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RNA sequencing analysis is an important field in the study of extracellular vesicles
(EVs), as these particles contain a variety of RNA species that may have
diagnostic, prognostic and predictive value. Many of the bioinformatics tools
currently used to analyze EV cargo rely on third-party annotations. Recently,
analysis of unannotated expressed RNAs has become of interest, since these
may provide complementary information to traditional annotated biomarkers or
may help refine biological signatures used in machine learning by including
unknown regions. Here we perform a comparative analysis of annotation-free
and classical read-summarization tools for the analysis of RNA sequencing data
generated for EVs isolated from persons with amyotrophic lateral sclerosis (ALS)
and healthy donors. Differential expression analysis and digital-droplet PCR
validation of unannotated RNAs also confirmed their existence and
demonstrates the usefulness of including such potential biomarkers in
transcriptome analysis. We show that find-then-annotate methods perform
similarly to standard tools for the analysis of known features, and can also
identify unannotated expressed RNAs, two of which were validated as
overexpressed in ALS samples. We demonstrate that these tools can
therefore be used for a stand-alone analysis or easily integrated into current
workflows and may be useful for re-analysis as annotations can be integrated
post hoc.
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Introduction

Liquid biopsy is a broad term used to describe the collection
of biological fluids, such as blood, urine, and saliva, to identify
biomarkers associated with a specific disease (Mader and Pantel,
2017). This approach can be beneficial for sampling diseased
tissues that would otherwise be inaccessible or require invasive
sampling methods. The biological fluids sampled by liquid
biopsy approaches contain circulating tumor cells (CTCs),
circulating cell-free DNA (cfDNA), circulating cell-free RNA
(cfRNA), proteins, metabolites and extracellular vesicles (EVs),
all of which contain potential biomarkers (Heitzer et al., 2019).
In recent years, liquid biopsies have been studied in the context
of personalized medicine due to their promise as a tool for
diagnostics, monitoring disease, and prognostication (Mader
and Pantel, 2017); however, as this field evolves so do the
technological challenges associated with sequencing analysis
of liquid biopsies. One such challenge in this field is the
processing and analysis of transcriptomic data generated from
liquid biopsy samples. We have therefore chosen to focus on
improving the analytical methods applied to data generated
from RNA sequencing analyses of EVs.

EVs can be categorized into two different classes: exosomes
and ectosomes (Thery et al., 2018; van Niel et al., 2018). These
small structures are released from different cell types and contain
various biomolecules such as nucleic acids, proteins, and
metabolites (Vagner et al., 2018; Pathan et al., 2019). Among
the nucleic acids contained within EVs, there is a diversity of
RNA types, including messenger RNA (mRNA), microRNA
(miRNA), long non-coding RNA (lncRNA), ribosomal RNA
(rRNA), piwi-RNA (piRNA), circular RNA (circRNA), transfer
RNA (tRNA), small nuclear RNA (snRNA), and small nucleolar
RNA (snoRNA) (Perez-Boza et al., 2018; Liu et al., 2019;
Turchinovich et al., 2019); however, most RNA sequencing
(RNA-Seq) studies in the EV field focus on the analysis of
miRNA and lncRNA. As a result, this field has relied on
methods and tools developed for the analysis of both small
RNA sequencing (sRNA-Seq) and standard RNA-Seq. The
expression patterns of RNA determined for liquid biopsies can
be indicative of disease onset or progression and can therefore
represent an important tool for patient monitoring. Therefore, it
is essential to analyze RNA-Seq data obtained from liquid
biopsies in a way that yields the most potential biomarkers
accurately.

Many current RNA sequencing analysis pipelines utilize
read summarization software, such as Stringtie, HTSeq, and
featureCounts, to obtain read counts for known features (Liao
et al., 2014; Anders et al., 2015; Pertea et al., 2015). These
algorithms are highly useful but present some critical
limitations. For example, these tools require an annotation
file that contains the chromosome position of genes,
transcripts, or exons, which may be subject to frequent
updates over time as annotations become complete or change
in structure. Consequently, it may require frequent re-analysis
of data using the most up-to-date annotations to detect newly
discovered features. In general, these algorithms can only call
one RNA feature at a time (the user must modify the annotation
file to identify multiple RNA types simultaneously) and they are

not designed to find unannotated expressed regions. Recently,
the Extracellular RNA Communication Consortium (ERCC)
recommended a new pipeline, exceRpt, which can deal with
several RNA types; however, this pipeline also relies on known
features, as it performs multiple stepwise assignments of reads
to prioritized annotations in a hierarchical fashion (Rozowsky
et al., 2019). Presently, this pipeline is the gold-standard
bioinformatics pipeline for analyzing small RNA sequencing
data from EVs. Other useful pipelines and tools such as
sRNAbench, Oasis 2, sRNAPipe, miRDeep2, sRNAtoolbox,
and sRNAnalyzer are well-adapted for small RNA and are
often used for analyzing sequence data from EV samples or
integrated into larger pipelines (Friedlander et al., 2008;
Friedlander et al., 2012; Rueda et al., 2015; Wu et al., 2017;
Pogorelcnik et al., 2018; Rahman et al., 2018; Paricio-Puerta
et al., 2019). Some, such as miRDeep2, Oasis 2, and sRNAbench
can be used for de novo RNA discovery; however, these tools
frequently require some form of annotation for differential
expression analysis. Most of these tools apply some form of
successive alignment steps to various annotations, similar to
exceRpt. Alignment-free methods have recently gained
significant popularity in genomics and have been adapted to
sRNA-Seq with the development of DEUS, an R package for
small RNA profiling that is based on the Differential Expression
of Unique Sequences (Jeske et al., 2019).

An alternative approach to the above-described pipelines is
to acquire the read counts per expressed region and
subsequently annotate the reads post hoc. This approach is of
particular interest in the context of sequencing EV nucleic acid
cargo, which consists of diverse RNA types in relatively low
quantities. We chose to explore this approach by using three
annotation-agnostic tools: derfinder, ShortStack and srnadiff
(Axtell, 2013; Collado-Torres et al., 2017; Zytnicki and
Gonzalez, 2021). While not yet extensively used in the liquid
biopsy field, these tools offer certain advantages when compared
to feature-based software. We assessed the flexibility of find-
then-annotate methods for the analysis of multiple RNA types
using known annotations. We also compared count
summarization and differential expression results for
annotated features among standard tools and region-based
tools, which were annotated after quantification. Lastly, we
validated potential unannotated diagnostic RNA biomarkers
in EVs sampled from a group of persons with ALS using
annotation-agnostic approaches with total RNA, as this
strategy is rapidly becoming of interest in the liquid biopsy
field (von Felden et al., 2021).

Our results show that find-then-annotate approaches can be
successfully applied for the identification of multiple RNA types
using sequencing data obtained from EVs. We demonstrate that
annotation-agnostic tools yield similar results to other standard
methods for known features while identifying de novo additional
expressed regions packaged into the EVs of persons with ALS. This
approach expands the pool of possible biomarkers in liquid biopsy
experiments by considering expressed regions individually rather
than as part of a larger feature, and by including orphan expressed
regions of possible biological significance. Importantly, we are able
to achieve these results in a few steps, using readily available
software.
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Methods

Subjects and samples

Previously generated RNA sequencing data for EVs isolated
from 14 plasma samples (eight ALS and six healthy donors) was
used for these analyses (Saucier et al., 2019). Plasma samples were
obtained from donors who had given informed consent in
accordance with study protocol, as accepted by Vitalité and
Horizon Health Networks Ethics Boards (New Brunswick,
Canada). EV isolation, RNA-seq library preparation, and
sequencing experiments were carried out as previously described

(Saucier et al., 2019). The data used in this study is a sub-set of the
donors analyzed by Saucier et al. (2019). Public data for comparing
tools was accessed through the Sequence Read Archive (SRA) and
Gene Expression Omnibus (GEO) with accession number
GSE67004 (Cha et al., 2015).

Read summarization and differential
expression analysis

We performed the alignment of our small RNA seq data
(Saucier et al., 2019) with bowtie2 (version 2.3.4.3) (Langmead

FIGURE 1
Annotation-agnostic tools yield similar results to other read summarization software for simulated RNA-seq experiments. (A) Number of features
detected by each tool after low-expression filtering. A 12-sample small RNA-seq experiment was simulated using the polyester package for R. Two six-
sample groups were assigned, with 20% of features showing a 2-fold upregulation, while another 20% were downregulated by 2-fold in the ‘treatment’
group. Readswere counted on overlapping featureswith derfinder and ShortStack, while srnadiff was run in “annotation”mode for comparisonswith
featureCounts and HTSeq. (B) Log2 fold-change values per gene were calculated between groups using edgeR and compared for each tool.
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et al., 2009) to the human reference genome GRCh37/hg19 using
the following parameters: –local –very-sensitive-local –mm –q,
and subsequently used samtools (version 1.6) for sorting and
indexing (Li et al., 2009). The sorted bam files were used as input
for derfinder (version 1.18.9) (Collado-Torres et al., 2017) and
srnadiff (version 1.8.0) (Zytnicki and Gonzalez, 2021) for R
(version 3.6.1) (R Core Team, 2021). After obtaining the
expression counts matrices, we annotated each expressed
region to the gencode annotation (version 19). For
comparisons with featureCounts and HTSeq, reads in all

expressed regions that overlapped a known gene were summed
and counted towards that gene. Read summarization was
performed using featureCounts with parameters: -T 8 -t
“gene” --largestOverlap --ignoreDup --minOverlap 5 -C -M
-O–o; and HTSeq with parameters: -f bam -a 0 -q -r pos -s no
-t gene --idattr gene_id --nonunique all. ShortStack was run with
default parameters and option --mincov 1. Differential
expression analysis was performed with edgeR (version 3.26.8)
(Vienna et al., 2010). The code used in these experiments is
available at https://github.com/acri-nb/derfinder-pipe.

FIGURE 2
Annotation-agnostic tools yield similar results to other read summarization software with real RNA-seq data. (A) Number of features detected by
each tool after low-expression filtering. EVs were isolated from blood samples of 8 persons with ALS and 6 healthy controls and subjected to RNA-
sequencing, as previously described (Saucier et al., 2019). (B) Log2 fold-change values calculated among groups using edgeR and compared for each
bioinformatic tool.
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Simulation

A 12-sample small RNA-seq experiment was simulated using
the polyester package for R (version 1.20.0) (Frazee et al., 2015).
Reads were 22 nucleotides in length with two 6-sample experimental
groups. The ‘treatment’ condition had 20% of features with at least a
two-fold increase over control, while 20% had a two-fold decrease.
Only transcripts from chromosome 13 were generated to alleviate
the computational load. Simulated reads were subjected to
differential gene expression analysis using derfinder or ShortStack
(annotation-agnostic tools) or using two popular annotation-based
methods: HTSeq and featureCounts. Count matrices for specific
regions detected with derfinder were generated using the
regionMatrix function. Count matrices for ShortStack were
produced by the command-line tool. Regions in these matrices
were then assigned to known features using the GenomicRanges
package and compared to results from featureCounts and HTSeq.
To obtain count matrices from srnadiff results, srnadiff was run in
‘annotation’ mode prior to extracting count matrices.

Digital droplet PCR validation of
unannotated RNA sequences

Amplification and validation of unannotated RNA sequences
were performed similarly to other small RNA (miRNA) as
previously described (Saucier et al., 2019) using reverse
transcription digital droplet PCR. Forward primer sequences used
were 5ʹ- TCCTGTACTGAGTGCCC - 3ʹ for target 1, and 5ʹ -CTG
AGGGGGCAGAGAGCGAGACT - 3ʹ for target 2. Reverse
transcription efficiency was assessed using the internal miRTC
control as described in the miScript Kit (Qiagen, Toronto, ON,
Canada). The copies/μL for both targets were normalized to the
copies/μL for miRTC.

Data availability

All relevant sequencing data used in these experiments were
deposited to the Gene Expression Omnibus (GEO) with the
accession number GSE183942.

Results

The performance of annotation-agnostic
software is similar to read-summarization in
annotated genomic regions with simulated
data

We first chose to test the applicability of annotation-agnostic
tools for RNA sequencing (RNA-seq) data using a simulated dataset.
RNA-seq reads were simulated using the polyester package for R
before analysis using derfinder, srnadiff, ShortStack or two popular
annotation-based quantification methods: HTSeq and
featureCounts. Count matrices for specific regions detected with
derfinder were generated using the regionMatrix function. Regions
in this matrix were then assigned to known features using the

GenomicRanges package. Results from derfinder, ShortStack and
srnadiff were then compared to those from featureCounts and
HTSeq. Feature-wise counts generated by annotation-agnostic
methods were highly correlated to those from featureCounts and
those from HTSeq for all 12 simulated samples (Figure 1A;
Supplementary Table S1). Out of 4,093 features quantified by at
least one tool, 96% (3,916) had also been detected by all other tools
(Figure 1A). Only 12 features were solely detected by only one
method. Furthermore, differential expression analysis of simulated
data showed similar effect sizes, sensitivity and specificity among
tools, assuming a complete annotation (Figure 1B; Supplementary
Table S2). Furthermore, we ran an identical analysis on real EV data
of KRAS mutant and wild-type cell lines from Cha et al. (2015)
downloaded from SRA to confirm performance comparisons in a
second dataset. Differential expression analysis between EVs from
KRAS-mutant DKO-1 cells and those from wild-type DKs-8 cells
was used as the ground truth by using the authors’ quantifications,
supplied as raw miRNA count matrices on GEO. Afterward,
differential expression was carried out using count matrices
generated by all other tools and then compared to the authors’
results. Sensitivity was between 0.73 and 0.8 for annotation-based
tools and between 0.67 and 0.69 in annotation agnostic methods.
Specificity was approximately 0.95 for all tools (Supplementary
Table S3). Calculated effect sizes were highly correlated to the
truth set (Supplementary Figure S1).

Feature quantification of RNA-seq data
obtained from the EVs of persons with ALS
using annotation-agnostic software is
similar to standard methods

We were interested in testing the applicability of annotation-
agnostic tools for the analysis of small RNA-seq data obtained from
liquid biopsy material, namely, EVs. We therefore sought to
compare results from annotation-free methods to those from
other standard tools that summarize reads to feature-level using
real RNA-seq data from EVs, which was previously reported in
Saucier et al. (2019). Gene-level counts calculated using derfinder
were highly correlated to counts obtained from annotation-based
methods, while srnadiff and ShortStack were moderately correlated
(Supplementary Table S4). A total of 4,343 features were identified,
with 3,856 features (89%) detected by at least two tools and
1,222 features (28%) detected by all tools (Figure 2A). Gene-wise
effect sizes (log2 fold changes) between ALS samples and healthy
donors were all highly correlated among tools (Figure 2B).

Furthermore, when quantifying total RNA, the relative
abundances of different RNA species such as mRNA, miRNA
and lncRNA did not differ substantially between both strategies,
with most reads aligning to miRNA, mRNA or lncRNA, which is
typical of extracellular RNA sequencing data (Liu et al., 2019)
(Figure 3A). miRNA quantification results from derfinder,
ShortStack and srnadiff were also compared to mirDeep2, which
is explicitly designed for miRNA analysis. Raw miRNA counts from
mirDeep2 were compared in a pairwise fashion to each of the other
tools (featureCounts, HTSeq, derfinder, ShortStack and srnadiff) for
three random samples and showed a high concordance for all tools
(Figures 3B–F).
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Another frequently used method for analyzing sequencing data
in EV genomics consists of aligning reads directly to known
transcript annotations, such as miRbase. This was the original
approach used for miRNA analysis of the published sample data
(Saucier et al., 2019). We compared miRNA counts from samples
mapped directly to miRbase annotations or quantified using
derfinder, ShortStack srnadiff, featureCounts and HTSeq. Similar
results to miRbase mapping were achieved using all five methods
when considering sample-wise normalized counts, log2 fold-change
and false discovery rate (FDR), as calculated using the edgeR
package (Supplementary Table S5). Despite small differences in
the total number of miRNAs identified among tools, comparisons
were done using miRNAs common to all analyses. In sum, these
results suggest that annotation-agnostic approaches may be suitable
for the analysis of small RNA-Seq data and are concordant with
tools designed for traditional RNA-seq data.

Standardized differential gene expression
analysis leads to similar biological
conclusions when using annotation-
agnostic tools for feature-level analysis

We then sought to compare differential gene expression analysis
among all tools to determine if the number of statistically significant

results varied among methods. Differential gene expression analysis
between persons with ALS and healthy donors was performed using
a standardized analysis with the edgeR package. As subtle differences
were evident in feature quantification and stringency among tools,
optimal low-count filter and alpha thresholds were determined
iteratively for each tool by comparing differential expression
results to those from featureCounts. This allowed us to
determine the parameters that yield the results most similar to
featureCounts. Using these thresholds, there were 155 and
153 significantly differentially expressed genes identified by
HTSeq and featureCounts, respectively. Using this same
threshold, we observed 137, 84, and 121 significantly
differentially expressed genes using derfinder, ShortStack, and
srnadiff, respectively. All four tools identified 24 (10% of all
significant results) common features as significantly differentially
expressed, while 163 (68% of all significant results) features were

FIGURE 3
Distribution of reads across RNA types is not altered when using
agnostic tools. (A) The distribution of reads aligning to specific
subclasses of RNA when using annotation-free methods. (B–F)
Comparative quantification and rank correlation of miRNA with
miRDeep2, featureCounts (B), HTSeq (C), derfinder (D), srnadiff (E),
and ShortStack (F) in three samples.

FIGURE 4
Validation of differentially expressed unannotated regions by
reverse transcription digital droplet PCR (A) Two unannotated regions
were chosen based on derfinder, ShortStack, and srnadiff results and
validated using reverse transcription digital droplet PCR. Targets
were significantly differentially expressed unannotated regions
identified by derfinder, ShortStack and srnadiff, that do not align to
exogenous genomes or known features. (B) The first target region was
located at chr1:186673706–186673729 (hg19) and (C) the second was
located at chr8:125980908–125980931 (hg19). *p < 0.05, Wilcoxon
rank-sum exact test.
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detected by two or more tools (Supplementary Figure S2).
Afterward, hypergeometric tests of pathway and gene ontology
(GO) enrichment were performed with statistically significant
results from each tool. The resulting term lists were sorted by
adjusted p-value and rank-correlated. This analysis showed a
good (>0.6) correlation of gene ontology (GO) enrichment terms
among all tools (Supplementary Table S6). The same trend was
observed with pathway enrichment results from KEGG; however,
the correlations between annotation-free methods and classical tools
for pathways identified were weaker (Supplementary Table S7).
Gene-set enrichment analysis (GSEA) using GO terms and the
KEGG pathway database resulted in similar trends (not shown).

Annotation-agnostic tools detect orphan
expressed regions in EV sequence data that
may represent novel biomarkers

We then generated an R script that outputs expressed regions
detected by derfinder and Shortstack with several supplementary
columns describing overlaps with known features in the provided
annotation. When run agnostically and considering only expressed
regions rather than genes, 2,672, 2,737, and 2,473 expressed regions
were identified by derfinder, ShortStack, and srnadiff after low-
count filtering, respectively. Regions identified by all three tools were
chosen for subsequent validation by qPCR. For this analysis, alpha
was set to 0.1 to maximize the number of candidate biomarker
regions.

Unannotated expressed regions were mapped to human and
exogenous genomes to omit possible confounding sequences, as
small RNAs often also map to exogenous organisms. Using BLAST,
56% of unannotated expressed regions could also be mapped to
exogenous genomes (not shown). These regions were excluded from
downstream validation. Following these analyses, three targets were
chosen for subsequent validation by reverse transcription digital
droplet PCR, two of which could be successfully amplified. Both
RNAs were highly abundant, more than 20 nucleotides in length,
and significantly differentially expressed in ALS patient EVs
compared to EVs from healthy donors with all three tools
(Figure 4, Supplementary Figures S3, S4; Supplementary Table
S8). Fifteen other unannotated regions fit these criteria but were
not investigated further. RNAs chosen for validation also did not
map to any recently discovered genomic features, as determined by
BLAST.

Discussion

The use of annotation-based approaches, such as direct
alignment to an annotation database or application of read-
summarization software, for RNA-sequencing data analysis, has
many advantages. These approaches quantify read counts within
the scope of known high-quality annotations, which increases the
interpretability of the data generated by RNA-sequencing
experiments. It may also help in avoiding the interpretation of
repetitive or otherwise problematic loci; however, some information
is lost when restricting analyses to known regions. Post-
transcriptional processing of RNA species and incomplete

annotations may lead to expressed regions that may not be
identified with annotation-based approaches. Reads mapping to
regions outside of known annotations are perhaps not as
interpretable as those aligning to genomic features; however, they
could be valuable in de novo biomarker discovery and machine
learning, especially for liquid biopsies. Thus, in some cases, it may be
worthwhile to include expressed RNAs from loci usually considered
uninformative, especially with supervised learning algorithms,
where the end goal may not necessarily be maximizing
interpretability. The field of liquid biopsy research shares many
of the challenges of sRNA-Seq analyses since small RNA species are
often the most abundantly reported class of RNAs packaged into
EVs. In addition, the majority of mRNA and lncRNA sequences
detected in EVs are present as fragments of these large RNA species.
These challenges are further complicated for EV analyses due to the
complex and variable nature of sequencing data for EVs that is
caused by multiple cell types contributing to the overall circulating
EV pool in most biofluids. It is therefore of prime importance that
the bioinformatic methods available for these types of analyses be as
accurate, accessible, and complete as possible. Several tools designed
specifically for miRNA analysis have been developed (Mathelier and
Carbone, 2010; Friedlander et al., 2012; An et al., 2013; Lei and Sun,
2014; Higashi et al., 2015), but few tools exist for quantifying
multiple RNA subtypes together or total RNA without
annotations. Tools such as derfinder, ShortStack, and srnadiff
have a broad scope beyond miRNA and mRNA, and could
therefore be useful for the integration of many RNA types in
expression analysis pipelines (Axtell, 2013; Stocks et al., 2018).
Herein, we show that annotation-agnostic tools are highly
flexible, as they generate results that compare to annotation-
based tools (including featureCounts and HTSeq) when used in a
standard differential expression context, however, these methods
have the advantage of detecting unannotated regions. As shown in
our simulation experiment, this allows the user to choose the level of
either breadth or interpretability of the results, depending on
planned downstream analyses.

Using biological data from Saucier et al. (2019) we have further
demonstrated the extent of overlap between annotation-based and
annotation-agnostic software. Most quantified features or regions are
detected by all methods, with substantial overlapwhen using at least two
tools. Count matrices generated by derfinder, ShortStack, HTSeq, and
featureCounts often have a noticeably larger number of detected
features when compared to srnadiff, likely due to differential
management of overlapping genomic features and reads mapping to
multiple regions of the reference genome; however, the count matrix
returned by srnadiff largely correlates with other tools, both in terms of
intersecting feature labels and read count. Consequently, effect sizes and
statistics are similar for all five tools. Variability in results among tools
could often be explained by irregular feature coverage, management of
multi-mapping, or effects driven by a single sample.

Gene-ontology analysis of results from each tool indicates good
p-value rank correlation among approaches, indicating that
enriched GO terms are likely consistent, regardless of the choice
of method. Pathway analysis is fairly correlated among derfinder,
HTSeq, featureCounts, and srnadiff; however, pathway enrichment
results from ShortStack do not correlate with those from other tools.
This indicates that the conclusions drawn from results generated by
annotation-agnostic methods generally resemble those from other
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approaches if using GO annotations, but may show substantial
differences depending on which database is queried, especially for
pathway enrichment databases. We also observed that srnadiff
identifies more significantly differentially expressed regions than
other tools when using built-in statistical methods. Therefore, we
suggest that anyone considering the analysis of EV data with
annotation-agnostic approaches make use of the output of
multiple tools, and take great care in the choice of alignment and
quantification parameters.

Here we assigned annotations using a single annotation file from
GENCODE, which contains protein coding, miRNAs, lncRNAs,
tRNAs, and other non-coding RNAs; however, it is possible to
provide a custom annotation file as input for the method, such as
piRNAs at pirBase (Wang et al., 2019) or tRNA-derived fragments in
the MINT database (Pliatsika et al., 2018). Such custom annotation
provides agnostic approaches with the flexibility to analyze sequencing
data from total RNA when users have annotations that include many
different RNA types. Consolidation of annotations, therefore, simplifies
this type of analysis. Generally, software that makes use of reference
genomes to identify de novo expressed regions is advantageous for small
RNA, as these RNAs tend to be challenging to annotate due to
ambiguity in feature start and end coordinates (Mohorianu et al.,
2013). Nevertheless, as the tools available for identifying small RNA
loci and the small RNA annotations themselves increase in quality,
future data analyses and re-analysis of old data will also improve. We
also purposefully chose an older GENCODE version, as this allowed us
to verify if any detected regions we identified as unannotated are found
to correspond to miRNAs in later versions of miRbase or GENCODE.

Validation of our data confirmed two unannotated regions as
potential biomarkers for ALS, as these were highly over-expressed in
ALS samples compared to healthy donors. Caution must be taken
when choosing candidate targets for validation, as these may align to
recent annotation releases and also to exogenous species, especially
for short sequences. Bacterial RNA may be detected in circulation,
and while we have verified this on an ad hoc basis for the targets
chosen in the context of this comparative study, this should be done
systematically, as is currently implemented in the exeRpt pipeline
(Whittle et al., 2018; Rozowsky et al., 2019). In addition, while our
analysis is mainly intended to provide evidence of usability for
annotation-free tools in the field of EV research, we do recommend
users to reflect on how to manage the idiosyncrasies of various small
RNA types prior to use with real data. In sum, we show here that
annotation-agnostic approaches to RNA-seq analysis are
appropriate for analyzing mRNA, miRNA, or other small RNA
in EVs and can also yield results that are generally comparable to
other widely-used software such as HTSeq and featureCounts. We
believe that this annotation-agnostic approach is well-adapted to
analyze small RNAs and with additional interpretation may be
conveniently adapted to analyze total RNA through the

combination of derfinder, ShortStack, and srnadiff, and thus may
improve the accuracy of biomarker discovery.
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