usage

Data driven hardware assessment Optimal hardware utilization

Estimate of analysis time

Optimization User Selection of the best classifier based on user needs Validated, deployable bioinformatics

GUI-enabled bioinformatic analysis

Selection of optimal pipeline at large scale, and deployment on
laptop
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set of in silico (simulated), or “real-world” sequencing reads

(Figure 1). In this way, the system supports two modes of

classifier comparisons. “Mode 1” enables the multi-classifier

analysis of an in silico generated read set using sequencing

read simulators (specifically InSilicoSeq (Gourlé et al., 2019)

for Illumina platforms, and DeepSim (Li et al., 2018) for

Nanopore) that produce data reflecting a user-defined

abundance profile. Results are reported using three metrics:

Area under the precision recall curve (AUPRC) (Ye et al.,

2019), the Euclidean distance between the user-defined

abundance profile and the predicted abundance profile (L2)

(Ye et al., 2019), and the metascore, which is a normalized

ratio of these two values. The AUPRC is a measure of how

well individual taxa are identified and is more sensitive to low-

abundance taxa, while the L2 metric is a measure of how reliably

the abundance is calculated, meaning it is more sensitive to high

abundance taxa. The meta score combines these values and

provides a simple measure of how well taxa are both

identified and counted in a given sample. A complete

description of the L2, AUPRC, and meta score can be found

in the materials and methods.

“Mode 2” enables a comparison of output from multiple

classifiers when the input consists of any FASTQ file, including

those generated from real wet-lab experiments. Used in tandem,

these two modes can help select the best sequencing and analysis

approach prior to, and following, the experimental design phase.

Classifiers, modularity, and
standardization

The initial release of META contains a total of twelve classifiers

(Table 2). There are seven k-mer-based algorithms: Bracken (Lu

et al., 2017), CLARK (Ounit et al., 2015), Kraken (Wood and

Salzberg, 2014), Kraken2 (Wood et al., 2019), KrakenUniq

(Breitwieser et al., 2018), Mash (Ondov et al., 2019), and

MMseqs2 (Steinegger and Söding, 2017). The remaining five

classifiers use alignment-based algorithms: Centrifuge (Kim et al.,

2016), HS-BLASTN (Ying et al., 2015), Kallisto (Bray et al., 2016)

DIAMOND (Buchfink et al., 2015), and Kaiju (Menzel et al., 2016).

The former three utilize nucleotide sequence databases, while the

latter two utilize protein sequence databases.

META is modular, making extensive use of Docker

architectures via Bio containers, to facilitate rapid updating or

addition of new classification tools as they become available

(Merkel, 2014; BioContainers, 2020). The system also can

accommodate currently-available common standards from the

Global Alliance for Genomics & Health (GA4GH) to improve

FIGURE 1
(A) META system architecture. The META system supports two evaluation modes: Mode 1 (in silico generated reads), and Mode 2 (real-world
generated reads). Mode 1 enables classifier output to be compared to “ground truth” abundance profiles as supplied by the user. Reads can be
generated using multiple sequencing platform simulators. After selecting which classifiers to evaluate and submitting a job, the system metadata is
tracked in a MongoDB database while each selected classifier is run in series. (B) Sample META analytics workflows. Workflows are generated
upon user request, and include serially-run simulation, classification, and evaluation modules.
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interoperability, security, privacy, data visualization, and

compatibility (Merkel, 2014; GA4GH, 2020). Using these

community-developed standards allows the system to have

immediate utility across a wide range of scenarios and use cases.

Test cases and simulated versus real world
evaluation

To test the utility of META, our group designed a set of two

experiments using real world samples sequenced on multiple

platforms (Figure 2A). Use case 1 was designed to represent an

environmental surveillance scenario, in which an aerosol sample,

containing the human pathogen Bacillus anthracis and two non-

pathogenic near-neighbors, was collected in a background of seven

common environmental bacteria (Figures 2A–D). Use case 2 was

designed to represent a sample collected from an animal infected

with a potential human pathogen. Vaccinia virus, a simulant for

smallpox, was used as the pathogen, and the chicken cells used to

propagate the virus represented the infected animal (Figure 2A). All

samples were sequenced on both Illumina and Oxford Nanopore

platforms and in silico reads were generated on the same platforms.

FASTA and FASTQ files for both wetlab and in silico simulated

samples were then run through META’s classifier algorithms, and

reports were generated describing performance.

Results

Survey and down-selection of classifiers
for initial release

A literature search identified eighty-one metagenomic

classifiers that were subsequently down-selected for inclusion

in the initial release of the META system based on seven critical

attributes (described in detail in Methods). Eighteen classifiers

remained after down-selection criteria, and twelve were

successfully implemented (Table 2). Classifiers used a range of

algorithm strategies and custom reference databases.

Use-case 1

Mode 2 was utilized to evaluate the real-world data derived

from experimental samples developed during use case

generation. Classifiers were ranked by metascore for each read

TABLE 2 Metagenomic classification tools and associated metrics that are available in initial META public release. Custom database build size refers to the
custom databases generated from the normalized set of references (units are gigabytes (GB) unless otherwise noted). Average peak memory usage and run
times were derived from a total of 16 Mode 1 jobs of varying metagenomic composition (FASTQ file size averaging approximately 1.0 GB), and using the
custom built databases associated with each classifier. Descriptions of the versions of each classifier run in this test can be found at https://github.com/
JHUAPL/meta-system

No. Classifier Synopsis Custom database build
size (GB)

Average peak memory
usage (GB)

Average
runtime (s)

1 Bracken k-mer based abundance estimation from raw
reads

72 KB 0.210 0.04

2 Centrifuge alignment based on BWT and FM-indexing
schemes

30 2.717 14.38

3 CLARK k-mer based species or genus level classification 255 9.901 0.04

4 DIAMOND alignment based, SW against protein database 24 0.935 145.47

5 HS-
BLASTN

An accelerated MegaBLAST search tool 274 28.282 74.08

6 Kaiju alignment based on BWT and FM-indexing of
protein sequences

26 2.672 14.63

7 Kallisto alignment based, pseudoalignment procedure 15 2.524 0.05

8 Kraken k-mer based, exact alignment 45 0.240 4.95

9 Kraken2 k-mer based, exact alignment, and translated
search mode

32 0.205 0.32

10 KrakenUniq k-mer based, exact alignment with smaller
memory requirements

819 0.245 71.05

11 Mash k-mer based, locality sensitive hashing 16 KB 0.158 0.64

12 MMseqs2 k-mer based filtering with ungapped then
ungapped alignments

651 0.373 0.07
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type (Illumina and ONT-generated reads) using the known

spiking concentration for each component of the sample.

Corresponding in silico-generated reads were then processed

using Mode 1. Accurate strain and species identifications were

prioritized in all analyses as this facilitated the differentiation of

pathogens from background organisms.

The metascores for each sequencer/classifier pairing for use case

1 are shown in Figure 3. (L2 and AUPRC scores are displayed in

Supplementary Figures S1, S2). Separate analyses were run on

4 sample types: the pathogen alone, the pathogen and two near-

neighbors, the seven background environmental bacteria, and all ten

components together. Most classifiers scored similarly within each

sample type and for each read type at the strain rank, with Mash

having the lowest metascore in all cases. In general, the average

metascore among all sequencer/classifiers pairings decreased as the

total number of known organisms in a sample decreases. This isn’t

unexpected, as the ability to discriminate between the total reads

available becomemore difficult when the available reads in a sample

are nearly identical. For the “mix of all 10” organism samples,

Kraken Unique achieved the highest metascore for the Illumina

(MiSeq) read type, and Centrifuge the highest score for the ONT

(R9 flowcell) read type.

Classifier performance for samples containing multiple

organisms could also be determined by identifying 1) how

many of the expected organisms were detected at any level,

and 2) how closely their respective abundance profiles

matched the known spiking concentrations. While no

classifier would be expected to identify all ten organisms,

as the Bacillus atrophaeus subsp. globigii taxID was

purposefully omitted in the custom reference database,

Kraken, Kraken2, and HS-BLAST were the best

performers, identifying all of the remaining 9 taxIDs when

analyzing both Illumina and Nanopore reads (Table 3,

columns two and three).

The ability of the classifiers to identify the pathogenic

component of the 10-organism samples was of particular

interest. The three classifiers listed above successfully

identified BA in Nanopore data sets, and the same three,

plus Kallisto, identified BA from Illumina data sets.

Theoretically, the B. anthracis read abundance should fall

at approximately 10% for all of these sequencer/classifier

pairs, but of the four classifiers that identified the

pathogen at all using Illumina results, three were below

1%, while HS-BLASTN significantly over-represented its

FIGURE 2
Sample use-cases test META capabilities. (A). Sequencing results from twomock metagenomic DNA communities are produced in the lab and
mimicked in silico. Results using different classifiers are compared to the known sample content to identify the best performing sequencer/classifier
combination. (B). Mode 1 user-generated TSV file for use case 1 mimicking a community found on an air filter. (C) Detailed components of
community includes a threat agent (B. anthracis), two near neighbor organisms (B. anthracis Sterne and B. atropheus), and seven background
environmental organisms selected from an American Type Culture Collection (ATCC) 20 strain Even mix genomic sample (Cat. # MSA-1002). (D)
Phylogenetic distance between each component of use case 1 and the community in the 20 strain even mix sample. The tax ID is shown in
parenthesis and the color code corresponds to the organism list in Figure 2.
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presence at >19%. The three classifiers identified the B.

anthracis taxID from ONT results, with two of the three

classifiers that identified B. anthracis using Nanopore data

sets significantly under-represented abundance (<1%) with

only HS-BLASTN coming within 7% the expected value.

With respect to computer resource utilization, run times and

peak memory usage varied widely based on the selected

sequencer and classifier combination. Generally, though, no

clear trend related these metrics with the metascore values,

suggesting that users couldn’t base their selection on these

predictions alone. Full interactive reports of the individual

sequencing runs that generated this data are available for

exploration here (https://meta-results.jhuapl.edu).

Use case 2

Results from the second use case are displayed in Figure 4

(metascores) and Supplementary Figures S3, S4 (AUPRC) and

(L2). For the Illumina data, the classifier achieving the highest

metascore for “host”, “extraction1”, “spike1” and “spike2” was

Mash (0.0572), CLARK (0.1787), CLARK (0.1165), and CLARK

(0.0710), respectively. For the ONT data, the classifier achieving

the highest metascore was DIAMOND (0.0571), CLARK

(0.0861), DIAMOND (0.0673), and DIAMOND (0.0611),

respectively (Figure 4). With respect to computer resource

utilization, and only using those of the “spike2” sample, using

the simulated Illumina read set CLARK was ranked 2nd for

FIGURE 3
Use case 1 output. Classifier performance from in vitro data sets is illustrated using the metascore metric from super kingdom to strain
taxonomic ranking. All twelve available classifiers were run using data generated from Illumina MiSeq and the ONT R9 flowcell. N=3. Further
visualization of these results can be found at https://meta-results.jhuapl.edu.
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runtime at only .42 s, however it was ranked 11th for peak

memory usage at over 118 GB RAM. Using the simulated

ONT read set from the same sample profile, DIAMOND was

ranked 11th for runtime at 345 s, and 7th for peak memory usage

at only 8.6 GB RAM. Full interactive reports are available for

exploration here (https://meta-results.jhuapl.edu).

A note here on the effects of this use-case (a single target of

interest) on the value of AUPRC and L2. The AUPRC is very low

across all taxonomic ranks for each sample type, implying there

are many false positive classifications which is likely due to the

fact that there is only a single “ground truth” tax ID for these

samples (the spiked organism). The L2 metric is much more

variable across both taxonomic rank and sample type, and is

actually closer to the ground truth profile at the stain rank

compared to the higher ranks. This is somewhat counter-

intuitive as one would assume that a more specific

classification (e.g., strain) is more difficult than a less specific

classification (e.g. species). However, and again since there is only

a single “ground truth” tax ID for these samples, even an

abundance profile vector containing zeros for all tax IDs is

closer to the ground truth than a vector that contains even a

single tax ID that isn’t in the ground truth set at any significant

abundance. These points coupled with the fact that L2 is in the

denominator of the metascore calculation yields the higher strain

rank scores seen in Figure 4.

Since the metascore is designed for the evaluation of classifier

performance on more traditional metagenomic profiles, it was

necessary to also check the deviation from the target ground truth

abundance, as was done for the environmental experiment

(Table 4). The target genome proportion reflects the target

(Vaccinia Virus) to host (Gallus gallus) ratio in the sample

type. The effective ground truth abundance is the abundance

used for deviation calculations. This value for sample type 1) is

zero, and all classifiers didn’t report it in their output abundance

profiles, therefore their deviation is a perfect 0.00%. Sample types

2), 3), and 4) all have a target effective ground truth abundance of

one, i.e. the input TSV column 3 for taxID 9,031 (Gallus gallus)

was set to 0, since it isn’t in the custom reference genome set. As

the concentration of the target decreases, the deviation from

target ground truth increases. CLARK was identified as the best

performer using Illumina read type via metascore, and also

consistently achieves the lowest deviation from target ground

truth abundance for all sample types. Although DIAMOND was

identified as the best performer in a majority of sample types

using the ONT read type viametascore, it had a consistently high

deviation from target ground truth abundance. Based on the

deviation measure, CLARK, HS-BLASTN, or KrakenUniq may

be a better substitute for identifying this target using the ONT

read type.

Discussion

There is currently no bioinformatics tool that automates 1)

the de novo simulation of Illumina and Oxford Nanopore

Technologies (ONT) metagenomic sequencing data, 2) the

simultaneous classification of this in silico or real-world

sequencing data using multiple algorithms, and 3) provides

TABLE 3 Deviation of pathogenic target organism abundance from theoretical known value in use case 1. Values are representative of samples containing all
10 possible components at equal genome copy input. Nd= not detected.

Number of expected taxids identified in output
(max = 9)

Calculated B. anthracis abundance (theoretical
max = 10%)

Illumina ONT Illumina ONT

Bracken 1 1 nd nd

Centrifuge 5 4 nd nd

CLARK 1 1 nd nd

DIAMOND 1 1 nd nd

HS-BLASTN 9 9 19.20 10.65

Kaiju 1 0 nd nd

Kallisto 9 7 0.09 nd

Kraken 9 9 0.22 0.34

Kraken2 9 9 0.10 0.11

KrakenUniq 9 8 nd nd

Mash 0 0 nd nd

MMseqs2 9 8 nd nd
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performance metric information for each algorithm. Here, we

present a software package and user interface called META to fill

this gap. With META, researchers, can rapidly and inexpensively

identify the best classification tool for a specific metagenomics

use-case instead of settling on a strategy based onmore subjective

or qualitative comparisons potentially derived from unrelated

data sets. META analysis outputs provide the AUPRC

(taxonomy performance) and L2 (abundance performance),

and visualizations allow direct performance comparisons

between sequencers, classifiers, and metagenomic communities

whose complexity can be defined by the user. For the simulation

evaluations, we introduce a combined metric, the “metascore”,

which provides a simple quantitative measurement of general

classifier taxonomy and abundance performance by

incorporating both AUPRC to L2 measurements. The

metascore is simply a ratio of the AUPRC/L2 that has been

normalized from zero to one, with higher metascore ratios being

considered better. This score can provide a quick visual way to

select the optimal sequencing and bioinformatic analysis

approach. For example in the environmental sample use case

in which there are no Bacillus species (ATCC-only mix of 7), a

user interested in the best Genus and Species overall performance

can immediately select Diamond or KrakenUnique, coupled with

Oxford Nanopore R9 sequencing for their experiment instead of

Illumina, as R9 provides the highest metascore for these

classifiers when coupled with R9 sequencing (Figure 3). This

FIGURE 4
Use case 2 output for 1) host cells alone, 2) extraction 1, a neat viral lysate), 3) spike 1, a 1:10 dilution of viral lysate in host background), and 4)
spike 2, a 1:100 dilution of viral lysate in host background. Classifier performance from in vitro data sets is illustrated using themetascoremetric from
superkingdom to strain taxonomic ranking. All twelve available classifiers were run using data generated from Illumina MiSeq and the ONT
R9 flowcell. N=3. Further visualization of these results can be found at https://meta-results.jhuapl.edu.
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mayn’t be readily apparent from observing AUPRC and

L2 performance alone, particularly in the case of a single

metric under-performing such as AUPRC, or over-performing

such as L2 (Supplementary Figures S1, S2). The metascore could

eventually be utilized for simple simulation experiments by a

user, such as direct comparison to a random classifier, and it

offers a quick way to visualize single candidates for bioinformatic

algorithm and sequencing approaches. A useful aspect of META

is that once sequencing and analysis pipelines are selected, a

separate, real-world-mode can be selected and real reads can be

run using the same analysis pipeline. The outputs provide data

reporting of the real content of a given sample (for examples, see

https://meta-results.jhuapl.edu).

META provides feature-rich data visualizations, enabling the

user to explore each analysis to the depth that suits their unique

needs, eventually coming to their own conclusion about which

classifier and read type combination will be most effective. The

system is set up to rapidly add new classifiers, or update existing

ones, so that a user can determine which sequencer and classifier

combination is best suited to their use case, even as the

technology continues to change and improve. Applications for

this technology are numerous, including environmental

monitoring, diagnostics, research, forensics, and industrial

processes.

Additional utility would be found if an implementation is

made to compare reference databases for classifiers. REFSeq is by

far the most utilized reference database, and so most

comparisons can be made using it as the initial content base,

but META in its current state could still be a useful tool in

database content optimization, by running subsets of appropriate

databases in a classifier as needed for a particular use case. The

next major release of META is expected to include a new mode

that will enable reads from a known in vitrometagenomic sample

dataset to be compared with an expected abundance profile.

Assembly and alignment modules will also be added in order to

support classification tools that require a contig or alignment file

as input, respectively. We welcome input by the user community,

including contributions to continue the development of META,

additional dockerized classifiers, and even additional

containment schemes which may scale to other use cases in

the High Performance Computing (HPC) community.

Material and methods

Custom reference sequence sets

In order to directly compare the performance of each

classifier, a custom database was generated from the same set

of reference organisms. This database included all archaea (347),

bacteria (16,678), fungi (11), and viral (8,999) assemblies

available on NCBI RefSeq that had a “latest” version status

and an assembly classified as a complete genome, downloaded

1 October 2020. For the environmental bacteria use case, the

Bacillus atrophaeus subsp. globigii taxID was purposefully

omitted in the custom reference database. The approximate

TABLE 4 Deviation of pathogenic target organism abundance from theoretical known abundance in use case 2. These show two replicates of these samples,
each showing deviation from known abundance for 1) host cells alone, 2) extraction 1, a neat viral lysate, 3) spike of a 1:10 dilution of viral lysate in host
background, and i4) spike of a 1:100 dilution of viral lysate in host background. Known abundance was set to 100%, as host genome was not included in the
custom reference database. Nd= not detected.

Host only Infected lysate Host only Infected lysate

Neat 01:10 1:100 Neat 01:10 1:100

Bracken nd −82.12% −83.22% −92.17% nd −84.44% −94.30% −99.36%

Centrifuge nd −4.80% −36.93% −85.23% nd −.90% −85.84% −98.50%

CLARK nd −1.24% −11.78% −58.87% nd −.70% −66.78% −95.15%

DIAMOND nd −94.42% −94.74% −95.22% nd −98.69% −99.12% −100.00%

HS-BLASTN nd −2.57% −18.05% −68.57% nd .00% −77.48% −97.32%

Kaiju nd −100.00% −100.00% −100.00% nd −100.00% −100.00% −100.00%

Kallisto nd −77.18% −79.64% −90.78% nd −82.05% −90.82% −100.00%

Kraken nd −81.57% −84.82% −92.93% nd −74.88% −88.64% −97.44%

Kraken2 nd −88.58% −89.85% −94.82% nd −86.11% −94.44% −99.37%

KrakenUniq nd −15.22% −24.55% −64.05% nd −1.40% −69.38% −95.80%

Mash nd −100.00% −100.00% −100.00% nd −100.00% −100.00% −100.00%

MMseqs2 nd −2.78% −53.42% −92.54% nd −37.80% −88.07% −99.18%
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total size of the custom nucleic acid database was 69 GB, and the

protein sequence database was 24 GB.

Classifier inclusion criteria

Seven critical features were analyzed for each metagenomic

classifier in order to down-select the final list for inclusion in the

initial release of META: open source accessibility, availability on the

Bioconda software package manager, date of last update, local data

storage options, custom database input options, classification

strategy, and analysis type. To be included in the META system,

a classifier had to be open source and available on Bioconda, a

software package manager whose support increases ease of

deployment and integration of the classifier. The presence of a

classifier on Bioconda also implies that the tool is well-accepted and

tested in the broader bioinformatics community. Recent updates

were required to ensure that only activelymaintained classifiers were

selected, and as META requires classifiers to be run locally, any tool

deployed only in a cloud-based environment was filtered out.

As mentioned above, in order to directly compare performance

across classifiers, each tool had to allow for the use of a custom

database, and due to the limited specificity of classifications based on

marker genes, particularly 16S rRNA, all classifiers utilizing this

strategy were excluded. This study aimed to review metagenomic

classifier tools only, meaning other sequencing data analysis tool

(e.g., assemblers, aligners, wrappers, etc.) were excluded, but could

be included in future iterations of META in order to test and

evaluate more complex analysis pipelines.

System architecture and workflow

All META files and installation instructions are openly

available on GitHub at https://github.com/JHUAPL/meta-

system, and https://github.com/JHUAPL/meta-simulator. For

users already running Docker, containers of META are

available at https://quay.io/repository/jhuapl/meta_system, and

https://quay.io/repository/jhuapl/meta_simulator. META is

designed to run as a local web server based on Python Flask,

accessible via restful API or user interface optimized for Google

Chrome and Firefox using the Vue. js framework (Flask

Documentation, 2020; Vue.js, 2020) (Figure 1A). The

architecture leverages Bioconda and BioContainers, Docker

container versions of the most commonly used metagenomic

classifiers, in order to provide consistent deployment (Merkel,

2014; Gruening et al., 2018; Grüning et al., 2018; BioContainers,

2020). Docker allows for the widest possible utility for those

trying to optimize metagenomics workflows for lower resource

systems. In addition, it remains the most widespread for existing

classifier containerization, and so provides the best opportunity

for broader comparisons of different strategies. Lastly, Docker

containers can be imported into other containerization utilities

such as Singularity (https://docs.sylabs.io/guides/3.5/user-guide/

index.html). This allows META to easily incorporate new

metagenomic classifiers or update older ones, providing a

modular template for integration via a standard META

YAML description (The Official YAML Web Site, 2020).

Towards interoperability, it was necessary to identify tool-

specific commands that executed the four basic stages of

metagenomic classification: download, build, classify, and

report. This allowed for simultaneous processing of the same

dataset by multiple classifiers without requiring individual inputs

for each tool selected by the user. The following assumptions

were made about all tools integrated with META; the tool

database relies on a set of reference nucleotide or protein

sequences for classification, and the tool can perform an

analysis that provides output that allows for relative

abundance calculations to be produced. These assumptions led

to the following definitions within the META ecosystem: 1)

download: the command that downloads the set of reference

nucleotide or protein sequences. Depending on the use-case, the

set of reference sequences may already be present on the host

machine. This is likely the case for those seeking to build custom

reference databases. Currently, this command isn’t automatically

executed within the META system. 2) Build: the command’s that

build the database indices and relevant files from the set of

downloaded reference sequences. An example of this is “kraken-

build --db kraken_db --build”. Currently, this command isn’t

automatically executed within the META system. 3) Classify: the

command that runs classification of sequence input.

Classification analysis can be performed using several

algorithms, including, but not limited to, distance metrics,

string comparisons, or expectation maximizations (EMs). The

command ideally contains an argument that specifies an output

directory or output file path. An example of this is “kraken --db

$db --output $output $input”. 4) Report: the command pro that

formats outputs. An example of this is “kraken-report --db $db

$output”. An additional command may be necessary to rename

the formatted report to “<tool_name>.report”. Some tools may

not bundle a reporting utility, in which case, theMETA report file

will be generated in the classify stage, and no report command

needs to be identified. Notice that a set of installation commands

aren’t required. This highlights the advantage of using

BioContainer Docker images for deployment, as it doesn’t

require end users to install the tool and its dependencies prior

to using it.

When a user is ready to process data using META, they must

first submit a request in Mode 1 or Mode 2. To run a comparison

using Mode 1 (in silico generated reads), an abundance profile

must be provided in the form of a 3-column tab-separated

variables (TSV) file. This file includes 1) the taxonomic ID

(taxID) of the organisms making up the metagenomic

community that will be simulated, 2) the relative abundance

of the associated taxID (abundance must sum to a total of

1.000000), and 3) whether the taxID should 1) or shouldn’t 0)
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be considered in the relative abundance evaluation calculations.

Users may opt to exclude certain taxID for abundance profile

generation if the reads map to background genomic material or

organisms of low interest. All input taxIDs in this file should map

to an organism with a reference genome in NCBI’s RefSeq

database, and a job will terminate and return an error

message if a reference genome cannot be found for one or

more taxIDs in an input TSV file. To run a comparison using

Mode 2, the user must only provide a FASTQ file. All other

parameters available to the user may be selected via check boxes

on the job submission page, which include available classifiers to

run and, forMode 1 only, which read type(s) will be simulated for

the provided abundance profile.

A META analytics workflow is automatically generated upon

user request. Workflow components include simulation,

classification, and evaluation modules that are processed serially.

In Mode 1, for every simulated read type, there is an associated

simulation module, and for every metagenomic classifier selected,

there is an associated classification module. In Mode 2, the

simulation module is excluded. In all modes, every FASTQ file

has an associated evaluation module for computing metrics across

all selected classifiers. Example workflows can be seen in Figure 1B.

By distilling the workflow to these three modules (simulate, classify,

evaluate) and four command types (download, build, classify,

report), META prevents the “decision paralysis” inherent to

more complex workflow environments and description languages

(Leipzig, 2017; Perez-RiverolMoreno, 2020).

When a job is submitted, the user may view currently running

jobs, and may select or download completed job reports for viewing

or additional analysis.Most tables, graphs, and charts available in the

report are fully interactive, sortable, and tips are provided where

relevant. An additional “quick answers” menu, in the form of

Frequently Asked Questions (FAQs) is available in order to guide

the selection of classifier’s based on a particular metric of interest.

When a FAQ is selected, this function automatically adjusts the data

outputs to answer that specific question. Examples of questions

include: “Which species has the highest L2?”, or “Which species and

classifier combination has the largest AUPRC?” (Supplementary

Figure S5).

Evaluation and visualization

In Mode 1, the presence of known user-defined abundance

profiles allows for direct comparison of classifier performance to

ground truth values. This comparison is based on the ratio of the

area under the precision recall curve (AUPRC) and the Euclidean

distance between the user-defined abundance profile and the

predicted abundance profile (L2) for each tool. These metrics are

utilized because they are complementary as AUPRC is more

sensitive to low abundance taxa, while L2 is more sensitive to

high abundance taxa (Ye et al., 2019). For AUPRC, each point on

the curve represents the precision and recall scores at a specific

abundance threshold. Abundance thresholds from 0 to 1 are used

to generate the full curve is generated, and the area calculated.

The L2 metric is based on the pairwise Euclidean distance

between the ground truth and classifier output taxa

abundance vectors. Finally, a META score (referred to as

metascore) is calculated from AUPRC and L2 by the

following formula:

metascore � AUPRC + 1( )/ L2/sqrt 2( )( ) + 1( )( ) − 0.5/1.5

Dividing L2 by its maximum value [sqrt (2)] normalizes the

range to that of AURPC (0–1). The addition of one to both

metrics before taking their ratio bounds the ratio’s range from to

1/2–2. Finally, subtracting .5 from the ratio then dividing by

1.5 adjusts the range of the metascore to 0–1. The metascore

allows a user to see a quantitative, overall value that represents

the combined performance of abundance calculation and

taxonomic ID for a classifier and sequencer combination on a

given mock metagenomic community (the user-defined TSV).

Classifier performance characteristics reported for both

Mode 1 and 2 include a scatter/half-violin plot with a

consensus call table, a parallel coordinates plot of resource

utilization that includes CPU time, wall-clock time, and peak

memory usage, and a sunburst plot of abundance that may be

scaled and colored on various parameters to assist in data

exploration. Visualizations were built using d3. js alongside

the Vue. js frontend framework (MichaelVadim and Jeffrey,

2011; Vue.js, 2020). Each visualization is interactive and

dynamic based upon user input and parameters attributed to

a job. All tables available on the report page may be sorted and

filtered and are linked to a single visualization.

The scatter/half-violin plot is designed to show the

distribution of abundance calls across all classifiers for any

number of read types (Mode 1 only) and specified ranks.

Users may directly filter on any of these parameters within

the plot by choosing from a dropdown menu or by zooming

into a y-axis region. A table is also provided to display the specific

point on the scatter plot that is attributed to a particular taxID

upon cursor hover-over. An abundance thresholding distribution

is provided to allow adjustment of the range of desired

abundances to display.

Resourcemetrics including CPU time, wall-clock time, and peak

memory usage for all selected classifiers (and read type for Mode 1)

are plotted in a parallel coordinates plot. Each y-axis attributed to a

metric is brush able to filter out undesired entries and is transferable

(left-right) across the plot’s space for custom organization. Each line

is hoverable to provide more information for that specific entry. A

table is also provided that is directly linked to each line of the plot

that is essential for identifying the best performing classifier-read

type combination via metric sorting.

Finally, the sunburst provides a hierarchical representation of

all taxIDs from super kingdom to strain ranks for a given

classifier (and read type for Mode 1). Each slice size is based

on the size of the abundance call for a given slice relative to the
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parent taxID and all sibling slices. Each slice is directly linked to

an entry in a table and when clicked (table entry or slice), the plot

dynamically updates to hide all ranks higher than the specified

slice’s as well as all sibling slices at that rank. Color coding is

selectable, and is based on either rank (Modes 1 and 2, default for

Mode 2) or relative deviation from ground truth (input)

abundance (mode 1 only, default for Mode 1; Supplemental

Figure S6). Users may update the sunburst at any time with a

dropdown selection of either the selected classifier and/or read

type. An abundance threshold is also provided to allow users to

adjust what range of reported abundances are to be observed in

the plot, which is useful for classifiers that may call many unique

taxIDs at exceedingly low abundances.

Experimental use-case scenario 1:
Pathogenic target in mixed environmental
background

Use-case 1 was composed of equal genome copies from ten

bacteria; Bacillus anthracis strain Ames (the “target” pathogenic

organism), two taxonomic near neighbors of B. anthracis, and

seven phylogenetically separate environmental organisms that

are also represented in the ATCC environmental microbiome

standard set. Live Bacillus anthracis was acquired from BEI

Resources (NR-411), while the near neighbors Bacillus

anthracis strain Sterne UT238 and Bacillus globigii were

grown from in-house stocks. All cells were streaked on TSA

plates and incubated for 48 h at 37°C. Colonies were selected

from the plates and processed for nucleic acids using the DNeasy

Blood and Tissue kit (Qiagen 69504). All other bacterial nucleic

acids were obtained directly from ATCC as lyophilized reagents

using the following catalog numbers: Acinetobacter baumannii

(17978), Bacteroides vulgatus (8482), Bifidobacterium

adolescentis (15703), Clostridium beijerinckii (35702),

Cutibacterium acnes (11828), Rhodobacter sphaeroides (17029),

and Staphylococcus epidermidis (12228). Lyophilized nucleic

acids were resuspended in nuclease-free water prior to

combining. Organism nucleic acids were combined to

generate four unique sample types for evaluation: 1) B.

anthracis alone, 2) B. anthracis and near-neighbors, 3)

7 background organisms, and 4) all ten components. For each

sample type, all organisms were spiked at equal genome copy per

organism with an expected metagenomic profile of equal relative

taxonomic abundances. Interestingly, the performance of most

classifiers is a function of the taxonomic relative abundance, and

the sequence relative abundance, since few organisms are exactly

the same size. This bias between taxa and sequence relative

abundance has recently been reiterated as a concern in the

community by Sun et al., (2021). However, this conflict would

still be represented in real world samples, and so any

benchmarking of classifier performance on a given sample set

would represent this complexity.

Experimental use-case scenario 2:
Pathogenic target in host background

Use case 2 was composed of a viral pathogenic target present in a

host cell background. Vaccinia virus strain MVA was acquired from

BEI (NR-1) and was selected as the target viral pathogen due to ease

of propagation, its DNA genome, and its similarity to the biothreat

agent smallpox. VACVwas grown in chicken (Gallus gallus) embryo

fibroblast cells (ATCC CRL-1590) according to vendor

recommendations. Briefly, cells were grown to 80% confluence at

37°C and 5% CO2 in growth media containing DMEM

supplemented with 5% fetal bovine serum (FBS) and 5% tryptose

phosphate broth, and infected at a multiplicity of infection (MOI) of

0.05 in inoculation media containing DMEM only. Following a 1-h

incubation period, inoculationmediawas removed and replacedwith

growth media. Three days post-infection, cells were scraped,

centrifuged at 1,200 x g for 10 min at 4°C, and resuspended in

DMEM supplemented with 2% FBS. Cells were lysed using 3 freeze-

thaw cycles and the final lysate was sonicated in ice water. Aliquots

were stored at−80°C. Nucleic acidwas isolated fromboth viral lysates

and host cell lysates using theQiagenQIAmpDNAMini kit (51304).

Viral and host nucleic acid was combined to generate four unique

samples types: 1) host cells alone, 2) neat viral lysate, 3) 1:10 dilution

of viral lysate in host background, and 4) 1:100 dilution of viral lysate

in host background. Exact abundance of viral nucleic acid relative to

host in samples 2–4 wasn’t known prior to sequencing.

Illumina and oxford nanopore
technologies sequencing

Illumina MiSeq libraries were generated using Illumina Nextera

XT library preparation kits (cat# FC-131-1096). All thirty libraries

generated from both use cases were multiplexed together on a 2 ×

300 paired end sequencing run using a 600 cycle MiSeq reagent kit

(cat# MS-102-3003). All samples and use cases were sequenced as

triplicates to achieve technical replication. Positive controls consisted

of pathogen, host extraction, or organism-only controls, while

negative controls consisted of Nextera library with and without

barcodes and barcodes only. Barcodes for previous runs were

checked and filtered during analysis for standard contamination

avoidance. All OxfordNanopore Technologies (ONT) libraries were

generated using Rapid barcoding sequencing kits (cat# SQK-

RBK004). Sample libraries were multiplexed up to five samples

per run and sequenced on three separate sequencing runs on an

Oxford Nanopore GridION Sequencer using ONT R9 flowcells

(cat# FLO-MIN106D). Positive controls consisted of pathogen, host

extraction, or organism-only controls, while negative controls

consisted of replicates of Rapid libraries and barcodes. For

further contamination avoidance, all nanopore flow cells were

used only once (i.e., no flow cells were washed and re-used).

Barcodes for previous runs were also check and filtered, and

resulting files used in analyses.
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Data availability statement

The META system is available on the GitHub page of JHU/

APL: https://github.com/JHUAPL/meta-system. Full

installation of the META system includes running the

open-source software from a Docker container. For users

already running Docker, containers of META may be

accessed at https://quay.io/repository/jhuapl/meta_system,

and https://quay.io/repository/jhuapl/meta_simulator.

Additional META software dependencies include Node 10+

and NPM 6+ (front-end), and Python 3.7+ 12 (back-end). The

softwarewas developed on an Ubuntu 18.04 virtual machine

containing 32 CPU cores, 512 GB RAM, and 10 TB disk space.

Illumina and ONT data is available on NCBI’s SRA, accession

PRJNA904684, at the following link: https://www.ncbi.nlm.

nih.gov/bioproject/904684.
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SUPPLEMENTARY FIGURE S1
Use case 1 output for AUPRC only. Classifier performance from in vitro
data sets is illustrated using the AUPRC metric from superkingdom to
strain taxonomic ranking. All twelve available classifiers were run using
data generated from Illumina MiSeq and the ONT R9 flowcell. N=3.

SUPPLEMENTARY FIGURE S2
Use case 1 output for L2 only. Classifier performance from in vitro data
sets is illustrated using the L2 metric from superkingdom to strain
taxonomic ranking. All twelve available classifiers were run using data
generated from Illumina MiSeq and the ONT R9 flowcell. N=3.

SUPPLEMENTARY FIGURE S3
Use case 2 output for AUPRC only. Classifier performance from in vitro
data sets is illustrated using the AUPRC metric from superkingdom to
strain taxonomic ranking. All twelve available classifiers were run using
data generated from Illumina MiSeq and the ONT R9 flowcell. N=3.

SUPPLEMENTARY FIGURE S4
Use case 2 output for L2 only. Classifier performance from in vitro data
sets is illustrated using the L2 metric from superkingdom to strain
taxonomic ranking. All twelve available classifiers were run using data
generated from Illumina MiSeq and the ONT R9 flowcell. N=3.

SUPPLEMENTARY FIGURE S5
Graphical User Interface Visualization fromMETA, illustrating the drop-down
menu of FAQs. Selection of an FAQ automatically adjusts the data
representation to emphasize how the data addresses the specific question.

SUPPLEMENTARY FIGURE S6
Graphical User Interface Visualization from META, illustrating how the
deviation from ground truth can be visualized by either a sunburst plot,
or a table.
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