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Cervical cancer (CC) is the fourth most common malignant tumor among women
worldwide. Constructing a high-accuracy deep convolutional neural network (DCNN)
for cervical cancer screening and diagnosis is important for the successful prevention
of cervical cancer. In this work, we proposed a robust DCNN for cervical cancer
screening using whole-slide images (WSI) of ThinPrep cytologic test (TCT) slides from
211 cervical cancer and 189 normal patients. We used an active learning strategy to
improve the efficiency and accuracy of image labeling. The sensitivity, specificity, and
accuracy of the best model were 96.21%, 98.95%, and 97.5% for CC patient
identification respectively. Our results also demonstrated that the active learning
strategy was superior to the traditional supervised learning strategy in cost reduction
and improvement of image labeling quality. The related data and source code are
freely available at https://github.com/hqyone/cancer_rcnn.
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1 Background

Cervical cancer (CC) is the fourth most common malignant tumor among women
worldwide, with an estimated 0.53 million new cases and 0.27 million deaths each year. The
ThinPrep cytologic test (TCT) was introduced in the 1990s to screen for the presence of atypical
cells, cervical cancer, or precursor lesions (LSIL, HSIL) as well as other cytologic categories as
defined by the Bethesda System (Pangarkar, 2022) for routine screening and diagnosis of cervical
cancer. The test requires trained pathologists to microscopically check for changes in abnormal
squamous cells in the cytoplasm, nuclear shape, and fluid base color. The misdiagnosis or missed
diagnosis in traditional manual slide reading of cervical cytology may occur to different extents
due to differences in pathologist experience and technical level, or due to other factors such as
fatigue,. The false-negative rate of manual interpretation is as high as 10%, the sensitivity of
precancerous lesions detection is only about 65%, and the specificity is about 90%.

Deep convolutional neural networks, as a revolutionary technology, have been widely and
successfully applied in medical data analysis and computer-aided diagnosis (CAD) (Shen et al.,
2017). Recently, the combination of deep learning models with whole-slide images (WSI)
scanning technologies has enabled automatic and remote disease diagnosis, reduced labor costs,
and improved diagnostic accuracy. Deep learning technology has also been used in reading TCT
slides from patients with cervical cancer, with promising results in reducing pathologist labor and
improving diagnostic accuracy (Wu et al., 2018; Sompawong et al., 2019; Tan et al., 2021).

OPEN ACCESS

EDITED BY

Min Tang,
Jiangsu University, China

REVIEWED BY

Antonio Brunetti,
Politecnico di Bari, Italy
Tapas Si,
University of Engineering and
Management, Jaipur, India

*CORRESPONDENCE

Quanyuan He,
hqyone@hotmail.com

Junhua Zhou,
zhoujunhua@hunnu.edu.cn

SPECIALTY SECTION

This article was submitted to
Computational BioImaging,
a section of the journal Frontiers in
Bioinformatics

RECEIVED 18 November 2022
ACCEPTED 13 February 2023
PUBLISHED 09 March 2023

CITATION

Li X, Du M, Zuo S, Zhou M, Peng Q,
Chen Z, Zhou J and He Q (2023), Deep
convolutional neural networks using an
active learning strategy for cervical
cancer screening and diagnosis .
Front. Bioinform. 3:1101667.
doi: 10.3389/fbinf.2023.1101667

COPYRIGHT

© 2023 Li, Du, Zuo, Zhou, Peng, Chen,
Zhou and He. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioinformatics frontiersin.org01

TYPE Original Research
PUBLISHED 09 March 2023
DOI 10.3389/fbinf.2023.1101667

https://www.frontiersin.org/articles/10.3389/fbinf.2023.1101667/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1101667/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1101667/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1101667/full
https://github.com/hqyone/cancer_rcnn
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2023.1101667&domain=pdf&date_stamp=2023-03-09
mailto:hqyone@hotmail.com
mailto:hqyone@hotmail.com
mailto:zhoujunhua@hunnu.edu.cn
mailto:zhoujunhua@hunnu.edu.cn
https://doi.org/10.3389/fbinf.2023.1101667
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2023.1101667


Although these models have been reported to achieve high sensitivity
and specificity, the generalization of these DCCN models requires
further verification. Moreover, while a high diagnostic accuracy
of >99% is absolutely required to avoid an omission of any patients,
no deep learningmodels have yet achieved this level of accuracy (Esteva
et al., 2017; Yoo et al., 2020; Lotter et al., 2021). Additionally, the models
and training data of these studies usually are not publicly available,
which makes the comparison and validation of these models difficult.

Usually, a large set of high-quality training images is
required to construct a high-accuracy AI diagnostic model
(Moen et al., 2019). The conventional supervised learning
strategy includes two main stages: “image annotation” and
“model training”. In the image annotation stage, many
images must be labeled manually by high-level pathologists,
which usually involves many repetitive tasks, which is time-
consuming and of low efficiency. This barrier limits the scale
and quality of training data and is the main bottleneck in the
development of AI diagnosis models. Active learning is an
iterative supervised learning method in which a learning
algorithm can interactively query a user (pathologist) to label
new data points with the desired outputs (Moen et al., 2019).
Active learning is widely used in the scenario in which
unlabeled data are abundant but manual labeling is
expensive. Figure 1B shows an active learning model, in
which a closed loop between “data labeling” and “model
training” and the DCCN model is a key contributor to the
interactive learning procedure to facilitate data labeling

(Figure 1B), thus greatly reducing the time, improving the
quality of data labeling, balancing the experience differences
among experts, and improving the speed and accuracy of model
training (Settles, 1995; Aggarwal et al., 2014).

The present study aimed to generate accurate DCCNmodels
for cervical cancer diagnoses based on WSIs of TCT slides. We
constructed a large WSI dataset from 211 patients with cervical
cancer and 100 patients without cervical cancer. The results
from reading pathologic TCT slides of patients with cervical
cancer from independent sources showed the high diagnostic
accuracy of our AI models (close to 100%), suggesting their
suitability for clinical use. The comparison between
conventional supervised and active learning strategies
showed the significant advantages of the latter in the
construction of labeled datasets in terms of the completeness
and accuracy of image labeling and the accuracy of the AI
model. These findings suggested that active learning strategies
can be effectively extended to the construction of AI diagnostic
models of other diseases.

2 Materials and methods

The study was reviewed and approved by the Biology and
Medicine Research Ethics Committee (BMREC) of the Hunan
Normal University (2022 (No. 266)). All experiments were
performed in accordance with the relevant guidelines and

FIGURE 1
The architecture of the model and the dataflow of the project. (A) The architecture of the cervical cancer diagnosis model. It takes TCT images as
inputs and then performs cell segmentation and classification. Then the cell classification results combined with related clinic diagnostic information are
used to do patient classification. (B) The data process workflow of this project. The initial COCO DCNN model was trained using traditional and active
learning methods. Then two final cell segmentation/classification models (T1 and A3) were evaluated and compared to each other.
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regulations. With the informed consent of patients, the project
collected the digital scan images of 400 cervical TCT slides from
400 patients in Hunan Province. Patient names and other personal
information were anonymized and de-identified before analysis to
protect patient privacy.

2.1 Experimental design

Our predictive model consists of two main phases: 1) using a
Mask R-CNN model to segment and classify cells in all TCT
images from patients into three classes (see above); and 2) using
the number of cells in each type as features to classify patients
into two classes (normal vs. abnormal). We first trained the
Mask R-CNN model using the pre-labeled training images and
then built a machine-learning model for patient classification
using the combination of cell classification and clinic diagnosis
results (Figure 1A).

In the cell classification phase, we compared the traditional
and active training strategies in terms of the cost of model
training and accuracy. A pre-trained Mask R-CNN model based
on the MS COCO dataset was used as the initial model. The
T1 model was trained using all labeling images in a single round.
The active training procedures of the A1, A2, and A3 models
included three iterations. First, the training image was split into
three parts. In the first iteration, the MS COCO model was
trained by 100 manual labeling images (model A1). Then, the
200 images labeled by model A1 and revised by the pathologists
were used to train the A2 models based on model A1 in the
second iteration. The third iteration used an additional
150 images and was run similarly to the second iteration to
create model A3. We compared the active learning strategy
models to the traditional labeling method using independent
testing data (Figure 1B).

2.2 Image collection and selection

A total of 400 cervical TCT slides from 400 patients with final
diagnosis results (211 CC and 189 non-CC patients) were collected
at Ning Xiang People’s Hospital. The slides were stained following
the standard Feulgen staining process (Bancroft, Gamble) and
scanned using a digital pathology slide scanner (Pinsheng
Biotechnology Co., Ltd.) to generate the WSIs. Each WSI was
composed of 300 single-field images (micro magnification 400×;
resolution: 1024 × 1024).

As the number of abnormal cells is much smaller than the
number of normal cells and manual cell segmentation is very time-
consuming, we manually selected 500 images containing at least one
abnormal cell from patients with CC and 500 single-field images
from normal patients (no abnormal cells) for downstream model
training. All abnormal cells in the TCT images were diagnosed and
labeled by at least two professional pathologists. Only images
meeting the following criteria were included: clear field of vision,
even cell distribution on the slide, and a moderate number of cells in
the image with few overlapping cells.

2.3 Image augmentation

As the data samples in this study were limited, we used the
python library “imgaug” 0.4.0 to perform the image augmentation to
increase the data diversity and better simulate the real data
variability while preventing overfitting (https://imgaug.
readthedocs.io/en/latest/). During the data training procedure, for
each training image, the image processing program randomly
selected one of three methods (flip/mirror, PIL-like affine
transformations, contrast changes) to apply to the original images
to create a transformed image to double the number of images in the
training process.

2.4 Cell classification

According to WHO diagnostic criteria and cytopathology
standards (Haugen et al., 2016), all cells in the images were
manually classified and labeled into three categories: 1) normal
squamous epithelial cells with the following characteristics were
labeled as “Yin”: nucleus medium in size, small nucleocytoplasmic
ratio, and transparency; 2) ecological cells (suspected diseased cells)
were labeled as “yin-yang”. The nucleocytoplasmic ratio of these
cells was slightly larger than that of the normal cells. They had deep
nuclear staining but neat nuclear edges and regular shape; 3)
abnormal (diseased) cells were labeled as “yang”, and had a
larger nucleocytoplasmic ratio than the ecological cells, dark and
large nuclei, irregular karyotype, and unsmooth nuclear membranes.
As most of the features of abnormal cells were derived from the
nucleus and less overlapping between nuclei, we manually
segmented and labeled the cell nucleus instead of the cytoplasm
using the LabelMe software (Russell et al., 2008). The nucleus
outlines and cell classification information were exported and
stored in a JSON file for each image.

2.5 Cell nuclei segmentation and
classification model

Mask R-CNN is an image segmentation algorithm based on a
convolutional neural network (CNN) proposed by He et al. (2017).
The model contains four steps: 1) first, the input image is extracted
through the feature extraction network (Backbone) to obtain the
feature map; 2) a predetermined number of ROIs (regions of
interest) are then generated, which are based on each anchor in
the feature map. Then, the ROIS are sent to a region proposal
network (RPN) for binary classification (foreground or background)
and bounding-box (BB) regression, which aims to fine-tune the
target prediction box to make it closer to the real box. After
removing the background ROIs according to the classification
results; 3) ROI alignment is implemented for the remaining
target ROIs. The ROIs were mapped accurately to the feature
graph of the whole graph using the bilinear interpolation
method. Finally; 4) classification (n-category classification), BB
regression, and MASK generation were implemented using the
fully connected network.
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During training, the performance of the object detection was
measured by the loss function, which was defined as follows (He
et al., 2017):

L pi, ti( ) � 1
Ncls

∑
i

Lcls pi, p
*
i( ) + λ

Nreg
∑
i

p*
i Lreg ti, t

*
i( ) (1)

where i is the subscript of an anchor in a mini-batch, pi is the
prediction probability of an object in anchor i, p*

i is the ground truth
label which is 1 if the anchor is positive and 0 otherwise. ti represents
the coordinates of the bounding-box of the predicted target region;
t*i is the corresponding ground truth box’s parameterization
coordinates. Lcls is the classification loss and Lreg represents
regression loss. In our study, all cells in training data were
divided into three categories (Ying, Ying-Yang, or Yang) based
on the lesion degree. The algorithm encoded multiple categories as a
continuous sequence (0,1,2). The classification loss is defined as
follows:

Lcls pi, p
*
i( ) � −∑N

c
ωc × yc × log pc( ) (2)

where N represents the number of categories. If the cell category
is the same as category C, the yc is 1; otherwise, it is 0. ωc is the
weight of category C. As the number of abnormal and normal
cells are unbalanced (about 1:100~1000) and we mainly focused
on the abnormal cells, we oversampled the positive cases
manually and used higher weights for two under-represented
classes in the loss function. pc represents the probability that the
prediction cells belong to category C. Lreg(ti, t*i ) is the robust
smooth-L1 function which is defined as:

SmoothL1 ( ) � 0.52, | |< 1
| | − 0.5, otherwise

{ (3)

where t*i indicates that regression loss is only activated
when the value of positive anchor (t*i ) is equal to unity.
Therefore, the regression was used to calculate and
minimize the deviation between the predicted target
coordinates and ground-truth. The loss function of the mask
branch (Lmask) is defined as the average binary cross-entropy
loss. The total loss function is the sum of all three branches and
is defined as follows:

L � Lcls + Lreg + Lmask (4)

This study implemented the Mask R-CNN workflow using
TensorFlow 1.13.1 and the Keras 2.1.6 framework. ResNet50 was
used as the backbone network. The coco pre-trained weights from
the ImageNet dataset were used as the initial weights. The
hyperparameters of the nucleus project in the matterport/Mask_
RCNN GitHub repository were adopted as the starting point. For
hyperparameter tuning, we checked the performance of models with
different BACKBONEs, TRAIN_ROIS_PER_IMAGE, and MAX_
GT_INSTANCES values in a small testing dataset and selected
values that provided the best results. The 1000 manually labeled
cervical cell images were divided into two groups (900 and 100) for
training and test/validation. The Mask R-CNN model was trained
using the training data set with the following parameters: epoch =
300, learning rate = 0.001.

2.6 Active learning method

To implement the active learning strategy, the data set was
separated as follows. 1) First, 50 labeled images were randomly
selected as the testing set for final validation. 2) Next, 100 manually
labeled cervical cell images were randomly selected to train model
A1 based on the initial ImageNet model in the first iteration. 3)
Then, 200 images were randomly selected from the remaining
350 images and labeled automatically by model A1. These
200 labeled images were then revised by pathologists and used to
train model A2 based on model A1 in the second round. 4) The
remaining 150 images were annotated automatically by model
A2 and were revised again by the pathologists to train model A3.
The detailed processes of the model construction are shown in
Figure 1B. Regarding the conventional labeling method, all
500 images were labeled manually, in which 450 images were
selected randomly for model training and the remaining
50 images were used for validation. We compared the time and
accuracy of data labeling and model prediction between
conventional and active learning methods.

2.7 Patient classification models

The whole-slide images of 400 patients (~3000 images per
patient) with clinical diagnosis results were collected. These
samples included 211 positive cases (187 atypical squamous cells
of undetermined significance [ASCUS], 15 low-grade squamous
intraepithelial lesions [LSILs], and 9 high-grade squamous
intraepithelial lesions [HSILs]) and 189 negative cases (normal
patients). These images were processed by the cell classification
models to generate a cell number matrix of patient vs. cell types as
training data for patient classification using the numbers of three
types of cells as dependent variables and the clinical diagnosis results
as the outcome to train the models. Four machine learning
methods—logistic regression, random forest, SVM, and
XGboost—were used to build the patient classification models
and 10-fold cross-validation was applied for validation. The area
under the curve (AUC) of ROC curves was used to compare the
accuracy of these models and select the best model.

2.8 Model evaluation methods

A QC matrix adapted from the PASCAL VOC Challenge was
used to compare the model performance (Everingham et al., 2010).
The COCO Object detection challenge (Lin et al., 2014), which
includes sensitivity (recall), specificity (precision), accuracy, positive
predictive value (PPV), and negative predictive value (NPV), was
defined as follows:

Specificity precision( ) � TN

TN + FP
(5)

Sensitivity recall( ) � TP

TP + FN
(6)

Accuracy � TP + TN

TP + TN + FP + FN
(7)
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PPV � TP

TP + FP
(8)

NPV � TN

FN + TN
(9)

where TP, TN, FP, and FN indicate the numbers of true-positive,
true-negative, false-positive, and false-negative cells or patients,
respectively.

We also calculated the F1 scores, G-Mean, mean average
precision (mAP), and mean average recall (mAR) to evaluate the
object detection performance of all Mask R-CNN models. These
values were calculated as follows:

F1 � 2 ×
Precision × Recall

Precision + Recall
(10)

G −Mean �
�����������������
Recall × Specificity

√
(11)

mAP � 1
n
∑k�n

1
APk (12)

mAR � 1
n
∑k�n

1
ARk (13)

In Eqs. 12, 13, the APk and ARk represent the average precision and
recall, respectively, of class k; n is the number of classes.

We used the AUC of the PR curve instead of the ROC curve to
evaluate the accuracy and reliability of the cell classification model
because PR curves are more appropriate for imbalanced datasets.
The two axes of the PR curve refer to recall and precision. The curves
are plotted according to the change in the probability threshold of
the correct nuclear classification. AUC was used to measure the
accuracy of cell classification. The formula for the AUC of the PR
curves was as follows:

AUC � ∑
n
Rn − Rn−1( )Pn (14)

Here, R represents recall, P represents precision, and n
represents an interval of probability threshold change.
Additionally, we used the AUC scores of the ROC curves to
summarize the performance of patient classification models.

2.9 Experimental environment

These experiments were performed on a Windows 10 PC with the
following settings: CPU: third-generation core i5-3470@3.20GHz quad-
core. Memory: 16 GB. Graphics card: NVIDIA GeForce GTX 1080 Ti
11 GB. Hard disk: 120 g SSD 1t HDD. The original Mask R-CNN deep
learning framework (https://github.com/matterport/Mask_RCNN) was
adapted to implement the cell segmentation and classification models.
The software environment and libraries used in the project included
anaconda 3, python 3.6, cuda 10.0, cudnn 7.5.

3 Results

3.1 Cervical cell segmentation and
classification

We compared the performance of the conventional (manual
labeling) learning method to the active learning method in terms of

labeling time and accuracy. The results indicated that the active
learning method could identify about 14% more cells and generated
nucleus contours that better matched the nucleus boundaries
compared to the conventional method (Table 1; Figure 2A). The
active learning labeling methods showed an approximately four-fold
acceleration in image labeling by performing certain repetitive tasks
(such as contour labeling) by computer instead of human (Table 1).
We also compared the performance of the two methods in model
training. The results showed that the loss function of the active
learning method converged faster than that of the traditional
learning method (Figure 2B). Additionally, comparing the AUCs
of the PR curves of the models showed that the overall effectiveness
(precision and recall) of the active learning models (A1, A2, A3)
improved gradually during the training iterations (Table 2).
Intriguingly, the AUC, mAP, and F1 scores of model A3 were
better than those of the T1 model, suggesting the advantages of the
active learning method over the conventional learning method in
prediction performance (Table 2). The results also showed that both
T1 and A3 models achieved around 98% accuracy for cell
classification in the test data. For normal (yin) cells, the
sensitivity and specificity of the T1 and A3 model were
approximately 97% and 66%, respectively, suggesting that some
normal cells were mislabeled as abnormal cells. For abnormal cells,
both T1 and A3 models achieved around 98% precision and recall
(Tables 3, 4, 5). Taken together, these results demonstrate the
advantages of the active learning strategy over the conventional
supervised learning method in many perspectives, including image
labeling speed and quality, the model training speed, and the
prediction performance of the final model.

3.2 Patient classification

We applied the T1 and A3 models to classify all cells in the
cervical cell smear WSIs of the 400 patients with final clinical
diagnosis results. The numbers of the three types of cells and an
additional four features (including patient age, the percentage of
diseased cells, the sum of the numbers of suspected and diseased
cells, and the percentage of suspected and diseased cells to the total
cell count) were used as predictive features to train the patient
classification models (Table 6). The clinical diagnosis results of
patients were divided into two classes (normal and positive) and
used as the outcomes.

We used four machine learning methods (logistic regression,
random forest, SVM, and XGBoost) to construct the patient
classification models. Then, 10x cross-validation was applied to
evaluate the performance of the models. As Table 6 shows, the
most important features were the number and percentage of
diseased cells. More importantly, the validation results showed
that all patient classification models based on cell classification
results from model A1 showed better AUCs, accuracies,
specificities, and sensitivities (except for SVM) than those based
on cell classification data from model T1 (Table 7). These findings
further strengthened our previous conclusion that the active
learning model can provide higher-quality cell classification
results compared to the conventional supervised learning method
(Table 7).
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TABLE 1 Training and testing datasets.

Model No. of
training set

No. of
testing set

Labeling
time (h)

No. of cells
(thousands)

No. of training
epochs

Training
time (h)

Model T1 450 50 75 19 300 282

Model A1 100 50 17 200 34

Model A2 200 50 1.3 23 150 47.5

Model A3 150 50 1 150 39.5

FIGURE 2
Performance comparisons between the active and conventional learning methods. (A) Comparison of nucleus segmentation results between
manual annotation and active learning methods. Red and light blue boxes: nuclei missed in the manual annotation method. Orange boxes: nucleus with
better contour segmentation by the active learning method compared to the traditional manual labeling method. (B) Loss curves of twomethods (model
T1: conventionalmethod; A1, A2, and A3: active learningmethod) showing the faster regression for the activemethod. (C) PR curves of all models for
cervical cell image recognition. The percentages in the legend are the prediction accuracies of the models.

TABLE 2 Segmentation performance of four Mask R-CNN models (IoU
threshold = 0.5).

Model AUC (PR) mAP (%) mAR (%) mF1 score

Model T1 95.88 ± 0.64 94.23 ± 0.25 95.11 ± 0.13 97.0

Model A1 93.77 ± 0.38 90.28 ± 0.21 81.02 ± 0.48 93.2

Model A2 95.12 ± 0.57 96.28 ± 0.50 95.29 ± 0.45 98.1

Model A3 97.39 ± 0.05 97.43 ± 0.62 94.36 ± 0.36 98.7

TABLE 3 The confusion matrix for cell classification generated by the T1 Model
on the test dataset.

T1 Model Predicted results

Yin Yin-yang Yang Missing

Ground truth yin 2839 36 17 23

yin-yang 0 27 15 1

yang 1 4 100 3

Frontiers in Bioinformatics frontiersin.org06

Li et al. 10.3389/fbinf.2023.1101667

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1101667


We then compared the performance of four patient
classification methods by performing Friedman tests using the
accuracy, specificity, sensitivity, AUC, and F1 cores of the10x
cross-validation data, which showed significant differences in
accuracy, sensitivity, AUC, and F1 when using cell classification
results from the A3 model. The accuracy, specificity, sensitivity,
and F1 score also differed significantly when using cell
classification results from the T1 model (Supplementary Table
S1). Table 7 shows that the random forest and XGBoost models
have better AUCs, accuracies, specificities, and sensitivities than
the logistic regression and SVM models. The random forest and
XGBoost models showed comparable performances. Intriguingly,
the AUCs, accuracies, specificities, and sensitivities of both
random forest and XGBoost models were above 99.4%, 97.0%,
98.9%, and 95.2% respectively, suggesting that both models
achieved good performance (Table 7, Supplementary Table S2,
S3, and Supplementary Figure S1). We also used Wilcoxon tests to
compare the performance of the different methods. The results
showed that the XGBoost and random forest models outperformed
the SVM and logistic models in terms of accuracy and other
metrics. (Supplementary Table S4).

TABLE 4 Confusion matrix of cell classification of A3 Model in the test dataset.

A3 Model Predicted results

Yin Yin-yang Yang Missing

Ground truth yin 2851 44 18 2

yin-yang 0 28 15 0

yang 1 0 106 0

TABLE 5 Cell classification performance in the test dataset.

Indicator A3 Model T1 Model

Yin Yang + yin-
yang

Yin
(%)

Yang + yin-
yang

Sensitivity 97.80 99.33% 97.39 96.69%

Specificity 69.95 97.87% 66.37 98.18%

Accuracy 97.88 97.94% 97.49 98.11%

TABLE 6 Features used for training the patient diagnosis models and their importance.

Feature name Description Importance (Model T1 +
XGBoost)

Importance (Model A3 +
XGBoost)

age Patient age (years) 0.034 0.046

yin Number of normal cells 0.017 0.031

yin-yang Number of suspected diseased cells 0.047 0.030

yang Number of diseased cells 0.515 0.224

yang_ratio Percentage of diseased cells (number of diseased cells/total cell
number)

0.321 0.514

combined_yang Sum of the numbers of suspected and diseased cells 0.046 0.109

combined_yang_ratio Percentage of suspected and diseased cells 0.018 0.043

Notice: The bold values are top features used by the patient diagnosis models.

TABLE 7 Performance comparison of four machine learning algorithms.

Patient classification
algorithm

Model AUC
(%)

Accuracy
(%)

Specificity
(%)

Sensitivity
(%)

PPV/
NPV (%)

F1 score G-Mean

Logistic regression Model T1 96.28 ± 2.6 90.0 ± 4.1 97.89 ± 3.5 82.96 ± 8.2 97.9/84.2 89.56 ± 4.6 89.9 ± 4.2

Model A3 98.87 ± 0.8 93.7 ± 4.7 98.47 ± 1.5 88.61 ± 9.3 99.5/89.3 93.45 ± 5.4 93.7 ± 5.0

SVM Model T1 96.66 ± 2.6 83.7 ± 10.8 79.47 ± 28.2 87.66 ± 12.8 87.3/88.9 85.57 ± 8.3 80.8 + 15

Model A3 99.14 ± 0.6 89.2 ± 7.7 96.31 ± 9.4 83.09 ± 15.4 97.3/85.6 88.44 ± 9.3 88.7 ± 8.4

Random forest Model T1 95.0 ± 4.29 91.0 ± 4.8 93.16 ± 5.2 89.09 ± 7.4 93.6/88.9 91.14 ± 5.0 90.9 ± 4.9

Model A3 99.48 ± 1.0 97.0 ± 2.2 98.94 ± 2.1 95.26 ± 4.2 99.0/95.1 97.05 ± 2.2 97.0 ± 2.1

XGBoost Model T1 96.60 ± 2.9 92.5 ± 4.2 93.16 ± 6.2 91.92 ± 5.2 93.9/91.4 92.79 ± 4.0 92.4 ± 4.3

Model A3 99.45 ± 0.6 97.5 ± 2.2 98.95 ± 2.1 96.21 ± 4.1 99.0/96.0 97.56 ± 2.2 97.5 ± 2.2
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4 Discussion

This study preliminarily explored the feasibility of an active learning
strategy in the construction of deep learning models for pathological
images.Moreover, we proposed and utilized an active learning strategy to
improve the speed and quality of pathological image annotation of CTC,
further comparing the accuracy and efficiency between this strategy and a
conventional supervised learning strategy in the construction of a deep
learning model. The findings of this study demonstrated that the active
learning strategy has significant advantages over conventional supervised
learning in the quality and speed of image annotation, the training speed
of the model, and the accuracy of the final model, which can be applied
widely in the construction of other pathological diagnosis models.

Compared to previous works, which usually focused on either cell
classification or patient classification problems, our method solved both
using Mask R-CNN combined with XGBoost and achieved higher or
comparable accuracy, sensitivity, and specificity (SupplementaryTable S5)
(Wu et al., 2018; Sompawong et al., 2019; Tan et al., 2021; Wentzensen
et al., 2021). Moreover, our model achieved high sensitivity (96.2%) and
specificity (98.95%) in the prediction of cervical cancer patients, which are
absolutely required to avoid missing any cancer patients and reduce the
follow-up cost of false-positive cases.

However, our proposed model also has several limitations.
First, although DCCNs are better than traditional algorithms at
cell segregation, it was still difficult to differentiate diseased and
normal cells from overlapping and adhesion cells; hence, the
accuracy was relatively low, especially when the quality of
images was low. Second, the collected dataset lacked
sufficient samples to train a model to predict pathological
subtypes such as LSIL and HSIL. Therefore, future research
should extend this study by collecting more training data from
different hospitals to increase the data diversity and improve
the model’s robustness. The active learning strategy may be
helpful to accelerate the labeling of larger data. The cell
classification/labeling system must also be extended to more
specific cell types such as squamous metaplastic cells and
endocervical cells. Our models may also be used to predict
the cytology grades of patient lesions (such as ASCUS, LSIL, and
HSIL). Moreover, considering more relevant patient
information, such as patient age, HPV infection status,
vaginal inflammation status, and lifestyle or environmental
factors may help to further improve the model accuracy.
More importantly, validating these models in prospective
clinical studies is urgently needed to ensure that the models
can be generalized to real-world clinic data.

5 Conclusion

In conclusion, the current study presents a DCCN model that
showed high accuracy, sensitivity, and specificity in cervical cancer
screening and diagnosis using TCT images. The active learning
strategy showed greater advantages over conventional supervised
learning in reducing the cost of image labeling and improving the
training dataset quality and model accuracy. This strategy could be
easily applied to the construction of AI diagnosis models of other
diseases.
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