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Abundance profiles from metagenomic sequencing data synthesize information
from billions of sequenced reads coming from thousands of microbial genomes.
Analyzing and understanding these profiles can be a challenge since the data they
represent are complex. Particularly challenging is their visualization, as existing
techniques are inadequate when the taxa number is in the thousands. We present
a technique, and accompanying software, for the visualization of metagenomic
abundance profiles using a space-filling curve that transforms a profile into an
interactive 2D image. We created Jasper, an easy to use tool for the visualization
and exploration of metagenomic profiles from DNA sequencing data. It orders
taxa using a space-filling Hilbert curve, and creates a “Microbiome Map”, where
each position in the image represents the abundance of a single taxon from a
reference collection. Jasper can order taxa in multiple ways, and the resulting
microbiome maps can highlight “hot spots” of microbes that are dominant in
taxonomic clades or biological conditions. We use Jasper to visualize samples
from a variety of microbiome studies, and discuss ways in which microbiome
maps can be an invaluable tool to visualize spatial, temporal, disease, and
differential profiles. Our approach can create detailed microbiome maps
involving hundreds of thousands of microbial reference genomes with the
potential to unravel latent relationships (taxonomic, spatio-temporal,
functional, and other) that could remain hidden using traditional visualization
techniques. The maps can also be converted into animated movies that bring to
life the dynamicity of microbiomes.
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1 Introduction

Microbiome samples are routinely processed by means of low-cost, high-throughput
metagenomics DNA sequencing, followed by the creation of microbial community
abundance profiles (Calle, 2019), where the sequenced reads are mapped against a
collection of microbial reference genomes like Ensembl (EMBL-EBI, 2022a) or RefSeq
(O’Leary et al., 2016). Tools such as FLINT (Valdes et al., 2019) and Kraken 2 (Wood et al.,
2019) facilitate the creation of microbial abundance profiles either from metagenomic
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whole-genome DNA sequencing (mWGS) or 16S-amplicon
sequencing (16S) data. These abundance profiles are the stepping
stones for downstream analyses such as differential abundance
studies (White et al., 2009), co-occurrence pattern discovery
(Dutilh et al., 2014; Fernandez et al., 2015; Fernandez et al.,
2016; Weiss et al., 2016), Bayesian analyses (Rahman Sazal et al.,
2018; Adrian et al., 2019), biomarker identification (Segata et al.,
2011), multi-omics analyses (IHMP Consortium, 2014; Aguiar-
Pulido et al., 2016), and analyses of profiles from longitudinal
studies (Jose et al., 2019; Ruiz-Perez et al., 2019). Lower
sequencing costs have resulted in an increasing number of larger
deep sequencing metagenomic data sets (Muir et al., 2016).

Metagenomic profiles can contain relative abundance values
[either sequence abundance or taxonomic abundance (Sun et al.,
2021)] for the entire collection of microbial taxa present in a sample,
and these profiles can be easily visualized by many software libraries
and frameworks such as Matplotlib (The Matplotlib development
team, 2023) and ggplot2 (Hadley, 2023), as well as data analysis
software suites such as Tableau (Inc. Salesforce, 2023), or even MS
Excel (Microsoft Corp, 2022). These tools are readily available to the
public and allow for data exploration, but are primarily designed for
the analysis of generic tabular data, and do not consider domain-
specific information (taxonomic, phylogenetic, etc.) that may be
crucial for the interpretation of metagenomics data sets. Recent tools
such as WHAM! (Devlin et al., 2018)! allow for explicit
metagenomics-focused analyses, making it possible to dig down
into the data and create useful visualizations for descriptive analyses.

We argue that complex latent properties of microbiomes
embedded in community abundance profiles such as taxonomic

hierarchies and other relationships are not easily described and
visualized in traditional generic plotting mechanisms such as
stacked bar-charts or line-plots. The problem gets more acute as
the sizes of reference genome collections continues to grow
exponentially over time (Nasko et al., 2018), and even novel tools
such as Krona (Ondov et al., 2011) are not able to display large
amounts of reference genomes.

In this work we consider the problem of visualizing a
microbiome using a visualization technique called the Hilbert
Curve Visualization (HCV). We visualize abundance profiles
using the Jasper tool, a free and easy to use software application
that includes both graphical and command-line versions, and
discuss the challenges of visualizing billions of microbial
abundance measurements for hundreds of thousands of microbial
genomes. We propose an alternative visualization technique that is
useful when trying to combine many factors of metagenomic
information in order to create interpretable images that can lead
to improved understanding.

2 Materials and methods

We use a technique called the Hilbert curve visualization (HCV) to
visualize the microbial community abundance profiles of a reference
collection of genomes as a “microbiomemap”. For our experiments, we
used a reference collection of 44K genomes (EMBL-EBI, 2022a), but the
approach is readily scalable to deal with considerably larger collections.
These profiles contain the relative abundance measurements of
thousands of genomes, and they are ordered along a space-filling

FIGURE 1
Taxonomic Ordering. (A) A Taxonomic Ordering of 44,048 reference genomes from Ensembl Bacteria.Microbial neighborhoods are drawn based
on a taxonomic tree for microbial classification. The image depicts the distribution of Genera in the reference collection, and the size of each
neighborhood is consistent to the number of genomes that belong to it. (B) Taxonomic hierarchical treewith three levels of rankings for genomes: Genus,
Species, and Strain. The tree is linearized to create a 1D linear order for the tree’s leaves (Strains). (C) The 1D linear order is laid out onto a 2D plane
using a Hilbert curve, creating microbial neighborhoods of related taxa.
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curve in a 2D square using the Hilbert curve (Hilbert, 1935). Thus, in its
simplest form, it is possible to visualize the profile of a single
metagenomic sample. In the resulting 2D Hilbert image, each
position (or pixel) corresponds to a genome from the reference
collection and the position’s intensity color value represents the
relative abundance of a single genome in the sample.

As discussed below, depending on the ordering of the genomes
that is selected in the software, different “Microbial Neighborhoods”
are created, allowing for different interpretations of the “hotspots” of
abundant genomes in the images. As explained later, the ordering in
Figure 1 allows us to infer taxonomic clades that are most abundant
in a sample, while the ordering in Figure 2 allows us to visualize site-
specific or stage-specific taxa abundant in a sample.

2.1 Space-filling curves

Space-filling curves are popular in scientific computing applications
for their ability to speed-up computations, optimize complex data
structures, and simplify algorithms (Bartholdi and Loren, 1988).
Trees are particularly interesting structures that can be optimized
with space-filling curves because it is possible to generate sequential
orderings of the nodes of the tree in which parent and children nodes
are neighbors in a 2D plane. The combination of trees and space-filling
curves has been shown to be useful in many fields (Bader, 2012), and in
metagenomics this can be useful because the microbial genomes in a
reference database are classified using a taxonomy tree with a hierarchy
of levels (Strain, Species, Genus, etc.). For data from mWGS

experiments, we can presume the leaf nodes of the taxonomy tree to
be microbial strains (Figure 1, panel B)); for 16S data, the leaf nodes are
usually species or genera. Clades of the taxonomy tree correspond to
microbial neighborhoods in the resulting visualization.

2.2 The Hilbert curve

TheHilbert curve is one of themore prominent examples of space-
filling curves, and its construction is based on a recursive partitioning
of a square into four subsquares, and then connecting the centers of
these squares in a specific order. To provide a recursive definition of the
curve, Figure 3A shows the curve at Level 1 when there are only four
squares to connect. The curve at Level k is defined recursively by
dividing the original square into four squares, each with a Level k − 1
curve in it and then connecting these pieces using the template of the
Level 1 curve after appropriate rotation of the four curves.

Many applications exploit the order that space-filling curves
impose on data, and a particular application has been the
visualization of high-dimensional data. The first use of the
Hilbert curve as a visualization tool was proposed by Keim in
1996 (Keim, 1996) to represent stock market data. Since then, it
has been used for visualizing genomic data (Deng et al., 2008;
Anders, 2009) and DNA alignments of whole bacterial genomes
(Wong et al., 2003).

In human genomics, the application of the HCV technique is
straightforward as the natural linear order of genomic positions
can be easily used by the curve, and there are tools for creating

FIGURE 2
Labeled Ordering. (A) Samples are processed in a M x Nmatrix that containsM labeled samples, andNmicrobial taxa. The user specifies the ordering
of the biological conditions that theM samples belong to. For each labeled grouping, the taxa with the highest mean relative abundance is identified and
used as an anchor for a linear order in the Hilbert curve.(B) Resulting Hilbert curve image for 3 samples for a buccal mucosa condition, built using an
averaging ordering scheme from 8 HMP body sites. The “1” and “2” regions within panel (B) highlight representative species clusters which discern
the CKD stages.
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Hilbert curve images from genomics data sets (HilbertVis
(Anders, 2009) and HilbertCurve (Gu et al., 2016). Both of
these tools apply HCV in the context of human genomics: a
single scaffold is modeled as a single one-dimensional (1D) line
in which each interval is taken to be a single genomic position. To
date, the HCV technique has not been applied to metagenomics
data sets.

2.2.1 Visualizing metagenomics data
Traditional 1D visualization techniques that display

community abundance profiles often do not take into account
latent metagenomic factors present in sequencing samples. Pie
charts, line plots, etc., tend to focus on the taxa with the highest
abundances, and have poor resolution for taxa with small
abundances (which sometimes can be critical). Visual
comparison of multiple samples is also difficult as determining
the change in abundance of a single taxon between samples is not
convenient.

Space-filling curves offer an intriguing scheme for visualizing
metagenomics data for their ability to preserve positional data. This
feature can be enhanced with a reference collection’s metadata to
create descriptive images that express metagenomic information
succinctly. The issue of adding new genomes is discussed in detail in
Section 3.2.

The Hilbert curve is not the only space-filling curve with these
features, but its creation is a simple recursive partitioning that can be
implemented elegantly and efficiently in software. Other curves, like
the Peano curve (Peano, 1890), partition the square into 9 or more
regions, which can lead to hard to interpret images when the levels of
the curve are high (levels of 10 or above).

2.2.2 Linear orderings
The first challenge in visualizing abundance profiles with a

space-filling curve is that there is no natural linear order for the
reference collection. Below, we discuss two classes of orderings that
are shown to be useful:

FIGURE 3
Hilbert Curve Visualization of Metagenomic Samples. (A) The first five iterations of the Hilbert curve: the Level 1 curve is obtained by connecting the
centers of the four initial squares as shown; the Level k curve is obtained by a recursive partitioning of each square from Level k −1, creating four Level k −1
curves and connecting them as outlined by the Level 1 curve, rotated appropriately. At level k, the original square is divided into 2k ×2k small squares, each
of whose centers is visited by the Level k Hilbert curve. (B) A representative image of a mWGS Buccal Mucosa sample from the Human Microbiome
Project (HMP) created using a “taxonomic ordering” of 44K reference genomes from the Ensembl database. The color intensity of each position in the
image represents the abundance of one microbial genome. The bordered regions are “Microbial Neighborhoods” and represent groups of related
microbes, and their size corresponds to the number of genomes in the reference collection.
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• Taxonomic Ordering: Based on a taxonomic tree.
• Labeled Ordering: Based on a custom labeling scheme.

The area of the 2D square that bounds a microbiome map is
proportional to the number of unique genomes in the reference
collection. For a curve of size k, we have 2k × 2k linear segments in
which to place a genome in. However, the size of a reference
collection will not always perfectly match the number of
segments. To account for this, we merge adjacent segments along
the curve’s path so that their number is always equal to the number
of genomes in the reference collection. Jasper has controls to
understand a map’s linear order: users can overlay the path of
the curve to follow the map’s layout (Figure 4).

3 Methods

Visualizing a microbiome’s abundance profile starts by aligning
DNA sequencing reads against a reference collection of genomes,
and creating counts of the number of reads that align to each
genome. The cloud-based tool FLINT (Valdes et al., 2019) facilitates
the profiling of mWGS data sets and reports relative sequence
abundances, while the Kraken 2 software does it for both mWGS
and 16S data sets reporting sequence or taxonomic abundances. For

the images shown in this paper, FLINT uses a reference collection of
44,408 microbial genomes from the Ensembl Bacteria database
(EMBL-EBI, 2022a), while Kraken 2 uses a “16S” reference of
5,127 genomes which contains references from Greengenes
(DeSantis et al., 2006), SILVA (Quast et al., 2012), and RDP
(Cole et al., 2014).

Different linear orderings of the taxa on the Hilbert curve result
in different images. In Jasper, users may select from two options: a
taxonomic ordering (Figure 1) which uses the linear order from
Ensembl’s taxonomic tree, or a labeled ordering (Figure 2) which is
based on a custom user-supplied label. The project website at www.
microbiomemaps.org contains a manual with examples that show
how to create them. Note that unlike other applications of HCV to
genomics data (Anders, 2009), microbiome maps do not depict a
single genomic object (e.g., a nucleotide), but rather, each pixel
corresponds to a reference genome, and its intensity to its
abundance in a metagenomic sample.

3.1 Microbial neighborhoods

Different linear orderings produce different Hilbert curve
visualizations, with each resulting in clusters of related microbes
along neighboring regions in the 2D plane. The clustering creates

FIGURE 4
Jasper GUI Version The Jasper GUI software is a tool for interactively exploringmicrobiomemaps. Users can click on any genome in themap and get
a pop-over with detailed information, alongwith links to specific online resources about the genome in Ensembl, Uniprot, andGenbank. Themaps can be
exported and easily shared. Command-line versions of the software (non-interactive) are also available for Python and R.
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unique areas that resemble community neighborhoods in popular
consumer mapping applications like Google Maps (Google, 2023),
and we term these areas “Microbial Neighborhoods” (Figure 1, panel
(A)) as they represent microbes belonging to either the same
taxonomic group, or the same biological condition—the idea
being that they are clustering around a common scheme. These
neighborhoods offer a quick and visual way to readily identify
abundance “hotspots” that can contextualize the important
features of a metagenomic sample and identify important
microbial groups.

3.1.1 Taxonomic neighborhoods
The first option for ordering genomes along the Hilbert curve is

the taxonomic orderingwhich determines a 1D linear order based on
a genome’s taxonomic lineage. In this ordering, pairs of taxa
belonging to the same taxonomic group (say the same Genus or
Species) are placed close to each other along the curve, and
consequently, remain generally close to each other in the Hilbert
image. This ordering scheme creates “Taxonomic Neighborhoods”
that envelop related taxa based on their taxonomic lineage, and as
seen in Figure 1, multiple taxonomic levels can be displayed at the
same time in a single image. The ability of a microbiome map to
display multiple levels of a taxonomic tree at once, while at the same
time providing high-resolution abundance information for single
genomes, is a compelling advantage over visualizing data with 1D
methods were the sheer number of data points would overwhelm the
observer.

An advantage of the Taxonomic Ordering is that it creates a
visual way of depicting the number of reference genomes in the
reference collection, making it possible to compare relative sizes
of clades: the Microbial Neighborhoods in this ordering represent
large clades with many taxa, which in turn occupy large areas of
the map. An example of this case isFigure 3B; 1A which shows
that the Ensembl bacterial database contains large numbers of
strains from the Streptococcus and Staphylococcus genera.

Another advantage of this ordering is that we can quickly
understand the diversity of a reference collection by creating
microbiome maps with no color; these colorless maps create a
visual representation of the reference collection that shows us its
taxonomic distribution.

3.1.2 Linearizing taxonomic trees
Illustrating a taxonomic tree as a 2D Hilbert curve starts by

finding a linear order of the leaf nodes in the tree. Figure 1, panel B),
depicts a fictitious taxonomic tree with 16 microbial strains at the
leaf nodes ordered along a 1D line using a taxonomic ordering
scheme (Section 3.1.1) which groups the 16 strains according to their
parent species and genus groups. Figure 1, panel C), illustrates how
the 16 strains would be laid out on a 2D plane and how the
taxonomic hierarchies are represented as strain, species, and
genus areas in the Hilbert image.

Note that tree structures do not have a natural linear
order—they do not have a “start/finish”, or a “left/right”.
Different tree orderings can result by permuting the tree’s
children nodes at any given node of the tree, and algorithms
for finding an optimal order have been proposed (Bar-Joseph
et al., 2001), but the optimal order relies on the tree satisfying
specific properties (e.g., a binary tree) and the existence of a good

optimality measure. The taxonomic ordering linearizes a tree by
using data from Ensembl’s Pan-taxonomic Compara (EMBL-
EBI, 2022c) and the Ensembl Genomes (EMBL-EBI, 2022b)
databases as the foundation for the Hilbert curve. The
genomes in the database are annotated so that we can
establish a linear order. For mWGS data, the leaf nodes of the
tree are typically at the strain level (for 16S data, the leaf nodes are
at the species or genus level). As shown in Figure 1A, the 2D
square that bounds the Hilbert image represents all genus-level
groups. However, depending on the data and the application this
could be modified to suit the needs so that it represents a good
compromise between taxonomic information and visual
interpretability.

3.1.3 Condition Neighborhoods
The second option for ordering genomes along the Hilbert

curve is the labeled ordering (Figure 2) which creates “Condition
Neighborhoods” by using an ordering scheme that determines the
1D linear order based on a user-supplied labeling of samples.
This labeling is provided as a labeled m × n sample matrix M,
where m are sample rows, and n are the genomes in the
reference database. For sample i and reference genome j, the
matrix entryM [i, j] corresponds to the abundance of genome j in
sample i.

Establishing the linear order for multiple conditions starts with a
user-defined ordering of the set of k conditions, C1, C2, . . . , Ck.
Conditions may represent different disease stages, time intervals,
drug dosage, or sampling locations (body sites, environmental
sites, etc.).

Once we have a condition ordering established, the next task is
to identify taxa whose average relative abundance is highest in C1

and order them first, followed by taxa whose average relative
abundance is highest in C2, and so on, until we terminate the
ordering by taxa that are not abundant in any of the conditions.
Once we have established the ordering, we can then draw the Hilbert
images for each of the samples from the input sample matrix M
according to the established order.

Assigning a color to a taxon based on abundance is only
meaningful if its presence is above the threshold of noise, which
we determine when we normalize the input matrixM. In general, if a
taxon is most abundant in multiple conditions (something that we
have not seen in practice), then we assign it to the first condition as
determined by the ordering criteria. After the conditions have been
organized along the curve, taxonomic information is used to order
genomes within the 2D region of the condition.

In this ordering, the microbiome map is still visualizing only
one sample, but one can readily spot the relevant biological
condition with which it has the most overlap. “Hotspots” will
most likely appear in the region corresponding to one of the
conditions, and users can readily tell what condition the sample
belongs to by identifying the area, i.e., neighborhood, in the
image with the most hotspots. Thus, it is easy to infer by visual
inspection that Figure 2 panel (A) is with high probability a
sample from the buccal mucosa region with some taxa that are
typically abundant in the throat and other oral sites. Similar
inferences are possible with the disease stage or with the
environmental condition of the sample. Clusters of bright
positions will also appear in other neighborhoods [Figure 2,
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panel (B)], as other conditions will contain taxa with high relative
abundances, but not in the same quantities as for the condition
that the sample belongs to.

The process for defining a new custom order is simple. Detailed
instructions and examples can be found at the project website at
www.microbiomemaps.org.

3.2 Adding new genomes or samples

When adding new samples, preserving a genome’s locality or
neighborhood becomes important for drawing consistent and useful
conclusions about changes. This is easy for the taxonomic ordering.
For the labeled ordering, the preservation of locality for a genome is
a little more delicate as the assignment of a genome to a
neighborhood is done by identifying taxa whose mean relative
abundance (or other user-defined metric) is highest in a group of
samples. If the new sample to be added changes a taxa’s mean
relative abundance in the sample’s group, then it could affect the
map’s topology. This is a disadvantage to all mapping orders that
rely on precomputing a value to place taxa in a
neighborhood—especially when that value is computed across a
group of samples, as new samples will require their re-evaluation.
Inserting new genomes to the reference collection could affect all
existing plots because the positions of existing genomes may change.
The addition of new taxa into an existing ordering will also change
the relative abundance of all or almost all taxa, changing the color
intensities of the pixels. Several suggestions to alleviate the
aforementioned problems are provided in Section 4.

4 Results

We created microbiome maps for two groups of metagenomic
data sets: 24 mWGS normal samples taken from the Human
Microbiome Project (HMP) (Human Microbiome Project
Consortium, 2012), and 18 fecal samples (16S) from a
collaboration with Kangwon National University and Seoul
National University in Korea. The 24 samples from HMP
represent 8 different body sites, and the 18 samples from the
Korea study represent 5 stages of Chronic Kidney Disease
(CKD), along with a normal control set. We analyzed the mWGS
HMP samples with the FLINT software (Valdes et al., 2019), and the
16S CKD samples with Kraken 2 (Wood et al., 2019). For the HMP
samples, the metagenomic profiles contained relative abundance
measurements for 44,048 microbial strains, and for the CKD
samples, the metagenomic profiles contained relative abundance
measurements for 5,127 microbial species.

Three samples were selected for our study from HMP from each
of the eight following body sites: Buccal Mucosa, Gastro-Intestinal
Tract, Nares, Palatine Tonsils, Posterior Fornix, Supragingival
Plaque, Throat, and Tongue Dorsum.

Eighteen fecal samples were obtained from CKD patients of
Kangwon and Seoul National University Hospitals. The samples
were selected based on their glomerular filtration rate (see Kidney
Disease Improving Global Outcomes [KDIGO) (KDIGO, 2023)],
and a total of six groups were created: Control, CKD Stage 1 (CKD
1), CKD Stage 2 (CKD 2), CKD Stage 3 (CKD 3), CKD Stage 4 &

5 non-dialysis dependent (CKD 4-5ND), and CKD Stage 5 dialysis
dependent (CKD 5). The CKD stages were determined based on the
deteriorating function of the patient’s kidneys, and three samples
from each group were used.

4.1 Microbiome maps

Microbiome maps for mWGS and 16S data communicate
abundance information at different levels of a genome’s lineage:
for mWGS samples, each position in the image displays information
about microbial strains [the resolution at which abundances are
reported by FLINT (Valdes et al., 2019)]; for 16S samples, each
position in the image displays information about microbial species
[abundances as reported by Kraken 2 (Wood et al., 2019)]. Both sets
of profiles were then converted into microbiome maps using the
taxonomic, and labeled orders.

Figure 1, panel (A), contains a representative image from one
sample of the HMP dataset (Nares) ordered using the taxonomic
ordering scheme. In this image we can clearly see that the
Streptococcus and Staphylococcus groups are abundant in the Nares
sample.While the dominant group would have been obvious even in a
traditional 1D plot, the Hilbert curve visualization ensures that the
smaller taxonomic groups are not overshadowed by the more
abundant groups. Identifying the most abundant taxonomic clades
in a sample only takes a quick glance at the image.

Figure 2, panel (A), contains a map from a Buccal Mucosa
sample of the HMP dataset. The map contains the same 44K
genomes from Figure 1, panel (A), but ordered with a labeled
ordering scheme, based on the highest mean relative abundance
of a genome in its cohort. The advantage of this scheme is that
identifying the biological condition that the sample belongs to is
effortless: one need only to look at the neighborhood that contains
the most hotspots (Buccal Mucosa, in this case).

Figure 2, panel (B), shows six maps of 16S samples from the
CKD analysis created using the labeled ordering scheme, displaying
the abundances for 5,127 species each. The order is based on the
mean relative abundance of the microbes in the samples belonging
to each CKD stage: the most prominent taxa in Stage 1 are
surrounded by the CKD 1 area, the most prominent taxa in
CKD Stage 2 are surrounded by the CKD 2 area, and so on.
Note that the more noticeable regions with a higher density of
brighter regions are from samples of the same cohort and we can
readily identify the CKD stage by looking at the density of hotspots.

What is more significant is the way these plots show the
microbes shared by different stages of the disease. For example,
the region marked “1” in Figure 1, panel (B), shows a group of
microbes that appear in all stages, while the region marked “2”
appears in almost all stages except CKD3 (absent) and Control
(lowered abundance).

By fixing the orderings of the taxa, a microbiome map can be
used to present groups of metagenomic samples that can be
partitioned temporally (longitudinal studies), spatially (body or
environmental sites), by disease (sub)type, by disease stage, and
by developmental stages. Additionally, it is readily possible to create
average microbiome maps, aggregate maps, and differential maps
showing either average, aggregate, or differential abundances,
respectively.
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To address the problem of adding new genomes or samples,
we offer the following suggestions. One possible solution is to
leave “blank” (i.e., unassigned) pixels on the map to allow for
future additions. This could be implemented by inserting the gap
so that the next clade always starts at the boundary of a square
region of size 2k × 2k, for a predetermined value of k. Second,
different parts of the ordering (e.g., a taxonomic clade or a
condition associated with a label) can be assigned different
colors instead of the monochromatic plots shown here.
Finally, it may be useful to always provide a reference
microbiome map to clarify the labeling.

4.1.1 Comparison to other methods
Using 1D visualizations are helpful for condensing information

for multiple samples. However, they lack the ability to display
nuanced information and to scale to deal with the exponential
growth in the databases (44K bacterial strains were used in our
visualizations) while retaining the perspective of the latent
metagenomic relationships. The project website contains samples
visualized with microbiome maps and compared to WHAM! and
iMAP images.

5 Discussion

Jasper produces a single image for each sample it is given as input,
using either a taxonomic ordering or a labeled ordering. Images can
also be used as a single frame of animations that show abundance
“hotspots”, and their fluctuations through a time series, or accross
biological conditions. Figure also 3 panel (B) displays an example of
how the microbiome “moves” throughout the CKD conditions as the
disease stage progresses. Figure 5 contains image frames from a study
by (Gibson et al., 2016), and shows how the microbiome of a single
patient behaves over the course of 2 days. One can see how microbes
are affected by the antibiotic that was administered (Vancomycin and
Ticarcillin-Clavulanate) on day 35, and how clades of microbes

recuperate later (days 38–64). Full resolution images and movies
are available on the project’s website.

5.1 Jasper: visual inspection and command-
line tools

The graphical user interface (GUI) version of Jasper (Figure 4) offers
multiple controls for interactively inspecting microbiome maps, and
integrates with online resources like Ensembl (EMBL-EBI, 2022b),
GenBank (Benson et al., 2012), and Uniprot (The UniProt
Consortium, 2014). In the GUI, users can identify any genome in
the map by hovering their mouse pointer or clicking on any region. If a
user does click, a pop-over is displayed with direct links to the online
resources mentioned above, which provide detailed information about
the genome. Tomake themap’s layout easier to understand, the software
also allows users to overlay the path of the Hilbert curve on top of the
map. The Jasper GUI also includes other tools for researchers, as well as
the ability to exportmaps as high quality vector images. The software can
also be used with no profiles to create Hilbert curves which can be used
for learning about space-filling curves. The GUI software is currently
localized for North America and English-speaking users. We are
working on adapting it to other languages and regions, and also
working on accessibility features to make the software easier to use
for users with disabilities. The Jasper GUI is developed with the Swift
programming language (Apple Inc, 2023b), and is free to use with no
restrictions. There is also a command-line version of Jasper for Python 3
(Python Software Foundation, 2023) and R (The R Foundation, 2023)
that can create multiple images but is non-interactive.

In this work we have shown how the Hilbert curve visualization
technique can be used to visualize metagenomic community
abundance profiles from both mWGS and 16S DNA sequencing
data sets. The resulting microbiome maps display the relative
abundance of microbial genomes in an interpretable manner, and
can convey information about multiple latent factors of the reference
genomes in the samples under study.

FIGURE 5
Animated Microbiome Map. Selected frames of an animated time-series visualization of 12,116 strains for a single patient from (Gibson et al., 2016).
Panel (A): zoomed regions of the Enterococcus neighborhood as it progresses through the antibiotic response. Panel (B): More examples of animated
microbiome maps are available at www.microbiomemaps.org.
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The Hilbert curve is used to lay out the abundance of microbial
taxa from a reference collection using two ordering schemes that can
be used to create amicrobiome map: the first, the taxonomic ordering
is a default ordering that relies on taxonomic information, and can
be used to create images that express abundance values in the
context of taxonomic clades that the genomes belong to. The
second, the labeled ordering, is dependent on a user-specified
labeling of biological conditions, and can express the abundance
values of the profile in the context of a biological interpretation for a
set of samples. Although the aforementioned two orders are the first
ones to be available in the first release of the Jasper software, we are
exploring other orderings that will be incorporated in future
releases, such as orderings specific to time-series analyses, or
multi-omics data sets.

5.2 Website: www.microbiomemaps.org

The website www.microbiomemaps.org is being developed into an
online community resource for cataloguing maps from different data
sets. Future releases of Jasper will allow users to share their maps with
the website directly from the app, and also on social media. The website
will eventually offer curated collections of maps which will be free to use
by the community. Documentation andmanuals for the Jasper software
is available at www.microbiomemaps.org/manual and the GUI version
can be downloaded for free from theMacApp Store (Apple Inc, 2023a),
and requires macOS. A command line interface (CLI) version of Jasper
(Python 3 and R) suitable for high performance computing
environments is also available at www.microbiomemaps.org The CLI
version is non-interactive, but can be used to create batches of images
suitable for featurization tasks in machine learning workflows.
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