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BrcaDx: precise identification of
breast cancer from expression
data using a minimal set of
features

Sangeetha Muthamilselvan and Ashok Palaniappan*

Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA University, Thanjavur,
Tamil Nadu, India

Background: Breast cancer is the foremost cancer in worldwide incidence,
surpassing lung cancer notwithstanding the gender bias. One in four cancer
cases among women are attributable to cancers of the breast, which are also
the leading cause of death in women. Reliable options for early detection of breast
cancer are needed.

Methods: Using public-domain datasets, we screened transcriptomic profiles
of breast cancer samples, and identified progression-significant linear and
ordinal model genes using stage-informed models. We then applied a
sequence of machine learning techniques, namely, feature selection,
principal components analysis, and k-means clustering, to train a learner to
discriminate “cancer” from "normal” based on expression levels of identified
biomarkers.

Results: Our computational pipeline yielded an optimal set of nine biomarker
features for training the learner, namely, NEK2, PKMYT1, MMP11, CPA1, COL10A%,
HSD17B13, CA4, MYOC, and LYVEL Validation of the learned model on an
independent test dataset yielded a performance of 99.5% accuracy. Blind
validation on an out-of-domain external dataset yielded a balanced accuracy
of 95.5%, demonstrating that the model has effectively reduced the dimensionality
of the problem, and learnt the solution. The model was rebuilt using the full
dataset, and then deployed as a web app for non-profit purposes at: https://
apalania.shinyapps.io/brcadx/. To our knowledge, this is the best-performing
freely available tool for the high-confidence diagnosis of breast cancer, and
represents a promising aid to medical diagnosis.

KEYWORDS

breast cancer, predictive diagnosis, principal component analysis, k-means clustering,
transcriptomics, biomarker discovery, progression-significant genes, stage-informed
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Introduction

Breast cancer is the most commonly diagnosed cancer in the world, with a staggering
2.3 million cases in 2020 (Sung et al., 2021). It accounts for approximately 24.5% of cancer
cases and 15.5% of cancer deaths among women, ranking #1 in both incidence and mortality
in most countries. Modelling studies predict an exponential and asymmetric rate of increase
in breast cancer incidence among low human development index (HDI) nations relative to
high HDI nations, due to an unmitigated increase in risk factors in low HDI nations
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(Soerjomataram and Bray, 2021). In India, for, e.g., the age of onset
of breast cancer has advanced 10 years earlier relative to that in
Europe and America. About 29%-52% of women with breast cancer
in India present in the more severe advanced stages, leading to poor
prognosis (Bhattacharyya et al., 2020). Low HDI nations are likely to
also suffer from problems due to the lack of social awareness and
existent taboos, especially in rural areas. Alternative diagnostic
methods based on a minimal set of biomarkers are urgently
needed to effectively redress the situation (Duan et al.,, 2016).
The advent of-omics data has ushered in Al-based approaches
to cancer diagnosis. However, contemporary Al-based diagnostic
methods are saddled with unreasonable dimensionality of the
hypothesis space, and typically require sequencing of hundreds of
biomarkers to achieve clinical utility. Dimensionality reduction

10.3389/fbinf.2023.1103493

techniques like principal components (PC) analysis are generally
used for extracting optimal feature subsets, especially when linear
relationships exist in the dataset. PC analysis has been earlier used to
detect multiple cancer types simultaneously, with a costly
compromise in accuracy and interpretation (Fakoor et al., 2013).
Working in the space of PCs tends to lead to more robust clustering
outcomes (Ding and He, 2004), and k-means clustering is an
effective technique for analyzing transformed spaces (Berkhin
et al, 2006; Raykov et al, 2016). Building on the above
observations, this study has two principal objectives: 1) develop
and validate the most efficient integrative computational pipeline for
breast cancer classification based on a minimal hypothesis space;
and 2) translate the resulting diagnostic classifier into a web-app
service to aid medical decision-making.
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FIGURE 1

ML pipeline used in the study for the design of a simple, effective and optimal cancer vs. normal classifier.
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TABLE 1 Summary of the consensus features from the two modeling protocols. All features are exceedingly differentially expressed with extreme significance. The
largest VIF score does not exceed 1.57, corresponding to a multivariate “correlation coefficient” < 0.6.

Feature Adj.p.value—linear Adj.P.value—ordinal Regulation status VIF score
1 NEK2 457 2.94E-146 6.25E-61 Up 1.05
2 PKMYT1 447 1.53E-127 6.14E-53 UP 1.05
3 MMP11 5.99 3.26E-134 2.02E-53 UpP 1.00
4 CPAL -4.20 1.61E-138 2.62E-49 DOWN 1.54
5 COL10A1 7.12 2.04E-137 5.62E-54 UpP 1.00
6 HSD17B13 -4.86 5.67E-117 3.71E-51 DOWN 1.22
7 CA4 -6.93 8.41E-127 9.92E-50 DOWN 1.57
8 MYOC -6.53 3.30E-133 4.03E-57 DOWN 1.34
9 LYVEL -491 3.10E-128 321E-47 DOWN 1.02

Materials and methods

The overall workflow is summarised in Figure 1 and discussed in
detail below.
Data pre-processing

RSEM-normalised BRCA dataset

(gdac.broadinstitute.org BRCA.Merge_rnaseqv2__illuminahiseq_

expression

rnaseqv2__unc_edu__Level _3__RSEM_genes_normalized__data.
Level_3.2016012800.0.0. tar.gz) was retrieved from the TCGA using
firebrowse portal (Deng et al, 2017) by selecting the Cohort as
“Breast invasive carcinoma.” The samples were annotated as
“normal” or “cancer” based on the sample-encoding part in the
patient barcode (uuid) in the variable “Hybridization REF.” The
sample stage was extracted from the attribute “patient.stage_
event.pathologic_stage” in the associated clinical metadata file
retrieved for the same cohort as gdac. broadinstitute.org
BRCA.Merge_Clinical.Level _1.2016012800.0.0. tar.gz. Genes with
minimal variation in expression across the samples were removed
if the expression o < 1. The resulting data matrix was then processed
through voom in limma to prepare for linear modelling (Ritchie
et al,, 2015). Then it was split into train: test datasets in the ratio 80:
20 stratified on the target class. Data pre-processing was done in R
(www.r-project.org).

Feature engineering

The training dataset was used to identify the features for the
problem. Two models were considered to extract potential features:

1) A linear model of stagewise expression in each gene was
performed using R limma (Ritchie et al, 2015), with the following
equation

Y =a+Bixn + Byxa + Baxs + Byxa (1)

where the intercept a is the baseline expression obtained from the
controls, the independent variables are indicator variables of the
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sample’s stage, and P; are the predicted log fold-change (lfc)
coefficients relative to controls. Further the model was subjected to
empirical Bayes adjustment for obtaining moderated t-statistics
(McCarthy and Smyth, 2009). Multiple hypothesis testing was
corrected using the Benjamini Hochberg method (Haynes et al., 2013).

2) An ordinal model of gene expression was also considered.
Here the cancer stage is treated as a numeric variable according to
the equation:

Y=aX+b (2)

where X is the cancer stage taking the values 0, 1, 2, 3, and 4,
corresponding to Control, Stage-1, Stage-2, Stage-3, and Stage-4,
respectively.

Feature space optimization

Genes from the linear and ordinal expression models were
ranked based on the adj. p-value. The consensus set between the
top-ranked 15 genes of the linear and ordinal models was
determined and then subjected to feature selection using Boruta
(Kursa and Rudnicki, 2010) and Recursive Feature Elimination
(Kuhn, 2008) (RFE). Boruta implements a wrapper algorithm
based on Random Forest to select features either strongly or
weakly connected to the outcome variable, while RFE implements
a backward selection process to identify an optimal set of predictors.
Post feature-selection, the retained features were validated using
variance inflation analysis, involving regressing each independent
variable on all the other independent variables in turn, identifying
and removing redundancy till a minimal feature space has been
obtained (Ferré et al., 2009). The variance inflation factor (VIF)
score was calculated using:

1
VIF =0 3)
where R* is the goodness-of-fit of the fitted model. A variable with
VIF = 1.0 is perfectly independent of all other variables, whereas any
variable with VIF >2.0 was deemed multicollinear with the other
variables and iteratively eliminated.
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TABLE 2 Summary of the nine components from the PC analysis, ranked by associated eigenvalue. Cumulative variance enables the application of the “proportion

of variance explained” criterion.

SA\o) PC Eigenvalue Variance explained (%) Cumulative variance explained (%)
1 PC1 34.487 67.24 67.24

2 PC2 7.181 14.00 81.24

3 PC3 2.787 543 86.67

4 PC4 2.039 397 90.65

5 PC5 1.521 2.97 93.62

6 PC6 1.191 232 95.94

7 PC7 0.887 1.73 97.67

8 PC8 0.781 1.52 99.19

9 PCY 0415 0.81 100

PCA-based K-Means clustering

From the validated set of features, the principal components of
the subspace spanned by these features were found, and the optimal
number of principal components identified using three different
criteria, namely, scree plot, Kaiser-Guttmann rule (Kaiser, 1992),
and the proportion of variance explained. K-means clustering with
k = 2 was performed in the space defined by the optimal principal
components, to examine separation between the normal and cancer
samples.

Model evaluation

Classification performance from clustering in the principal
components space was evaluated using metrics like accuracy,
precision, recall, F;-score, area under Receiver Operating
Characteristic curve (AUROC) and the Matthews correlation
coefficient (MCC) (Chicco and Jurman, 2020). Balanced accuracy
is a class-weighted measure of accuracy, reporting the average
performance on both the diagnostic classes. Fl-score is defined
as the harmonic mean of the precision and recall. Performance
evaluation was done using the test dataset, and an independent
external dataset, namely, “BRCA-KR” retrieved from the ICGC
DataPortal (https://dcc.icgc.org/). BRCA-KR had just three
control samples, hence it was augmented with 218 control
samples from GTEx for the purposes of evaluation (GTEx, 2017).

Results

BRCA RNA-Seq data retrieved from TCGA consisted of
1,212 samples each with the expression values of 20,532 genes. Post
data pre-processing, we obtained a dataset of 1,178 samples,
18,880 genes. We performed an 80:20 stratified sampling of the
dataset (with 1,066 cancer, 112 normal samples) based on the
outcome class to obtain the training dataset (with 854 cancer,
90 normal samples), and test dataset (with 212 cancer, 22 normal
samples). The training dataset was voom-processed using limma and
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then subjected to the two modeling protocols. At an adj. p-value
threshold of 1E-5, the linear model yielded 8,961 significant genes
while the ordinal model yielded
6,888 significant (Supplementary File S2). We examined the overlap

(Supplementary File S1),

among the top 15 genes from each model, which produced eleven
consensus genes for subsequent analysis.

Application of the Boruta feature selection protocol on the
eleven genes yielded a hypothesis space of only nine genes, while
application of the RFE feature selection protocol didn’t yield any
reduction in the size of the hypothesis space. A summary of the final
nine consensus genes is presented in Table 1. The hypothesis space
was subjected to VIF analysis, to ensure absence of multicollinearity
among features, and establish a minimal non-redundant set of
features (Table 1, last column). We identified the nine principal
components (PCs) of this 9-dimensional space (Table 2), and then
visualized the training samples using the top PCs from this analysis
(Figure 2). The application of three PCs clearly resolves and
separates the cancer and normal samples (Figure 2B). To
decisively identify the optimal number of PCs, we examined the
three criteria outlined in Methods: 1) Kaiser-Guttman criterion
yielded top six PCs; 2) Scree plot showed the first three principal
components to be optimal (Figure 3A); and 3) the first three PCs
explained >85% variance, passing the proportion of variance
explained condition. We reconciled the above findings, and chose
the first three principal components to define a 3-dimensional space
for applying k-means clustering. Next, we optimized the number of
clusters (k) for k-means clustering using the silhouette method
(RousseeuwSilhouettes, 1987) (Figure 3B). A value of k = 2 was
obtained, which synchronized with the larger objective to partition
the structure of the space into cancer and normal signatures.

The classifier was built using the training dataset, with 5-fold
cross-validation. From Figure 4, it is clear that the k-means
classifier in the 3-dimensional PC space of the identified
biomarkers determinately partitioned the diagnostic space into
cancer vs. normal. The prediction of the clustering outcomes was
assessed against the ground truth labels in the training, test and
external datasets, and presented in Table 3. It is seen that the
model produced by the workflow yielded balanced accuracies of
99.53% and 95.52% on the internal validation and external

frontiersin.org
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FIGURE 2

PC analysis of the biomarker expression space. With (A) top two components; and (B) top three components. It is seen that the use of three
components expands the separation between the cancer samples and controls in better-defined sub-spaces.
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Model parameterization. (A) Scree plot for determination of the optimal number of principal components. The elbow method yields the first three
PCs which have a cumulative variance >85%. (B) Silnouette plot for ascertaining the optimal number of clusters in the structure of the transformed PC-
space. The emergent value, k = 2, is in sync with the type of problem at hand: binary classification.

validation datasets respectively. A superior MCC value was
obtained for the external validation dataset, indicating the
has
generalized the solution to the problem.

classifier avoided any overfitting and successfully

Deployment

To convert the outcomes in effectively classifying cancer vs.
normal based on the expression of just a handful of features, we
have developed an app, BrcaDx, to freely provide the service to
the academic community, based on R Shiny (Chang et al., 2023).
BrcaDx is deployed at: https://apalania.shinyapps.io/brcadx/.
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The model was rebuilt using the full dataset for maximum
discriminative performance. Based on an input of the
expression values of the nine biomarkers, the app carries out
the necessary log, preprocessing of the values, and transforms
them into the three-dimensional PC space. The transformed
coordinates are fed to the learned k-means clustering model,
which locates the sample in either of the two clusters, thus
predicting the class of the sample. The app accepts a single-
sample input as well as batch inputs (samples x biomarkers),
where it accepts multiple samples, and predicts the diagnostic
class for all the samples. To facilitate strictly not-for-profit
applications, a video tutorial for using the app has been
provided on the landing page.
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Cancer (red) and control (green) clusters obtained after training the k-means classifier. (A) Two-dimensional projection onto the first two principal

components shows some uncertainty in the boundaries of the two clusters; (B) Visualization in the three-dimensional space of the PCs satisfactorily
resolves the cluster boundaries.

TABLE 3 Performance metrics of the developed k-means model in the transformed PC space of the identified nine biomarker features. Bal. acc. refers to balanced

accuracy. Sensitivity is identical to the recall values. Values for the training dataset refer to 5-fold cross-validation outcomes.

Dataset Bal. acc Specificity Precision Recall F;-score
1 Training 98.83 100 100 97.66 98.81 0.909 0.89
2 Test 99.53 100 100 99.06 99.53 0.995 091
3 External 95.52 99.55 97.73 91.49 94.51 0.955 0.93
Discussion

It is significant to note that some of the biomarkers identified in
our study are part of marketed and commercially available signature

Frontiers in Bioinformatics 06

panels used in the context of breast cancer diagnosis and treatment.
Specifically: 1) NEK2 is a constituent of the 11-gene Breast Cancer
Index signature used to estimate recurrence (Zhang et al., 2013); and
2) MMPI1 is a constituent biomarker of the 50-gene Prosigna
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(Parker et al., 2009), and 21-gene OncotypeDX (Cronin et al., 2007)
signature panels, which are both used in estimating likelihood of
recurrence. It is interesting to note that the Prosigna panel is based
on the PAM50 signature, which is also used to subtype breast cancer
into Luminal-A, Luminal-B, HER2-enriched and Basal-like (Bastien
et al., 2012).

The consensus genes used to build our model are known to
play key roles in cancers of the breast and other tissues,
contributing to breast-cancer specific pathways as well as
cancer hallmark processes (Hanahan and Weinberg, 2011).
The genes NEK2, PKMYTI, and CA4 are known to play
indispensable roles in cell cycle progression (Mueller et al,
1995; Lagadic-Gossmann et al., 2004; Fang and Zhang, 2016).
NEK2 is documented to be overexpressed in breast-cancer tissue
relative to normal tissue (Hayward et al., 2004; Cappello et al,,
2014), and is required for the growth, maintenance and survival
of the (Lee and Gollahon, 2013).
PKMYT1 known to be significantly
correlated with BRCA subtypes, and indicative of poor

transformed  cell
overexpression is

prognosis (Liu et al., 2020). Downregulation of CA4 is
associated with poor prognosis in cancers other than that of
the breast, notably uveal melanoma, renal cell cancer, glioma, and
lung adenocarcinoma (Liu et al., 2020; Xu et al., 2020), hinting its
role in hallmark processes common to many cancers, and its
potential significance in establishing such hallmarks in breast
cancer progression. Hypermethylation of the CPAl gene in
breast cancer cells has been earlier demonstrated (Chen et al,,
2017; DeVaux and Herschkowitz, 2018), which could lead to its
significant downregulation noted here. Recently, COL10A1 was
identified as an overexpressed predictive biomarker for breast
cancer coexpressed with LRRCI15 (Fleischer et al., 2014).
COL10A1 protein is a known extracellular matrix molecule
released into the blood, and increased levels of circulating
COLI10A1 protein has been suggested as a diagnostic marker
of breast cancer (Zhang et al., 2020). MYOC has been previously
reported as a topranked downregulated gene in breast cancer
(Giussani et al., 2018). MMP11 overexpression in early stages is
necessary for cancer progression via inhibition of apoptosis, and
promotion of invasion and metastasis (Li et al, 2018).
Overexpression of LYVEl has been suggested as a reliable
marker of lymphatic metastasis in breast cancer patients
(Zhang et al, 2015). HSD17B13 is involved in estrogen
biosynthesis (Doan et al., 2014), and its tumor suppressor role
in hepatocellular carcinoma has been documented (Wang et al.,
2019), suggesting analogous key roles specific to breast cancer
progression.

Due to the substantial heterogeneity in breast cancer, large
feature spaces have been necessary for acceptable performance in
contemporary classification strategies. Some of these have
mandated whole genome sequencing to completely cover the
biomarker space of interest (Elbashir et al., 2019). For, e.g, Zhao
et al. (2020) identified 817 features and used them to build a
model that achieved accuracies of 86.96% and 72.46% in different
external validation datasets respectively. Mostavi et al. (2020)
used a feature space of 2090 genes for discriminating cancer vs.
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normal, of which 323 biomarkers were designated for the task of
subtyping breast cancer. Convolution-based deep neural
networks (CNNs) have been applied to learn from image
datasets of mammography, computed tomography (CT),
magnetic resonance (MR) and histopathological slides (Saha
et al.,, 2018; Munir et al., 2019; Jiang et al., 2020). CNNs have
been used to extract features from whole-slide tissue-biopsy
images, which were subsequently used to train a Support
Vector Machine classifier of cancer vs. normal, yielding an
accuracy of 83.3% (Araujo et al,, 2017). CNNs have also been
used to build models from breast ultrasound images, yielding an
internal test-set performance of 92.5% accuracy, but external
validation was not reported (Muduli et al., 2022). Radiogenomics
approaches based on multimodal datasets have also been
developed for breast cancer diagnosis (Du et al., 2022). The
use of large feature spaces hinders the interpretation of these
models, induces overfitting, and discourages the adoption of AI-
assisted diagnosis in medical decision-making. One approach in
this direction has been to use machine learning models with
different feature selection algorithms such as SVM-RFE with
Particle swarm optimisation (PSO), SVM-RFE with Grid search
(GS), SVM-RFE with Genetic algorithm (GA), Random forest
feature selection (RFFS), Random forest feature selection and
grid search (RFFS-GS), and minimal redundancy maximal
relevance (MRMR), of which SVM-RFE-PSO performed best
with six features and 91.68% accuracy (Zhang et al, 2018).
Very recently Taghizadeh et al. (2022) have advanced a
solution to the “cancer” vs. “normal” problem, proposing a
panel of 20 biomarkers for discriminating breast cancer from
normal sample. Their study has been validated on an internal test
set with a balanced accuracy ~86%, but no external validation has
been provided. Furthermore their models have not been made
available for wider use. It is notable that there is zero overlap
between the biomarkers identified in their study and those
identified herein, indicating the orthogonal approaches used.
Our study provides a reliable, interpretable, and validated
generalization to the present situation, with a balanced-
accuracy performance >95% on the external validation, and
open-access web-server for diagnostic decision support.

Conclusion

In this work, we set out to negotiate the compromise between
model complexity and performance, and develop the simplest
possible best-performing model of breast cancer classification.
The designed computational pipeline yielded a novel non-
redundant hypothesis space of nine biomarkers, which was
transformed into a space defined by an optimal number of
principal components. A k-means clustering model trained in
this transformed space was able to discriminate cancer from
normal samples with a high balanced accuracy of 99.5% and
95.5% on the
respectively. At the same time, we note that the model had
limited recall (<92%) on the external validation dataset. The

internal and external validation datasets,
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model could be further improved by efforts to predict the subtype of
breast cancer as well as its progression to advanced stages or
metastasis. The present model has been deployed as a web-
service at  https://apalania.shinyapps.io/brcadx/  for  non-
commercial use. The ideas used in our study could be useful in
developing elegant, interpretable Al-assisted diagnostic models for
many other cancers and disease conditions, promoting effective

decision support aid to medical diagnosis.
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