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Introduction: With many anonymization algorithms developed for structured

medical health data (SMHD) in the last decade, our systematic review provides a

comprehensive bird’s eye view of algorithms for SMHD anonymization.

Methods: This systematic review was conducted according to the

recommendations in the Cochrane Handbook for Reviews of Interventions and

reported according to the Preferred Reporting Items for Systematic Reviews and

Meta-Analyses (PRISMA). Eligible articles from the PubMed, ACM digital library,

Medline, IEEE, Embase, Web of Science Collection, Scopus, ProQuest Dissertation,

and Theses Global databases were identified through systematic searches. The

following parameters were extracted from the eligible studies: author, year of

publication, sample size, and relevant algorithms and/or software applied to

anonymize SMHD, along with the summary of outcomes.

Results: Among 1,804 initial hits, the present study considered 63 records including

research articles, reviews, and books. Seventy five evaluated the anonymization of

demographic data, 18 assessed diagnosis codes, and 3 assessed genomic data. One

of the most common approaches was k-anonymity, which was utilized mainly for

demographic data, often in combination with another algorithm; e.g., l-diversity. No

approaches have yet been developed for protection against membership disclosure

attacks on diagnosis codes.

Conclusion: This study reviewed and categorized different anonymization

approaches for MHD according to the anonymized data types (demographics,

diagnosis codes, and genomic data). Further research is needed to develop more

efficient algorithms for the anonymization of diagnosis codes and genomic data.

The risk of reidentification can be minimized with adequate application of the

addressed anonymization approaches.

Systematic Review Registration: [http://www.crd.york.ac.uk/prospero],

identifier [CRD42021228200].
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Introduction

Over the past two decades, increasing medical health data

(MHD) have been collected for secondary purposes such as

medical research. MHD contains information such as patient

demographics, diagnostics, medication history, and, in some

cases, family history. MHD is normally stored in databases

available to medical researchers (Gkoulalas-Divanis and

Loukides, 2015). While these databases allow researchers to

research epidemiology, novel treatment quality, register-based

cohort studies, etc. (Gkoulalas-Divanis and Loukides, 2015), they

have also increased the risk of reidentification (RR) attack (El

Emam et al., 2011). A systematic review by Khaled El Imam and

colleagues revealed that 34% of reidentification attacks on

medical data were successful (El Emam et al., 2011). Although

this study was limited to datasets with relatively small sample

sizes, RR is clearly a potentially significant threat (El Emam et al.,

2011). To minimize the risk of reidentification due to systematic

cyber assaults on MHD, researchers have developed

sophisticated techniques and algorithms to anonymize data

such that the data can be used for secondary purposes while

simultaneously maintaining patient anonymity (Langarizadeh

et al., 2018). If data are anonymized sufficiently in compliance

with ethical guidelines, written patient consent is not required to

utilize their data for secondary purposes; thus, the risk of bias due

to a consensus from a fraction of patients and not the entire

patient population, is eliminated (El Emam and Arbuckle, 2014).

What makes anonymization quite tedious is the delicate balance

required between data utility and privacy (El Emam and

Arbuckle, 2014). If the data are anonymized to such an extent

that they provide no beneficial information about patients, the

data are rendered useless; conversely, if the data utility is high, the

risk of reidentification grows substantially (Sánchez et al., 2014).

One approach to anonymization is Datafly, which applies

information generalization, insertion, substitution, and

removal to deidentify data (Sweeney, 1998). Another widely

utilized deidentification method is optimal lattice

anonymization (OLA), which utilizes the k-anonymity method

and primarily deidentifies quasi-identifiers (El Emam et al.,

2009). A relatively novel anonymization approach is Utility-

Preserving Anonymization for Privacy Preserving Data

Publishing (PPDP), which also applies the k-anonymity

technique and comprises three parts: a utility-preserving

model, counterfeit record insertion, and a catalogue of

counterfeit records (Sánchez et al., 2014). Although many

methods have been suggested, all have strengths and

limitations. Moreover, it is not clear, how these different

methods compare and which approaches are most suitable for

achieving anonymization for a specific purpose.

Therefore, this systematic review aimed to analyze the

strengths and weaknesses regarding the RR and data utility of

algorithms and software that anonymize structured MHD. As a

secondary goal, this study aimed to provide medical health

researchers and personnel an opportunity to find and utilize

the most suitable algorithm/software for their specific goal(s), by

giving an overview of currently available anonymization

approaches for structured MHD.

Methods

This systematic review was conducted according to a pre-

defined study protocol. The review was registered in the

International Prospective Register for Systematic Reviews

(PROSPERO, http://www.crd.york.ac.uk/prospero, reg. no.

CRD42021228200) and was conducted according to the

Preferred Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) guidelines for systematic reviews (Page et al.,

2021).

Search strategy

The PubMed, ACM digital library, Medline, IEEE, Embase, Web

of Science Collection and Scopus, ProQuest Dissertation, and Theses

Global databases were searched systematically. The systematic search

terms were discussed with a librarian from the University of Aalborg,

Denmark, to ensure that all relevant keywords were included.

Additionally, a manual search in the following journals was

conducted: Studies in Health Technology and Informatics, the

International Journal of e-Healthcare Information Systems, and the

Journal of Biomedical Informatics using the search terms

“anonymization of medical health data” or “anonymization”.

Moreover, manual searches in the reference lists of papers on this

topic, contact with experts in bioinformatics, and a campaign using

the Twitter and LinkedIn accounts of #OpenSourceResearch

collaboration (Open Source Research Organisation, 2021) were

used to collect data about any other algorithms/software to ensure

that the overview of the subject was as complete as possible. The

following keywords were utilized in the systematic search:

- Deidentifi* OR Depersonali* OR Anonymi*

AND

- Medical Health data OR Medical Health records OR

Electronic health data OR Electronic medical records OR

Digital health records OR Digital medical data,

AND

- Data utility, Data usefulness
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Inclusion and exclusion criteria

Inclusion criteria
1. Original studies, reviews, and books about anonymization

(de-identification) of structured and/or semi-structured

medical data for secondary usage.

2. Studies about anonymized medical records that

performed assessments of the risk of reidentification

and data utility.

3. Studies that applied or investigated de-identification methods

and relevant algorithms to anonymize medical data and

assessed the risk of reidentification and data utility.

Exclusion criteria
1. To provide the most up-to-date review, studies published

before 2000 were excluded. Studies for which the full text was

not available were also excluded.

2. Newspaper articles, conference abstracts, and letters to editors

were also excluded.

Screening and data extraction

Two researchers (A.S and O.A) independently conducted the

screening using the systematic review software Rayyan (Ouzzani

et al., 2016). Any disagreements in exclusion or inclusion were

resolved by discussion or the involvement of the senior author (A.E).

The following parameters were extracted from eligible studies:

author, year of publication, sample size, relevant algorithms and

computer programs applied to anonymizeMHD, and a summary of

outcomes. Data extraction was independently conducted by two

authors (A.S andO.A. Disagreements were resolved by discussion or

the involvement of the senior author (A.E).

Results

The systematic search and manual search identified a total of

1,804 records. Figure 1 shows the PRISMA flowchart. In the

initial phase of screening by title and abstract, 1,478 records did

not meet the inclusion criteria. Thus, 134 records were assessed

for eligibility by full-text screening. A total of 63 records were

included in the qualitative analysis (Figure 1), comprising

53 research articles, 8 reviews, and 2 books.

The results suggested that anonymization is most widely applied

for protection against identity disclosure, primarily Multi-Sensitive (k,

θ*)-anonymity (Liu et al., 2021), with θ* denoting different sensitive
values, produced anonymized datasets with low levels of information

loss and consistently negligible RR for different values of k and θ* (Liu
et al., 2021). Supplementary Table S1 provides a detailed summary of

the relevant findings from each record. We divided the different

anonymization approaches into three categories (anonymization of

demographics, diagnosis codes and genomic data) and three sub-

categories based on the attack type that they sought to minimize

(identity, membership, and attribute disclosures). Tables 1, 2 provide

an overview of the different approaches.

FIGURE 1
Flowchart.
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TABLE 1 Algorithms for the anonymization of structured healthcare data pertinent to demographic data.

Privacy models Study
number

Attack model Demographics

Identity disclosure k-Minimal generalization Gkoulalas-Divanis et al. (2014) 55

OLA El Emam et al. (2009) 7

Incognito Gkoulalas-Divanis et al. (2014) 55

Genetic Gkoulalas-Divanis et al. (2014) 55

Mondrian Gkoulalas-Divanis et al. (2014) 55

TDS Gkoulalas-Divanis et al. (2014) 55

Greedy Gkoulalas-Divanis et al. (2014) 55

k-member Gkoulalas-Divanis et al. (2014) 55

KACA Gkoulalas-Divanis et al. (2014) 55

Agglomerative Gkoulalas-Divanis et al. (2014) 55

(k,k)-Anonymizer Gkoulalas-Divanis et al. (2014) 55

Hilb Gkoulalas-Divanis et al. (2014) 55

iDist Gkoulalas-Divanis et al. (2014) 55

MDAV Gkoulalas-Divanis et al. (2014) 55

CBFS Gkoulalas-Divanis et al. (2014) 55

LSD Mondrian Gkoulalas-Divanis et al. (2014) 55

NNG Gkoulalas-Divanis et al. (2014) 55

r-Gather Aggarwal et al. (2010) 1

Reliability enhancing software in ARX Bild et al. (2020) 3

Anonymization of multiple sensitive attributes Chester et al. (2020) 4

Chrononymization Cimino (2012) 5

Greedy grouping algorithm Cormode et al. (2010) 6

OLA El Emam et al. (2009) 8

k-anonymity and l-diversity based anonymizer Gardner and Xiong (2008) 12

3-anonymity level using ARX Gentili et al. (2017) 13

Rare disease anonymization using HIPAA safe harbor Gow et al. (2020) 14

Objective based anonymization in according to HIPAA rules Jung et al. (2018) 19

Globally optimal algorithm, can be combined with k-anonymity, l-diversity, t-closeness, δ-presence, or many other methods
Kohlmayer et al. (2014)

25

Generalization and Suppression in ARX Kohlmayer et al. (2015) 26

Generalization with prevention of overgeneralization Lee et al. (2017) 27

Counterfeit insertion Lee et al. (2017) 27

Multi-Sensitive (k, θ*)-anonymity Lin et al. (2016) 28

Clustering by greedy algorithm and k-anonymization Loukides and Jianhua (2006) 33

Anonymization according to Safe harbor policy and GenEth disclosure policy Malin et al. (2011) 35

(Continued on following page)
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TABLE 1 (Continued) Algorithms for the anonymization of structured healthcare data pertinent to demographic data.

Privacy models Study
number

SDC Martínez et al. (2013) 36

LKC-privac Mohammed et al. (2009) 38

SRLA Mohapatra and Patra (2019) 39

Anonymization with strategies like data swapping, value suppression, generalization, micro aggregation, and noise addition
Pika et al. (2020)

41

De-identification shared task guidelines to longitudinal medical records Stubbs and Uzuner (2014) 45

HIPAA anonymization rules Tucker et al. (2016) 49

k-anonymity extension by generalization Ye and Chen (2011) 51

k-anonymity combined with l-diversity Yoo et al. (2012) 52

Swapping data anonymization method36 15

k-anonymity combined with generalization followed by suppression Mawji et al. (2022) 37

l-diversity slicing approach Onesimu et al. (2022) 40

Sequential noise addition to event dates k-anonymity with local suppression Templ et al. (2022) 48

Membership
disclosure

SPALM Gkoulalas-Divanis et al. (2014) 55

MPALM Gkoulalas-Divanis et al. (2014) 55

SFALM Gkoulalas-Divanis et al. (2014) 55

Globally optimal algorithm, can be combined with k-anonymity, l-diversity, t-closeness, δ-presence, or many other methods
Gardner and Xiong (2008)

25

l-diversity slicing approach Onesimu et al. (2022) 40

Attribute disclosure

Incognito with l-diversity Gkoulalas-Divanis et al. (2014) 55

Incognito with t-closeness Gkoulalas-Divanis et al. (2014) 55

Incognito with (a,k)-anonymity Gkoulalas-Divanis et al. (2014) 55

p-Sensitive k-anonymity Gkoulalas-Divanis et al. (2014) 55

Mondrian with l-diversity Gkoulalas-Divanis et al. (2014) 55

Mondrian with t-closeness Gkoulalas-Divanis et al. (2014) 55

Top down Gkoulalas-Divanis et al. (2014) 55

Greedy algorithm Gkoulalas-Divanis et al. (2014) 55

Hilb with l-diversity Gkoulalas-Divanis et al. (2014) 55

iDist with l-diversity Gkoulalas-Divanis et al. (2014) 55

Anatomize Gkoulalas-Divanis et al. (2014) 55

Delay free anonymization Kim et al. (2014) 23

Global generalization, local generalization, and bucketization Kim et al. (2017) 24

Globally optimal algorithm, can be combined with k-anonymity, l-diversity, t-closeness, δ-presence, or many other methods
Kohlmayer et al. (2014)

25

Multi-Sensitive (k, θ*)-anonymity Lin et al. (2016) 28

(Continued on following page)
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Anonymization of demographic data

A total of 75 algorithms/software were found for the

anonymization of demographic data. Some of these

approaches were studied in detail by Gkoulalas-Divanis et al.

(2014), a brief summary of which is shown in Supplementary

Table S1. Forty six approaches were developed for protection

against identity disclosure, 5 against membership disclosure, and

24 against attribute disclosure.

Methods against identity disclosure

Identity disclosure is the linkage of an individual or a group of

individuals to an entry or a few entries in the dataset. This allows the

attacker to obtain highly sensitive data about the exposed individuals.

Some of the main approaches are micro aggregation (Domingo-Ferrer

and Mateo-Sanz, 2002), generalization (Samarati, 2001), and

suppression (Samarati, 2001); however, new approaches such as

chrononymization (Cimino, 2012) have also been incorporated.

Many of the approaches utilize k-anonymity in combination with

othermethods to improve the performance, such asMulti-Sensitive (k,

θ*)-anonymity (Lin et al., 2016), clustering by greedy algorithm and

k-anonymization (Loukides and Jianhua, 2006), and k-anonymity

combined with l-diversity (Yoo et al., 2012). Similarly, a delicate

balance between privacy protection and data utility was achieved by

combining clustering by greedy algorithm and k-anonymization

(Loukides and Jianhua, 2006). This algorithm provided better

overall data utility than Mondrian; however, the data protection

provided by Mondrian was better (Loukides and Jianhua, 2006).

The combination of l-diversity and k-anonymity reduced

information loss compared to l-diversity and conditional entropy

(Yoo et al., 2012). k-anonymity has also been extended by

generalization (Ye and Chen, 2011) which showed overall better

performance than incognito and Mondrian in terms of lower data

distortion with increasing k values, smaller information loss, and a

linear decrease of information loss with increasing k34. Another

approach to counter the issue of overgeneralization is the

h-ceiling, in combination with k-anonymity, this method

showed a significant reduction in information loss

compared to k-anonymity alone. Furthermore, the

reconstruction error (RE) was also reduced, the lowest level

of information loss was achieved with h = 0.25 and the

smallest RE with h = 0.35. Thus, overall, it was possible to

prevent overgeneralization (Lee et al., 2017). Suppression was

also applied in ARX software, which showed the lowest level of

increase in data utility with a suppression limit of 5%;

however, different utility metrics yielded different results

(Cimino, 2012). Chrononymization of a single test result

could hinder the risk of reidentification, but overall, this

approach did not provide sufficient protection against RR

(Cimino, 2012).

Methods against membership disclosure

Membership disclosure allows an attacker to determine whether

data about a particular individual is contained in a dataset. Protection

against this type of attack is more challenging than identity disclosure;

consequently, only a handful of approaches have been developed to

protect against this type of attack, including SPALM, MPALM,

SFALM (Gkoulalas-Divanis et al., 2014), and a globally optimal

approach that can be combined with l-diversity, t-closeness,

δ-presence, or other methods (Mohammed et al., 2009). Most of

the existing algorithms share commonalities with those designed for

protection against identity disclosure, such as quasi-identifier

transformation and heuristic strategies (Gkoulalas-Divanis et al.,

2014). SPALM and MPALM transform quasi-identifiers by

generalization and attempt to satisfy δ-presence, while

simultaneously minimizing information loss (Nergiz et al., 2007).

SPALM generalizes all quasi-identifiers of a similar type in the same

way, such as generalizing English as an ethnicity to British. MPALM

TABLE 1 (Continued) Algorithms for the anonymization of structured healthcare data pertinent to demographic data.

Privacy models Study
number

HIPAA safe harbor for same disease data (generalization operation utilized) Lin et al. (2016) 29

LKC-privacy Mohammed et al. (2009) 38

Closed l-diversification Hsiao et al. (2019) 17

k-anonymity and l-diversity based anonymizer Gardner and Xiong (2008) 12

Pseudonymization Somolinos et al. (2015) 44

k-anonymity combined with l-diversity Yoo et al. (2012) 52

Combining k-anonymity, l-diversity, and t-closeness Aminifar et al. (2021) 2

Constraint-based k-means clustering Liu et al. (2021) 30

l-diversity slicing approach Onesimu et al. (2022) 40

Frontiers in Bioinformatics frontiersin.org06

Sepas et al. 10.3389/fbinf.2022.984807

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2022.984807


generalizes based on context; for instance, English to British in one

context and to European in another (Nergiz et al., 2007). SFALM is

similar to the previously mentioned approaches but applies

c-confident δ-presence; since this approach does not require

complete information about the population, it has higher

applicability compared to other approaches (Nergiz and Clifton,

2010). The globally optimal approach produced anonymized

distributed datasets with information loss ranging between 13%

and 87% (Kohlmayer et al., 2014). This approach showed better

performance and lower information loss compared to k-anonymity

and l-diversity (Kohlmayer et al., 2014).

Methods against attribute disclosure

This type of attack attempts to link individuals to a particular entry

(entries) in a data set. One of the most popular methods of protecting

against attribute disclosure is l-diversity. Several approaches have been

combined with l-diversity, including combination with k-anonymity

combined (Yoo et al., 2012), Incognito (Gkoulalas-Divanis et al., 2014),

and Hilb (Gkoulalas-Divanis et al., 2014). The combination of

k-anonymity and l-diversity provides anonymized datasets with

minimum information loss, and less information loss compared to

l-diversity alone. Only t-closeness had less information loss than the

proposed method; this approach was slower than Entropy l-diversity

and t-closeness. l-diversity combined with Incognito also provided

anonymization with sufficient utility (Machanavajjhala, 2006;

Gkoulalas-Divanis et al., 2014) Hilb with l-diversity (Gkoulalas-

Divanis et al., 2014) showed better performance in terms of

execution time and information loss compared to Incognito

combined with l-diversity (Ghinita et al., 2007a). The approach had

lower information loss than Mondrian but had a slower performance

(Ghinita et al., 2007b; Gkoulalas-Divanis et al., 2014). Incognito has

also been combined with t-closeness (Loukides et al., 2010b). The

t-closeness approach attempted to overcome the limitations of

l-diversity by requiring that the distribution of an attribute in any

TABLE 2 Algorithms for the anonymization of structured healthcare data pertinent to diagnosis codes and genomic data.

Privacy models Study
number

Study
number

Attack model Diagnosis codes Genomics data

Identity
disclosure

Combinations Suppression Algorithm Aggarwal et al.
(2010)

20 CBA Loukides et al. (2010a) 32

Clustering based anonymizer (CBA) Bild et al. (2020) 32 ∈-differentially private mechanism by adopting the
Laplace mechanism Yu and Ji (2014)

53

UGACLIP Gkoulalas-Divanis et al. (2014) 55 ∈-differentially private mechanism by adopting the
exponential mechanism Yu and Ji (2014)

53

CBA Gkoulalas-Divanis et al. (2014) 55

UAR Gkoulalas-Divanis et al. (2014) 55

Apriori Gkoulalas-Divanis et al. (2014) 55

LRA Gkoulalas-Divanis et al. (2014) 55

VPA Gkoulalas-Divanis et al. (2014) 55

mHgHs Gkoulalas-Divanis et al. (2014) 55

Recursive partition Gkoulalas-Divanis et al. (2014) 55

k-means clustering Lin et al. (2016) 11

Anonymization by “dissociation” with application of
-anonymity (Loukides et al., 2014)

34

Attribute
disclosure

Greedy Gkoulalas-Divanis et al. (2014) 55

Suppress control Gkoulalas-Divanis et al. (2014) 55

TDControl Gkoulalas-Divanis et al. (2014) 55

RBAT Gkoulalas-Divanis et al. (2014) 55

Tree-based Gkoulalas-Divanis et al. (2014) 55

Sample-based Gkoulalas-Divanis et al. (2014) 55
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equivalence class be close to the distribution of the attribute in the

overall table (Ghinita et al., 2007a). t-closeness separated the

information gained by an observer from a released table into two

parts related to all populations in the data and specific individuals, with

the gain of the second type of information gain limited in this approach

(Ghinita et al., 2007a). Among other approaches, including global

generalization, local generalization, and bucketization (Ye and Chen,

2011), the highest information loss was observed for global

generalization, followed by local generalization, and bucketization,

where information loss was negligible (Kim et al., 2017). The best

overall performance was achieved by Bucketization (Kim et al., 2017).

LKC-privacy was developed for larger datasets and was more suitable

for blood transfusion service (BTS) data. LKC-privacy allows data

sharing, thus providing higher flexibility for BTS data (Mohammed

et al., 2009) and higher overall quality of data than k-anonymity (Yoo

et al., 2012). For faster anonymization, delay-free anonymization (DF)

was developed, which anonymized a single tuple in 0.037ms

compared to 0.18 ms for the accumulated-based method (ABM-1).

Information loss by DF was significantly lower than ABM-1, and the

l-diverse data set was preserved with a probability of 1/l40.

Pseudonymization is also a novel approach that allows researchers

to adjust the relevant parameters for optimal results (Somolinos et al.,

2015).

Anonymization of diagnosis codes

The comprehensive systemic search formodels of diagnosis code

privacy yielded 18 algorithms that aimed to secure diagnosis codes

from privacy breaches, unintentional or otherwise. All of these

algorithms were related only to identity disclosure. El Emam et al.

proposed their Combinations Suppression Algorithm for cases with

overlapping combinations of quasi-identifiers and reported less

information loss compared to the complete suppression algorithm

(Emam et al., 2011). The clustering-based anonymizer (CBA) was

presented by Loukides et al. (2010b; Loukides et al. (2010a) for the

anonymization of diagnosis codes by clustering and subsequently

compared its performance to that of UGACLIP. Comparatively

higher satisfaction of utility constraints was reported for CBA

with lesser information loss, for the Normalized Certainty Penalty

and Average Relative Error (Loukides et al., 2010b). The review by

Gkoulalas-Divanis et al. (2014) provided a snapshot of contemporary

diagnosis codes privacy algorithms and outlined several key

algorithms including, among others, recursive partition, local

recoding generalization, and mHgHs. K-means form the basis of

a couple of pertinent algorithms related to clustering (Gal et al., 2014)

and dissociation anonymization (Gkoulalas-Divanis et al., 2014).

Anonymization of genomic data

A comprehensive search yielded only three privacy algorithms

and explored their applications vis-a-vis genomic data based only on

the requirements of identity disclosure. The CBA algorithm not only

preserved the genomic information but also exhibited superior

anonymization capabilities (Loukides et al., 2010b). Yu and Ji

(2014) developed algorithms that respectively extended the Laplace

and exponentialmechanisms and evaluated c2 statistics andHamming

distance scores to consider the algorithmic performance when applied

to a set of single-nucleotide polymorphisms (Yu and Ji, 2014). The

superiority of the ∈-differentially private mechanism as extended from

the exponential mechanism was demonstrated using the Hamming

distance as the score function. However, limitations were

demonstrated for the Hamming distance, specifically the early

plateau of genomic data utility and the effects of the threshold

p-value on the data utility (Yu and Ji, 2014).

Discussion

The results of this systematic review demonstrated the feasibility

of the anonymization of different types of data such as demographics,

diagnosis codes, and genomic data with sufficient levels of protection

and utility. The main findings were that for the anonymization of

demographics, the combination of classical approaches such as Multi-

Sensitive (k, θ*)-anonymity (Lin et al., 2016), extension of k-anonymity

with generalization, the combination of k-anonymity with l-diversity

(Yoo et al., 2012), and Incognito with l-diversity (Gkoulalas-Divanis

et al., 2014) generally provided better data utility and protection than

either of methods alone. Issues such as overgeneralization and slow

performance were also addressed (Kim et al., 2014; Lee et al., 2017).

Moreover, a comparison of some of the algorithms provided

researchers an opportunity to select the most suitable

anonymization approach for their specific purposes. The findings

of this systematic review are consistent with those reported by

Langarizadeh et al. (2018) and El Emam and Arbuckle (2014),

who concluded that the currently available anonymization

approaches provide a delicate balance between data utility and RR

for demographic data; however, it is impossible to eliminate RR.Many

of themethods are computationally costly, especially for large amounts

of data. Pseudonymization was easier to implement for larger data sets

and allowed the linkage of data without retaining all identifying

characteristics, in contrast to other state-of-the-art approaches.

The potential psychological, financial, and even physical harm to

which a patient can be exposed secondary to privacy breaches of

diagnosis codes cannot be overstated. Therefore, the optimization of

diagnosis code privacy should have paramount significance as the

ultimate endpoint for healthcare privacy projects. This snapshot of the

diagnosis code privacy-protecting algorithms attempts to reinforce the

established considerations among the global healthcare privacy

research community including, but not limited, to a heightened

recognition of the unambiguous requirement for the development

of approaches to optimize statistical analysis capabilities embedded in

the information provided by the diagnosis codes with concurrent

enhanced suppression of such codes to make it almost impossible for

them to be exploited for malicious intent. This may be attained via
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suppressive algorithms that attempt to attenuate utility constraints to a

bare minimum. Gkoulalas-Divanis et al. (2014) described the

respective pros and cons of different algorithmic models driven by

privacy techniques aimed at anonymizing diagnosis codes.

Suppression, when employed simultaneously with generalization,

provides higher orders of privacy and statistical capabilities

compared to those for suppression alone (Gkoulalas-Divanis et al.,

2014). Comparisons of bottom-up and top-down heuristic

partitioning strategies have demonstrated higher statistical

capabilities provided for bottom-up approaches whereas clustering

strategies, as those employed by algorithms such as CBA, provide even

higher statistical capabilities, although they are computationally

expensive (Gkoulalas-Divanis et al., 2014). A strategy to

concatenate bottom-up and top-down partitioning strategies has

also been reported to optimally provide holistic privacy

requirements and concurrently show the superior statistical

capabilities provided by diagnosis codes (Gkoulalas-Divanis et al.,

2014).

Limitations and directions for future
research

The review has some limitations. First, the included studies used

different metrics for the assessment of data utility and risk of

reidentification, making comparisons of the two approaches

challenging, particularly when different metrics were applied for

performance evaluation. A wide variety of methods exist for

protection against attribute disclosure and identity disclosure, in

contrast to the handful of available approaches for protection

against membership disclosure. Future research must address this

issue, with greater emphasis on protection against membership

disclosure. Although anonymization did not provide any apparent

advantages over traditional methods (Cimino, 2012), additional

research is required to support these findings and further elaborate

on the advantages and shortcomings of anonymization. Similarly,

pseudonymization is a relatively novel and unexplored domain that

requires further investigation, since some clear benefits of this method

have been demonstrated (Tinabo et al., 2009). The present study

mainly focused on structured MHD; however, novel methods have

been developed to handle medical journals and medical images. Our

future work aims to also systematically review these anonymization

approaches.

Conclusion

In summary, this study reviewed different anonymization

approaches for MHD and categorized them according to the

anonymized data type (demographics, diagnosis codes, and

genomic data). The strengths and limitations of algorithms that

protect against identity, attribute, andmembership disclosure were

addressed. Further research is needed to develop more efficient

algorithms for the anonymization of diagnosis codes, and genomic

data. The less explored approaches such as chrononymization and

pseudonymization yielded promising results of interest for further

research. The risk of reidentification can be minimized with

adequate application of the included anonymization approaches.
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