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Introduction: Investigation of molecular mechanisms of human disorders, especially
rare diseases, require exploration of various knowledge repositories for building
precise hypotheses and complex data interpretation. Recently, increasingly more
resources offer diagrammatic representation of suchmechanisms, including disease-
dedicated schematics in pathway databases anddiseasemaps.However, collectionof
knowledge across them is challenging, especially for research projects with limited
manpower.

Methods: In this article we present an automated workflow for construction of
maps of molecular mechanisms for rare diseases. The workflow requires a
standardized definition of a disease using Orphanet or HPO identifiers to
collect relevant genes and variants, and to assemble a functional, visual
repository of related mechanisms, including data overlays. The diagrams
composing the final map are unified to a common systems biology format
from CellDesigner SBML, GPML and SBML+layout+render. The constructed
resource contains disease-relevant genes and variants as data overlays for
immediate visual exploration, including embedded genetic variant browser and
protein structure viewer.

Results: We demonstrate the functionality of our workflow on two examples of
rare diseases: Kawasaki disease and retinitis pigmentosa. Two maps are
constructed based on their corresponding identifiers. Moreover, for the retinitis
pigmentosa use-case, we include a list of differentially expressed genes to
demonstrate how to tailor the workflow using omics datasets.
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Discussion: In summary, our work allows for an ad-hoc construction of molecular
diagrams combined from different sources, preserving their layout and graphical
style, but integrating them into a single resource. This allows to reduce time
consuming tasks of prototyping of a molecular disease map, enabling visual
exploration, hypothesis building, data visualization and further refinement. The
code of the workflow is open and accessible at https://gitlab.lcsb.uni.lu/minerva/
automap/.

KEYWORDS

pathway diagrams, systems biomedicine, rare diseases (RD), disease maps, gene-disease
association

1 Introduction

Investigation of causal mechanisms behind complex diseases is
challenging, and one of key components of such investigations is
knowledge about implicated molecular mechanisms and pathways.

Pathway databases like Reactome or WikiPathways (Martens et al.,
2021; Gillespie et al., 2022) offer diagrammatic representations of
such mechanisms, also for more prevalent diseases. Moreover, the
recent emergence of different disease maps (Singh et al., 2020;
Mazein et al., 2021; Ostaszewski et al., 2021) demonstrates the

FIGURE 1
A workflow for ad-hoc map building for rare diseases.
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need for disease-oriented repositories of graphical knowledge to
support computational pipelines.

At the same time, building disease maps or pathway diagrams
requires a substantial curation effort, challenging for small
research groups. Especially affected is the area of research on
rare diseases (RDs), as these disorders are not prevalent enough to
be represented in major bioinformatics resources or pathway
databases. However, existing disease-focused resources may
offer insights into specific RDs, if searched systematically.
Thanks to available tools for translation of standard diagram
formats and programmatic interfaces for querying interaction
databases it is possible to integrate pieces of multiple data
sources into on-the-fly prototype diagrams. For such diagrams
to be accurate, it is necessary to precisely formulate search queries,
for instance by incorporating standardized phenotypic
descriptions of a particular disease, by using genotyping
information or relevant omics readouts.

In this article we present a data-driven workflow for on-the-fly
building visual and computational repositories of molecular disease
mechanisms, focusing in particular on RDs. To this end, we query and
combine contents of existing open access repositories of disease-related
mechanisms. To ensure precision of the queries we relied on
standardized definitions and encoding of disease phenotypes using
Orphanet (Orpha, 1997) and Human Phenotype Ontology (Köhler
et al., 2021). Users can specify their disease or its phenotypic description
based on these resources, which then is used to identify genes and
variants relevant for the disease mechanisms. Using these
relevant genes, the workflow identifies enriched, publicly
available pathway databases and disease maps, together with
text mining results, to combine them into a custom disease
map, generated on-the-fly. The resulting map is ready to
upload on an online visualization platform for further
exploration and analysis. Using our workflow, a researcher is
able to define an RD of choice, or encode its phenotype, to
generate a relevant disease map prototype for further refinement.

2 Materials and methods

The workflow for ad-hoc map building is organized into three
stages, described in detail below. All indicated parameters below can
be set in the workflow configuration files.

1. Disease context: Identify disease-related genes and variants for a
given RD
a. Get gene-and variant-disease mapping from DisGeNET and
OpenTargets
Configurable parameters:
- OrphaNet or HPO identifiers
- DisGeNET maximum number and score for retrieved
genes

- OpenTargets association score threshold
b. Get pathogenic variants and genes for the disease from

ClinVar
c. Filter out variants with high allele frequency using

Ensemble’s VEP service
Configurable parameters:
- VEP threshold

d. Compile a summary list of genes and variants associated
with the disease

2. Network of mechanisms: Collect disease maps, pathways and
networks enriched for disease-related genes
a. Get enriched diagrams from disease maps
Configurable parameters:
- Disease map instances (MINERVA Net identifiers)
- Maximum number of retrieved diagrams

b. Get enriched diagrams from pathway databases
Configurable parameters:
- Pathway databases (EnrichR identifiers)
- Maximum number of retrieved diagrams per database

a. Construct a text mining network using STRING and
OmniPath
Configurable parameters:
- Maximum number of new neighbors in STRING network
- Maximum score of retrieved STRING interactions

3. Interactive prototype: Assemble and visualize the prototype map
a. Compile the obtained pathways into a single diagram
b. Store gene names for data overlay in the MINERVA

Platform
c. Store variant information (position, protein-level mapping)
for genetic variant overlay in the MINERVA Platform

d. Bundle the disease map with genetic and variant overlays
into a single archive to be then uploaded to the MINERVA
Platform

These steps are linked into a single, executable and reproducible
workflow, illustrated in Figure 1. Below we discuss resources and
methods used in each step. All code, including the integration of
particular steps into a workflow, is available in the open repository:
https://gitlab.lcsb.uni.lu/minerva/automap/

The repository features a Docker container, facilitating the
execution of the workflow. Moreover, we set up a dedicated website
under https://automap.elixir-luxembourg.org allowing users to run the
workflow using a graphical interface. The number of parameters
configurable via the website is limited for the performance reasons,
and the users interested in more resource-consuming map builds are
encouraged to run the workflow locally using the Docker container.

2.1 Disease context

By disease context we understand a list of genes and gene variants
associated with a given disease. To obtain such a list, we use two
resources: Orphanet and Human Phenotype Ontology (HPO) (Orpha,
1997; Köhler et al., 2021), allowing for unique identification of a disease.
The first step of the workflow takes one or more Orphanet identifiers
(ORDO) related to a given RD (configurable parameter). For RDs that
have no Orphanet identifier, the workflow takes as an input a list of
HPO terms describing disease symptoms, e.g., HP:0001644,HP:
0002617 for “dilated cardiomyopathy” and “vascular dilatation”
(configurable parameter). These identifiers are then matched against
the Orphanet database of phenotype-disease associations (http://www.
orphadata.org) to find a subset of the most matching Orphanet
identifiers.

Having a given set of Orphanet identifiers, we obtain the list of
relevant genes and variants by combining:
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i) gene-disease mapping of Orphanet
ii) gene-disease and variant-disease mapping from DisGeNET

(Piñero et al., 2020)
iii) variant-disease mapping of OpenTargets platform (Carvalho-

Silva et al., 2019)
iv) variant-disease mapping of ClinVar (Landrum et al., 2018).

Moreover, disease-associated variants can be filtered for rarity
using population allele frequencies obtained from Ensembl Variant
Effect Predictor (VEP) (McLaren et al., 2016).

All queries are automated to use respective API endpoints for a
pulldown of gene and variant lists. These two lists are considered as
the context of the molecular mechanisms of a given disease. To
obtain the disease-associated genes and variants, the workflow
implements scripts to query DisGeNET, OpenTargets and ClinVar.

OrphaNet identifiers (provided or inferred) are passed directly
to DisGeNET to query disease-related genes and variants. A query to
OpenTargets requires Experimental Factor Ontology (Malone et al.,
2010) identifiers, which are obtained using the Ontology Lookup
Service (Côté et al., 2010) API. Both DisGeNET and OpenTargets
queries connect to the respective resources via their API and return a
JSON file containing associated genes and their variants, including
the association score provided by the respective platform. The
workflow can specify the required level of the association score
and the maximum number of genes to be returned (configurable
parameters).

These lists are then combined with ClinVar data provided as a
preprocessed file. The script goes through the obtained genes and variants
and carries out pairwise comparison of ClinVar non-pathogenic variants
(and thus also genes) with the DisGeNET and Open Targets genes and
variants. The output is a combined list of genes and variants pertinent to
given disease, together with a report showing the difference in
representation of genes and variants across the resources. Additionally,
the variants can be filtered by their allele frequency in several populations
available in the Ensembl database through the Ensemble API endpoint
(Cunningham et al., 2022) (configurable parameter).

2.2 Network of mechanisms

The disease-relevant lists of genes and variants are used to
construct a network of mechanisms using three different
resources: disease maps, pathways and text mining. To this end
the list of gene variants is reduced only to the genes carrying their
respective variants. The lists of genes and variant-derived genes are
combined.

Disease maps offer standardized and diagrammatic descriptions
of disease mechanisms (Mazein et al., 2018). They are independent
resources developed by separate research groups, without a
centralized architecture typically seen in pathway databases. To
get systematic access to selected disease maps, we rely on
MINERVA Net repository (Gawron et al., 2023), storing pointers
to publicly accessible disease maps hosted using the MINERVA
Platform (Gawron et al., 2016). Using MINERVA Net, we run Gene
Set Enrichment Analysis for the disease-relevant gene list using the
R package minervar (https://gitlab.lcsb.uni.lu/minerva/minervar) to
identify areas of significance for a given gene list (Gawron et al.,
2023). Results are constrained to a subset of the most enriched areas

to avoid overpopulation (configurable parameter) and then exported
together with their layout information, into CellDesigner SBML
format (Kitano et al., 2005).

Pathway databases are another source allowing building detailed
networks of disease-relatedmechanisms. Similarly to diseasemaps, they
offer diagrammatic descriptions of mechanisms in molecular biology,
but less relevant to a particular disease. We focused on two databases:
WikiPathways and Reactome (Martens et al., 2021; Gillespie et al.,
2022). These databases offer diagrams in GPML and SBML + layout +
render formats, respectively, and the MINERVA Platform can convert
them into a harmonized format (Hoksza et al., 2019a). We used the
enrichR package, an R-based interface to the EnrichR server (Kuleshov
et al., 2016) to calculate the enrichment in these databases. The exact
selection of source databases (configurable parameter) is constrained to
versions of WikiPathways and Reactome databases. Results are
constrained to a subset of the most enriched areas to avoid
overpopulation (configurable parameter) and then exported together
with their layout information, into respective native formats.
Importantly, for the GPML format, some details, e.g., custom images
or interactions without reactant/product, are lost. For Reactome
pathways, we have narrowed the results of enrichment to include
only i) diagrams with layout and ii) the topmost diagrams, when
nested diagrams are enriched.

Text mining allows to find relationships between genes which are
not captured by expert curated resources, like disease maps or pathway
databases. To fetch such potentially novel interactions between the
disease-related genes, we used the STRING database (Szklarczyk et al.,
2019) to request interactions of a pre-set minimal score (configurable
parameter). STRING integrates primary and predicted interactions,
includes annotated pathway knowledge, text-mining results and data
obtained by ontology. The query to STRING retrieves the first n
neighbors of the disease-relevant genes (configurable parameter). To
improve the quality of textmining results, which are non-directional and
may contain noise, we used contents of the OmniPath resource (Türei
et al., 2016), which aggregates interactions from curated databases,
including directionality and sign. The query to OmniPath retrieves
all associations in the database for the disease-relevant genes, and only
these interactions are kept that have both interaction partners in text
mining results. Such directed network in a simple interaction format is
then transformed into a diagram by applying the Fruchterman-Reingold
algorithm in R package igraph (Csardi and Nepusz, 2006), and
converted to GPML format using R package minervar.

Diagrams obtained in the steps above are then converted and
merged using the MINERVA Platform API calls in the following
order:

1. Disease map parts are merged into a single CellDesigner SBML
diagram

2. Text mining diagram is converted from GPML to a CellDesigner
SBML diagram

3. WikiPathways and Reactome diagrams are converted to
CellDesigner SBML format and merged into a single diagram

4. Three components are finally merged into a single CellDesigner
SBML diagram

This results in a diagram containing networks from the
abovementioned sources, in a harmonized data and graphical
format that is compatible with the MINERVA Platform.
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2.3 Interactive prototype

We chose CellDesigner SBML format to harmonize and
integrate above-mentioned resources. All source diagram formats
(GPML, SBML + layout + render, simple interaction format) are
translated using the MINERVA Platform conversion function
(Hoksza et al., 2019a). Finally, single diagrams are combined
using MINERVA API functionality for merging diagrams of the
same type into a simple, mesh layout. The integrated map is bundled
with the identified disease-related genes and variants to visualize
them on top of the final diagram. The bundle is ready to be uploaded
to the MINERVA Platform to host the generated disease map,
making it interactive and allowing users to visually explore
source data. For that, users will have to have access to an
instance of the MINERVA Platform with curator or admin
privileges. Alternatively, they can run MINERVA locally as a
virtual machine (see https://minerva.uni.lu).

The workflow is implemented as a shell pipeline which can be
configured by a parameters file where the user can set all the
parameters mentioned above including the list of disease
identifiers. The output of the pipeline is a ZIP file containing the

disease map with genetic and variants overlays and can be imported
into theMINERVA Platform. To demonstrate the maps discussed in
Results, we use the pathwaylab.elixir-luxembourg.org instance of the
MINERVA Platform hosted by the ELIXIR Luxembourg (https://
elixir-luxembourg.org).

2.4 Gene expression analysis

For the retinitis pigmentosa example (Section 3.2), we
calculated gene expression from PRPF31 retinitis pigmentosa
(RP) patients iPSC-derived retinal organoids (Rodrigues et al.,
2022). The data was downloaded from the Gene Expression
Omnibus (GEO) database GSE206529 using the GEOquery R
package (Davis and GEOquery, 2007). The data was filtered by
t = D100, selecting only the samples related to RP patients carrying
PRPF31 mutations (Cys247X) and controls (organoids derived
from unaffected Cys247X family members). RNA-seq gene
expression data were normalized with the Trimmed mean of M
values (TMM) normalization method. Differentially expressed
genes (DEG) were computed between Cys247X vs Control for

FIGURE 2
An overview of the ad-hocmap for the Kawasaki disease. Themap includes three diagrams from two diseasemaps (two from the COVID-19 Disease
Map (Ostaszewski et al., 2021), one from the AsthmaMap (Mazein et al., 2021)), 192 interactions from textmining, and 5 pathways from bothWikiPathways
and Reactome databases. See https://pathwaylab.elixir-luxembourg.org/minerva/?id=adhoc_ORPHA2331.
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cases having at least 5 counts per million (CPM) in at least one of
the samples. All RNA-seq analysis was done using the edgeR
package (Robinson et al., 2010). The DEGs were filtered for
FDR-adjusted p-value <0.05 and absolute fold change >2,
resulting in 371 entries. The dataset is available in the automap
repository (https://gitlab.lcsb.uni.lu/minerva/automap/) under
‘associations/data/ORPHA791_DEGs’.

3 Results

3.1 Orphanet-based map of mechanisms in
Kawasaki disease

In order to demonstrate an application of our workflow, we
constructed an ad-hoc map of mechanisms for Kawasaki disease. To
this end, we executed the workflow for the Orphanet identifier 2331
(https://www.orpha.net/ORDO/Orphanet_2331). The map is
openly available at https://pathwaylab.elixir-luxembourg.org/
minerva/?id=adhoc_ORPHA2331, hosted on a public instance of
the MINERVA Platform. Figure 2 illustrates the overall layout of the

map, and its main components. Below we discuss the results of
particular steps of the workflow, leading to this outcome. Results of
all the steps as well as the final build of the map are available in the
Supplementary Materials.

3.1.1 Assembly of components for the map
For the Kawasaki disease, and its Orphanet identifier, the pipeline

has identified 56 disease-associated genes and three protein-coding
variants based on the query to DisGeNET, OpenTargets and ClinVar.
For the OpenTargets query, Orphanet identifier ORPHA2331 was
mapped to EFO:0004246. Retrieved 56 genes were used to build the
main components of the map. For the disease maps, we chose COVID-
19DiseaseMap (Ostaszewski et al., 2021) and theAsthmaMap (Mazein
et al., 2021) as maps having potentially related immune mechanisms
(Lei et al., 2021; Makino et al., 2022). We would like to emphasize that
the choice of these particular disease maps is for the demonstration
purpose only and despite the cited article this relationship may be
stretched. For the pathway enrichment, we chose the most recent
collections of WikiPathways (WikiPathway_2021_Human) and
Reactome (Reactome_2022) in the EnrichR server (Kuleshov et al.,
2016). The workflow was configured to download up to three disease

FIGURE 3
A view of the ad-hoc map with the visualized data overlays. One of disease-related variants in the FCGR2A gene is shown in the embedded pileup.js
browser (Vanderkam et al., 2016) (top box). Disease-related genes, highlighted in blue, are shown as another visual overlay on top of the map
(bottom box).
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map diagrams, five pathway diagrams per selected database, and text
mining interactions with at most 100 new neighbors (see parameters.sh
in the Supplementary Materials).

The workflow retrieved three diagrams from the selected disease
maps. One diagram from the COVID-19 Disease Map describes the
coagulation pathway, two diagrams from the Asthma Map describe
signaling in Th0 and epithelial cells, respectively. Text mining query
resulted in a network of 192 interactions. Finally, after pathway
enrichment, 5 diagrams from both WikiPathways and Reactome
were retrieved. Figure 2 illustrates the result and the main
components of the constructed ad-hoc map.

3.1.2 Interactive map prototype with data overlays
The workflow combined the retrieved components into a single

diagram, which was bundled together with disease-related genes and
variants. We uploaded the bundle to the public instance of the
MINERVA Platform, enabling easy browsing and search of this
relatively large diagram. Moreover, the lists of genes and variants are
available for visual exploration as data overlays. Figure 3 illustrates the
details of such exploration. Map users can select the overlays in the left
panel, highlighting relevant elements of the map. To visualize exact
positions of genetic variants, the MINERVA Platform uses an
embedded pileup.js browser (Vanderkam et al., 2016). Protein-coding
variants are also visible in the protein structure visualization tool MolArt
(Hoksza et al., 2018) integrated in theMINERVA Platform. The workflow

annotates such variants, so they are visible together with other structural
annotations, offering insight into functional consequences of themutation.
Figure 4 illustrates the protein structure view for the selected variant in
FCGR2A gene. MolArt view is available in the map directly via the
contextual menu for a given protein (right-click) making it straightforward
to investigate protein function in the diagram.

3.1.3 Interpretation of results
Kawasaki disease (KD), or mucocutaneous lymph node

syndrome, is a disease of infants and young children,
characterized by a multi-system inflammation with
proinflammatory hypercytokinemia (Sakurai, 2019). Molecular
pathophysiology is still unclear, however a number of
implicated genes have been suggested in the passing years.
Recent reviews point to enhanced T Cell activation (ITPKC,
ORAI1, STIM1), dysregulated B Cell signaling (CD40, BLK,
FCGR2A), decreased apoptosis (CASP3), and altered
transforming growth factor beta (TGFB) signaling as major
molecular mechanisms of KD (Bijnens et al., 2018; Kumrah
et al., 2020). The map constructed with our workflow captures
and highlights some of the pathways involved in KD. Mechanisms
related to T Cell activation and TGFB signaling are captured by
mechanisms imported from the asthma map (PLCB1-
IP3 signaling) and WikiPathways describing different aspects of
immune responses, including viral myocarditis, another

FIGURE 4
Protein structure view offered by MolArt visualization tool. MolArt (Hoksza et al., 2018) is integrated with the MINERVA Platform and available in the
contextualmenu for all proteins having UniProt annotation. Here, MolArt visualizes FCGR2A protein together with the position and context of the protein-
coding mutation retrieved by the ad-hoc map building workflow.
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interesting link to KD (Giryes and McGonagle, 2023). This is
further reinforced by Reactome pathways covering a range of
interleukin responses and pyroptosis. Next, mechanisms related
to B Cell signaling are shown in text mining results (FCGR2A-BLK
interaction). FCGR2A can also be found in a pathway describing
immune response to spinal cord injury (WikiPathways, WP2431),
but its role in this context would have to be further investigated.
Finally, a diagram of coagulation-related mechanisms retrieved
from the COVID-19 Disease Map proposes a link to the KD-like
multisystem inflammatory syndrome following COVID-19 in
children (Bukulmez, 2021). From this brief overview of recent
literature, the ad-hoc map seems to be a reasonable starting point
for developing a dedicated knowledge repository.

3.2 Orphanet-based map of mechanisms in
retinitis pigmentosa

As a second application of our workflow, we constructed an ad-hoc
map of mechanisms for retinitis pigmentosa (RP). The workflow was
run for the OrphaNet identifier 791 (https://www.orpha.net/ORDO/
Orphanet_791). Themap is openly available at https://pathwaylab.elixir-
luxembourg.org/minerva/?id=adhoc_ORPHA791, with a similar layout
of components as in Figure 2. Below we discuss the results of the
workflow. Detailed results of all the steps as well as the final build of the
map are available in the Supplementary Materials.

3.2.1 Assembly and setup of the map prototype
The pipeline has identified 64 disease-associated genes and

3004 protein-coding variants. Retrieved genes were combined with
the RP-specific differentially expressed genes (see Section 2.4) and
then used to build the main components of the map. For the disease
maps, we chose Parkinson’s disease map (Fujita et al., 2014) and Aging
map (https://progeria.uni.lu) to explore mechanisms of age-related
degeneration, and COVID-19 map used earlier, following reports of
potential involvement of COVID-19 in retinal pathology (Ichhpujani
et al., 2022; D’Alessandro et al., 2022). We emphasize that the choice of
these diseasemaps is for the demonstration purpose only and despite the
cited articles this relationship may be stretched. Remaining setup was
identical to the case above (see parameters.sh in the Supplementary
Materials).

The workflow retrieved three diagrams from the selected disease
maps. Two diagrams from the Parkinson’s disease map describe
neuroinflammatory processes, and one diagram from the COVID-
19 Disease Map describes the kynurenine metabolism pathway. Text
mining query resulted in a network of 145 interactions. Following
pathway enrichment, 5 diagrams from both WikiPathways and
Reactome were retrieved.

Similarly to the ad-hoc map for Kawasaki disease, the workflow
produced a map bundled together with disease-related genes and
variants, which was then uploaded to the public instance of the
MINERVA Platform. The list of DEGs was uploaded there as well,
with log fold changes normalized to [-1,1] range for visual analysis of
relative expression differences.

3.2.2 Interpretation of results
Retinitis pigmentosa (RP) is a rare genetic disorder that causes

the progressive degeneration of the retina photoreceptor cells (rod

and cones). The heterogeneity of RP makes it not a single entity but
rather a group of disorders, meaning that it can be caused by
mutations in many different genes (Ayuso and Millan, 2010).
Several cellular pathways have been implicated in the
degeneration of photoreceptor cells in RP, including
phototransduction, cell survival and metabolism, and vesicle
trafficking (Ferrari et al., 2011). The phototransduction pathway
is responsible for converting light into electrical signals, and
mutations in genes such as RHO, RP1, and RDS that encode
phototransduction proteins can lead to decreased visual
sensitivity and progressive vision loss (Mannu, 2014). In the cell
survival and metabolism pathway, which is responsible for
maintaining the health of retinal cells including photoreceptor
cells, mutations in genes like PRPF31 (Frontiers, 2021) and
PRPH2 (Chakraborty et al., 2020) can cause increased cell death,
abnormal disk formation, photoreceptor cell death, and retinal
dysfunction. Protein trafficking within the photoreceptors is key
to maintaining the overall retinal homeostasis. Mutations in genes
encoding vesicle trafficking proteins can result in cellular
dysfunction and increased cell death (Bales and Gross, 2016).
The constructed RP Map from our workflow highlights the
molecular mechanisms involved in RP pathophysiology. As we
can see in the WikiPathways section on the middle-left, pathways
describing processes involved in ciliopathies, with enrichment of
gene variants associated with RP. The dysfunction of photoreceptors
cilia proteins can result in various symptoms such as retinal
degeneration and other pleiotropic phenotypes (Adams et al.,
2007). Other key molecular mechanisms captured by the
Reactome section, at the bottom-right side of the map, are Visual
phototransduction, which is a well-defined hallmark process
affected by RP (Ferrari et al., 2011), and Cell surface interactions
at the vascular wall. The neural retina has a specific vascular network
that delivers oxygen and nutrients to the neurons to keep them
functioning properly. It has been described that metabolic issues in
photoreceptor-neurons, which have the highest concentration of
mitochondria in the body, can result in adaptive but ultimately
harmful retinal vascular response (Fu et al., 2020). These fall in line
with the high volume of differentially expressed genes (DEGs), from
the GSE206529 dataset, observed in that section of the map depicted
in Figure 5. Interestingly, the Visual phototransduction pathway is
populated by variants and associated genes but not DEGS, which
may be an indicator of protein malfunction but not altered
expression in the genes encoding the proteins.

Neuroinflammation is an important player upstream of tissue
degeneration in RP (Ortega and Jastrzebska, 2021); prominently
represented by neuroinflammatory pathways from PD, emphasizing
a potential link of PD-related alpha-synuclein to RP (D’Alessandro
et al., 2022); kynurenine pathway upstream of prostaglandin
synthesis links RP to COVID-19. Other pathways are missing
from the map, including autophagy and apoptosis-related
mechanisms (D’Alessandro et al., 2022). This may be caused by a
limited scope of the diagram (only 3 disease map fragments and
5 pathways from each source); extending it may broaden the scope
and refine the resource further; especially that the list of potential
map elements and pathways includes these diagrams. Text mining
results show an enrichment of DEGs associated with inflammatory
processes, as well as potential regulators of CNGA1, a gene
implicated in RP, and its associated mutations (Saito et al., 2021).
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Taken all together, the ad-hoc RP map represents, as a big
picture, a fair set of the processes implicated in the pathophysiology
and development of RP. The workflow produced a general overview
of relevant disease mechanisms, enabling the discovery of new
connections and generation of knowledge.

4 Discussion

In this article we demonstrate a workflow for ad-hoc assembly of
molecular interaction diagrams for rare diseases, enabling easy
building of interactive, visual repositories supporting hypothesis
building and data interpretation. Building such repositories requires
resources which are often not available for particular rare disorders.
To address this situation, we enable ad-hoc construction of maps of
molecular mechanisms, based on limited prior information.
Namely, an Orphanet identifier is required, which can be
substituted by a list of HPO identifiers describing disease traits.
To the best of our knowledge this is the first such approach to
integrating different molecular interaction diagrams. By focusing on
the visualization of large molecular diagrams, our work
complements data-oriented workflows like ExpressVis (Liu et al.,
2022a) or PaintOmics (Liu et al., 2022b), relying on pathway
databases without combining their content. As demonstrated in
two examples, the contents of constructed maps reflect state of the
art molecular mechanisms of related diseases to the extent they can
be used as starting points for further development.

The presented workflow automates a number of search and
transformation steps, making it straightforward to run, and use its
results. As the final diagram is generated automatically based on
gene search, enrichment parameters and text mining, it is important
to control the run parameters. In the examples discussed above,
using a relatively constrained set of run parameters resulted in
diagrams with 2512 unique elements and 2312 interactions
(Kawasaki disease), and 2566 elements and 1304 interactions
(retinitis pigmentosa). Broader searches can lead to an overgrown
diagram which may be then difficult to use. This issue may be
addressed by adjusting the scope of the created map by adding
results of omics experiments relevant for a given disease, similarly to
the resources cited earlier (Liu et al., 2022a; Liu et al., 2022b).
Another approach may be referencing the recently released RDmap
(Yang et al., 2021) to identify the proper parameters for the
workflow.

Maps generated ad-hoc by our workflow can be further
refined using available diagram editors, CellDesigner in
particular. Such on-the-fly query for diagram components is
similar to the functionality of Newt editor (Balci et al., 2021)
querying of PathwayCommons resources (Rodchenkov et al.,
2019). Our workflow preserves the layout of the original
components, which may result in a patchwork of styles. We
did not harmonize them for easier reference to the source
diagrams, leaving the stylistic decisions to the end user. After
eventual refinement, an ad-hoc map is meant to be visualized in
the MINERVA Platform for visualization and analysis.

FIGURE 5
Visualization of differential gene expression in a fragment of the ad-hocmap. Multiple proteins and complexes of the “Cell surface interactions at the
vascular wall” pathway (Reactome, R-HSA-202733) are differentially expressed in the RP dataset, indicating potentially dysregulated mechanisms.
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MINERVA is a web-server having visual exploration capabilities,
plugin architecture and extensive API, supporting network
analysis and drug target search (Hoksza et al., 2019b). This
way a generated map can be used as an input to advanced
analytical workflows.

The work presented here has certain limitations. One of the
challenges that remain to be solved is the scope of the
constructed map. The choice of disease maps to query is
based on a single Orphanet identifier, which may be too
restrictive especially considering RD research. Although our
workflow offers a possibility of identification of diseases based
on their phenotypic traits, this is realized based on the HPO
mapping in Orphanet. Addition of prior knowledge, like a
custom list of genes or results of omics analysis, may be a
possible improvement to this situation. Another challenge is
harmonization of the outcome of the workflow, which currently
is a combination of styles. The MINERVA Platform preserves
the layout and rendering information from the source disease
maps and pathway databases, but as these resources have
different curators, styles of diagrams may vary significantly.
Despite the final diagram being editable, refining it may be a
challenging task. A possible approach here would be to split the
resulting map into sub-diagrams based on their source and
generate a top-level view with only disease-relevant genes
involved. Finally, our workflow relies on external databases,
whose contents may change. In effect the outcome may differ
depending on when the workflow was executed.
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