
NeighborNet: improved
algorithms and implementation

David Bryant1*† and Daniel H. Huson2,3†

1Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand, 2Algorithms in
Bioinformatics, University of Tübingen, Tübingen, Germany, 3Cluster of Excellence: Controlling Microbes
to Fight Infection, University of Tübingen, Tübingen, Germany

NeighborNet constructs phylogenetic networks to visualize distance data. It is a
popular method used in a wide range of applications. While several studies have
investigated its mathematical features, here we focus on computational aspects.
The algorithm operates in three steps. We present a new simplified formulation of
the first step, which aims at computing a circular ordering. We provide the first
technical description of the second step, the estimation of split weights. We review
the third step by constructing and drawing the network. Finally, we discuss how
the networks might best be interpreted, review related approaches, and present
some open questions.

KEYWORDS

NeighborNet, phylogenetic networks, SplitsTree, split networks, planar graph drawing

1 Introduction

Evolutionary relationships between species are usually visualized using a phylogenetic
tree. When reticulate events are suspected to play an important role, a phylogenetic
network is sometimes considered a more suitable representation. Even when reticulation is
not present, networks can be useful for detecting problems with the data or ambiguities in
the inferred phylogeny. One of the most widely used methods for computing such
networks is NeighborNet, which was published over 20 years ago (Bryant and
Moulton, 2002; Bryant and Moulton, 2004). It takes a distance matrix as input and
produces a planar network as output, aiming to show both evolutionary relationships and
conflicts in the data (see Figure 1).

The NeighborNet method has been applied within a wide range of contexts. A cursory
survey of recent citations reveals applications to sea slugs, monkey pox, angelica, daisies,
butterfly parasites, linguistics, entomopathogenic fungi, mussels, and Wenchang chickens.
The main appeal of the method is that it does not force the given data onto a single
phylogenetic tree, but instead can display incompatibilities in the data.

The computation of a phylogenetic network using the NeighborNet is performed in three
main steps:

1. An agglomerative algorithm is used to compute a circular ordering of the taxa.
2. Non-negative least squares (NNLS) are used to estimate the split weights compatible with

the given ordering.
3. A split network construction method is used to calculate the final network.

In this article, we first provide a new, simplified description of the agglomerative
algorithm, focusing directly on the task of computing a cycle. We then describe (for the first
time) the best-performing methods used to estimate split weights. This includes novel, low-
level matrix multiplication algorithms and a recent survey of relevant NNLS optimization

OPEN ACCESS

EDITED BY

Sean O’Donoghue,
Garvan Institute of Medical Research,
Australia

REVIEWED BY

Mario Inostroza-Ponta,
University of Santiago, Chile
Daming Zhu,
Shandong University, China

*CORRESPONDENCE

David Bryant,
david.bryant@otago.ac.nz

†These authors have contributed equally
to this work

RECEIVED 03 March 2023
ACCEPTED 04 August 2023
PUBLISHED 20 September 2023

CITATION

Bryant D and Huson DH (2023),
NeighborNet: improved algorithms
and implementation.
Front. Bioinform. 3:1178600.
doi: 10.3389/fbinf.2023.1178600

COPYRIGHT

© 2023 Bryant and Huson. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Bioinformatics frontiersin.org01

TYPE Original Research
PUBLISHED 20 September 2023
DOI 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/articles/10.3389/fbinf.2023.1178600/full
https://www.frontiersin.org/articles/10.3389/fbinf.2023.1178600/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2023.1178600&domain=pdf&date_stamp=2023-09-20
mailto:david.bryant@otago.ac.nz

mailto:david.bryant@otago.ac.nz

https://doi.org/10.3389/fbinf.2023.1178600
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2023.1178600

algorithms, followed by a review of techniques for constructing the
network from a set of splits. We provide some thoughts on the
interpretation and misinterpretation of NeighborNet and conclude
with a list of open questions.

2 Splits, compatibility, and circularity

Throughout this article, we use X to denote a set of taxa of size n.
We use S to denote a set of splits on X, where any split S = A|B
consists of two non-empty, disjoint subsets A and B whose union
equals X. Usually, a non-negative weight λ(S) is associated with each
split S. A split is called trivial if one of its two parts has cardinality 1.
For any split S = A|B, let S(x) and �S(x) denote the split part that
contains x or that does not contain x, respectively.

For a set of splits S with weights λ, the split distance between two
taxa x and y is defined as

dS x, y() � ∑
S∈S:

S x()≠S y()

λ S(),

where the sum is over all splits that separate x and y, that is, contain
x and y in separate parts.

Let T be a phylogenetic tree on X, that is, a tree with no
nodes of degree 2 and leaves labeled by elements of X one-to-one.

Any edge (or branch) e in T defines a unique split S = A|B
on X, with A and B being the set of taxa reachable from one end
of e or the other, respectively, without crossing e. The set S(T)
of all splits associated with T is called the split encoding of T,
and a classic result states that any given set of splits S on X
is the split encoding of some phylogenetic tree T if, and only
if, S is “compatible” and contains all trivial splits (Buneman,
1971).

A distance matrix d on X is called additive if there exists a
phylogenetic tree T such that, for any two taxa x and y, the sum of
edge weights along the path that connects them in T equals d(x, y).
Equivalently, formulated in terms of splits, d is additive if and only
if there exists a compatible set of splits S on X and weights such
that d � dS .

A set of splits S on X is called circular if there exists an ordering
θ = (x1, x2, . . ., xn) of the set of taxa such that, for each split S ∈ S, the
elements of �S(x1), with the split part that does not contain x1, appear
consecutively in the ordering (Bandelt and Dress, 1992b). This
property is of interest because any circular set of splits can be
clearly visualized by a planar network with all the taxa appearing on
the perimeter of the network (Dress and Huson, 2004). The circular
ordering determines in which order the taxa are encountered as one
circumnavigates the network.

A distance matrix d is called circular if there exists a circular set
of splits S such that d � dS .

FIGURE 1
Split network of 100 buttercup and related species, computed using the NeighborNet method, based on distances inferred from a multiple
sequence alignment of protein sequences of the cytochrome c gene, downloaded from NCBI. This analysis is available in the examples directory of
SplitsTreeCE.

Frontiers in Bioinformatics frontiersin.org02

Bryant and Huson 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

3 First step: calculation of a circular
ordering

Linkage cluster algorithms (Johnson, 1967) and distance-based
phylogenetic tree algorithms such as the neighbor-joining algorithm
(Saitou and Nei, 1987) use an agglomerative approach to
constructing a tree. Initially, all n taxa are placed on isolated
nodes. The methods then choose two connected components of
the graph and link them via a new parent node. This is repeated until
the graph is connected, and the result is a tree. Algorithms differ by
how they select which components to link and how they set the edge
lengths.

Here, we use an agglomerative approach to create a cycle
rather than a tree. The cycle defines a circular ordering θ of the
taxa. The general outline of the method is presented in Algorithm
1, where we use G = (V, E) to denote a graph with node set V and
edge set E.

1: set G ← (X, ∅) ⊳ Initially, n isolated nodes

2: set A ← X ⊳ set of “active” nodes

3: while G has ≥2 connected components do

4: select two different connected components P and Q in

G, with |P ∩ A| ≤ |Q ∩ A|

5: if P and Q are both singletons then

6: we have P = {p} and Q = {q} with p, q ∈ A

7: create a new edge (p, q) ∈ E

8: else if P is a singleton and Q is a chain then

9: we have P = {p} with p ∈ A and |Q ∩ A| = 2

10: select q ∈ Q ∩ A

11: create a new edge (p, q) ∈ E and remove q from A

12: else⊳ P and Q both chains

13: we have |P ∩ A| = 2 and |Q ∩ A| = 2

14: select p ∈ P ∩ A and q ∈ Q ∩ A

15: create a new edge (p, q) ∈ E and remove p, q from A

16: end if

17: end while

18: create a new edge (p, q) ∈ E between the two remaining

active nodes p, q ∈ A

19: return graph G = (X, E), consisting of a single cycle

Algorithm 1. NeighborNet: Agglomerative Cycle Calculation

Proposition 1. Algorithm 1 returns a cycle.
To see that Proposition 1 holds, note that if the first conditional

expression is true, then two isolated nodes are connected by an edge,
forming a chain of length 1 between two active nodes. If the second
condition holds, then a chainQ is extended by a node p and the set of
active nodes is updated to ensure that precisely the two ends of the
extended chain are active. Otherwise, two chains P and Q are
concatenated into a single chain and the set of active nodes is
updated to ensure that the chain contains precisely two active nodes,
one at each end. Each iteration reduces the number of connected
components by one and so the while loop will terminate after n − 1
iterations.

Assume that we are given a distance matrix d on X as input. To
complete the definition of the agglomerative part of theNeighborNet, we
have to specify how the three different selections are respectivelymade in

lines 4, 10, and 14 on the basis of d. Throughout Algorithm 1, we
maintain and update the matrix d on A, the set of active nodes or taxa.

For any two connected components P and Q, we define the
distance between P and Q as the average distance between the active
nodes contained in P and the active nodes contained in Q, that is,

d P,Q() � 1
|P ∩ A‖Q ∩ A| ∑

p∈P∩A
∑

q∈Q∩A
d p, q().

In line 4, we select a pair of components P and Q that minimizes
the adjusted distance

d′ P,Q() � m − 2()d P,Q() −∑
S

d P, S() −∑
S

d Q, S(),

summing over all components S ≠ P, Q, with m as the total number
of components.

In line 10, we select the node q = Q ∩ A for which the adjusted
distance between p and q is minimized. In more detail, for q ∈ {q1,
q2} = Q ∩ A, we define

r p() � d q1, p() + d q2, p() +∑
S
d′ p{ }, S(),

r q() � d q1, q2() + d q, p() +∑
S
d′ q{ }, S(),

d′ q, p() � m − 1()d q, p() − r q() − r p(),
summing over all components S ≠ P,Q. We select q = q1 if d′(q1, p) ≤
d′(q2, p), else select q = q2.

Similarly, in line 14 we select the pair of nodes p and q that have
minimal adjusted distance. In more detail, for p ∈ {p1, p2} = P ∩ A
and q ∈ {q1, q2} = Q ∩ A, we define

r p() � 1
2

d p, q1() + d p, q2()() +∑
S
d′ p{ }, S(),

r q() � 1
2

d p1, q() + d p2, q()() +∑
S
d′ q{ }, S(),

d′ p, q() � md p, q() − r p() − r q(),
summing over all components S ≠ P, Q. We select p and q that
minimize d′(p, q).

We now describe how to update d. In the first conditional
statement, the set of active nodes A is not changed and so d does not
require updating.

In the second conditional statement, the selected node q is
removed from the active set A and we update

d p, �q() ← 1
3

d p, �q() + d �q, q() + d p, q()(),
where �q denotes the node not selected from {q1, q2} = Q ∩ A. For all
other active nodes r (≠ p, �q), we set

d p, r() ← 2
3
d p, r() + 1

3
d q, r() and d �q, r() ← 2

3
d �q, r()

+ 1
3
d q, r().

In the third conditional statement, the selected nodes p and q are
removed from the active set A and we update

d �p, �q() ← 1
6

d �p, p() + d �p, q() + d �p, �q() + d p, q() + d p, �q() + d q, �q()(),
where �p and �q denote the two nodes that were not selected. For all
other active nodes r (≠ �p, �q), we set

Frontiers in Bioinformatics frontiersin.org03

Bryant and Huson 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

d �p, r() ← 1
2
d �p, r() + 1

3
d p, r()

+ 1
6
d q, r() and d �q, r() ← 1

6
d p, r() + 1

3
d q, r() + 1

2
d �q, r().

(1)
In previous descriptions of the algorithm, the update was performed by
applying the update formulas of the second conditional statement twice,
first to �p and {q, �q}, and then to �q and {p, �p}, potentially introducing an
order dependency (Guo and Grünewald, 2023). The new formula (1)
fixes this shortcoming, although we note that it can return a different
circular ordering than the earlier algorithm in some cases.

These calculations for selecting components and nodes, and for
updating d, may seem quite complicated; however, they ensure that,
if the input distance matrix is circular, then the computed circular
ordering belongs to the associated set of circular splits. This is based
on the following result.

Theorem 2. (Bryant et al., 2007; Levy and Pachter, 2011). Let d be a
circular metric on X and let n = |X|. The pair x, y minimizing

d′ x, y() � n − 2()d x, y() −∑
z

d x, z() −∑
z

d y, z(), (2)

is adjacent in some circular ordering compatible with d.
Note that Eq. 2 is the criterion used to select components to

agglomerate in the neighbor-joining algorithm. If the input
distances d are additive, then the pair x, y minimizing d′(x, y)
corresponds to a cherry (leaves adjacent to the same internal node);
for a simple proof of this fact, see Bryant (2005). It is remarkable that
this result extends to circular metrics.

In the next section, we will discuss how to compute a set of
weighted splits that are compatible with the calculated ordering, and
we have the following result (Bryant et al., 2007).

Theorem 3.NeighborNet is consistent on circular distance matrices.
In more detail, let d be a distance matrix on X and let S be the set of
splits computed by steps 1 and 2 of the NeighborNet algorithm. Then,
we have d � dS if and only if d is circular.

4 Second step: estimation of split
weights

The first step of the NeighborNet method computes a circular
ordering θ. We now describe the second step, in which we set up all
splits that are compatible with the given ordering and then use least
squares to determine their weights. This is a difficult problem to
tackle in practice, and we discuss multiple algorithms to address it.

4.1 Setting up the problem

4.1.1 Linear algebra
Suppose we have a distance matrix d and a circular ordering θ =

(x1, x2, . . ., xn) of the taxa. There is a set of O(n2) splits that are
compatible with any such ordering, given by

S � xp, . . . , xq{ } | X − xp, . . .xq{ }: 1<p≤ q≤ n{ }.

Any choice of non-negative weights {λA|B: A|B ∈ S} for those
splits gives rise to a circular metric d̂ via

d̂ � ∑
A|B∈S

λ̂A|BδA|B,

where δA|B denotes the semi-metric defined as

δA|B i, j() � 1 if A|B separates i and j,
0 otherwise.

{
Note that d̂ is the circular network analog of the additive

distances given by a tree. The aim is to select the split weights so
that this inferred metric d̂ is as close as possible to the observed
distances d. Specifically, we aim to choose non-negative weights
{λA|B: A|B ∈ S} that minimize the sum

∑
i,j

d i, j()−d̂ i, j()()2.
This is an example of a NNLS problem.
The first step is to rewrite the problem using linear algebra.

Definition 4. Let θ = (x1, x2, . . ., xn) be an ordering of the taxa X. For
each k < ℓ, let σ(kℓ) denote the split {xk, . . . , xℓ−1}|{xk, . . . , xℓ−1} so
that

S � σkℓ: 1≤ k< ℓ ≤ n{ }.
Let A denote the (n2) × (n2) matrix with rows indexed by pairs ij,

i < j, columns indexed by pairs kℓ, k < ℓ, and

Aij,kℓ � 1 if i and j are on opposite sides of the split σ kℓ()
0 otherwise.

{
The matrix A has determinant ± 2

(n−1)(n−2)
2 and so is non-singular

(Bryant and Dress, 2006).
We let d and λ denote vectors of observed distances and split

weights, so

dij � d xi, xj()
λkℓ � λσkℓ ,

for all ij and kℓ.
The NNLS problem to be solved is to minimize

f λ() � 1
2
‖Aλ − d‖2,

subject to the constraint that λkℓ ≥ 0 for all k < ℓ. The function f has
gradient

∇f λ() � AT Aλ − d(),
and a (non-negatively constrained) optimum given by the unique
vector λ satisfying (∇f(λ))kℓ ≥ 0 for all kℓ and (∇f(λ))kℓ = 0 for all kℓ
such that λkℓ > 0.

4.1.2 Fast matrix multiplication
In practical applications, the matrix A can be quite large. For

example, if n = 1,000, then A has approximately 500,000 rows and
columns and over 250 billion entries. However, we do not construct
A explicitly in memory. Instead, we use the matrix implicitly, taking
advantage of the structure in thematrix to derive efficient algorithms

Frontiers in Bioinformatics frontiersin.org04

Bryant and Huson 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

for computing Ax, ATx, and A−1x for a vector x. As we shall see, each
of these can be computed in O(n2) time, which is linear in the
number of entries of x.

1. If y = Ax, then

yi i+1() � ∑i
k�1

xk i+1() + ∑n
k�i+2

x i+1()k for i � 1, . . . , n − 1, (3)

yi i+2() � yi i+1() + y i+1() i+2() − 2x i+1() i+2() for i � 1, . . . , n − 2, (4)
yij � yi j−1() + y i+1()j−y i+1() j−1() − 2x i+1()j for 1≤ i< i + 3≤ j≤ n.

(5)

2. If y = ATx, then

yi i+1() � ∑i−1
k�1

xki + ∑n
k�i+1

xik for i � 1, . . . , n − 1, (6)

yi i+2() � yi i+1() + y i+1() i+2() − 2xi i+1() for i � 1, . . . , n − 2, (7)
yij � yi j−1() + y i+1()j−y i+1() j−1() − 2xi j−1() for 1≤ i and i + 3≤ j≤ n.

(8)

3. If y = A−1x, then

y12 � x12 + x1n−x2n()/2, (9)
y1j � x1j + x j−1()n−x1 j−1() −xjn()/2 for 2< j< n, (10)

y1n � x1n + x n−1()n−x1 n−1()()/2, (11)
yi i+1() � xi i+1() + x i−1()i−x i−1() i+1()()/2 for 2≤ i< n, (12)

yij � xij + x i−1() j−1() −xi j−1()−x i−1()j()/2 for 2≤ i and i + 3≤ j ≠ n.,

(13)
Eq. 3 is obtained by summing over all splits separating two taxa

adjacent in the order, while (6) involves a sum over all n − 1 pairs
separated by a split {xi}|X − {xi}. All other identities are
consequences of the observation that if y = Ax, then

xi i+1() � y i−1()i + yi(i+1−y i−1() i+1()(1< i≤ n − 1

xij � yij + y i−1() j−1() −yi j−1() −y i−1()j()/2 1< i< j≤ n.

This is essentially the combinatorial Crofton formula given by
Chepoi and Fichet (1998), though with different indexing.

4.1.3 Numerical error
As the number of taxa increases, the runtime complexity of the

algorithms clearly becomes critical. In our experience, the control of
numerical errors is of equal, or possibly greater, importance. These
issues are not new; there is a vast literature on numerical errors and
their impact on least squares problems; for comprehensive
introductions, see Dahlquist and Björck (2003) and Golub and
Van Loan (2013).

As an illustration, consider the algorithms for computing Ax
and A−1x, outlined in the previous section. Suppose that the number
of taxa n equals 500, and we simulate an n (n − 1)/2-dimensional
vector x by drawing each entry independently from a standard
uniform distribution. If we compute y = Ax and then compute z =
A−1y, then we might expect

z � A−1y � A−1Ax � x.

In practice, we have found that, on average,

‖x − z‖1 � ∑
ij

|xij−zij|≈ 1.2 × 10−7,

while

‖x − z‖2 �
����������∑
ij

xij−zij()2√
≈ 7.3 × 10−10.

The exact figure will depend on the choice of the norm, on n and
also on the architecture of the computer and software. Independent
of the details, we should not expect the calculation of gradients,
function values, and estimates of split weights to be exact.

By itself, this level of imprecision will not necessarily create problems,
as it is hard to envisage a data set where differences to the order of 10–7

would have a noticeable impact on the analysis. Unfortunately, the NNLS
problem that we have to solve is ill-conditioned, that is, small changes in
the data or small errors in the computation can get amplified and cause
serious difficulties. The condition number of a matrix with respect to the
standard Euclidean norm ‖ ·‖ is defined (Golub and Van Loan, 2013) as

κ2 A() � ‖A‖2‖‖A−1‖2 � max
‖x‖�1

‖Ax‖ ·max
‖x‖�1

‖A−1x‖.

The larger the condition number of A, the more sensitive the
solution of the linear equation Ax = y is to changes in y.

We do not have an exact analytical formula for the condition
number κ2(A) of A, but calculations for n ≤ 50 suggest that κ2(A)
grows faster than 4

5
n(n−1)

2 . Hence, as a heuristic, if y has an error with
magnitude ϵ‖y‖, then when solvingAx = ywith n taxa, we should not
expect an error in x with magnitude less than 105ϵ|x|. This is a
property of the NNLS problem, not of the data or of the computer
that the calculations are being carried out on.

These numerical issues have practical ramifications. Because of
the size of the problems that we consider, we will typically use iterative
algorithms to solve the various linear systems which arise. Numerical
issues can lead to a failure of convergence for these methods. Even
when the methods do converge, we still have to specify some kind of
stopping condition. Any stopping condition needs to be realistic with
respect to the level of accuracy which could possibly be achieved. Even
deciding whether a solution is approximately optimal becomes
challenging.

4.2 Methods

NNLS is a classical problem of numerical optimization and several
strategies are available.We review three separate approaches and describe
themodifications that we have developed to adapt them to our problems.

To facilitate comparisons between the methods, we use the same
initial split weights and the same criterion for convergence each
time. The initial split weights are determined by

λ � A−1d

using the aforementioned methods and replacing the negative entries
with zeroes. If all entries of A−1d are initially non-negative, then this
will be the optimal NNLS solution and no iterations are necessary. As

Frontiers in Bioinformatics frontiersin.org05

Bryant and Huson 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

a consequence, if d is already a circular metric, then split weights are
determined optimally in O(n2) time.

If the initial conditions are not already optimal, the iterative
algorithms are called until a convergence criterion is satisfied. For
any putative solution λ, we compute the projected gradient g defined by

gij �
∇f λ()()ij λij > 0;

min ∇f λ()()ij, 0() λij � 0.

⎧⎪⎨⎪⎩
Then, ‖g‖2 = 0 if and only if λ solves the NNLS problem. To

account for numerical imprecision, we consider that the method has
converged when ‖g‖2 < δ. The default value that we use for δ is
10–8‖ATd‖2, which scales with n and is similar to the stopping criteria
used in the SplitsTree4 method.

4.2.1 Active-set method
The active-set method (Lawson and Hanson, 1995; Nocedal and

Wright, 2006) is one of the most widely used algorithms for solving
NNLS problems. It is themethod used for computing split weights in
the SplitsTree4 (Huson and Bryant, 2006). The active set is a set of
indices A � {ij: λij � 0} for which the corresponding split weight is
zero. Given A, we define an equality-constrained subproblem

min
λ

‖Aλ − d‖,

subject to the constraint that λij = 0 for all ij ∈ A. Note that this
subproblem does not constrain the elements of λ to be non-negative.
The aim is to determine an active set A such that

1. The solution λ* to the equality-constrained problem is non-
negative and

2. ∇f(λ*)ij ≥ 0 for all ij ∈ A,

so that λ* is the solution to the NNLS problem.
During each iteration, we update the active set A and feasible

solution λ, so that λij = 0 for all ij ∈ A. The iterations are designed so
that ‖Aλ − d‖ decreases monotonically.

1: λ ← any feasible solution

2: A ← ∅

3: loop

4: repeat

5: let λ* minimize ‖Aλ − d‖ such that λij = 0 for

all ij ∈ A
6: if λ* is infeasible then

7: let λ be the feasible point on the line from λ to λ*

which is closest to λ*

8: A ← {ij: λij � 0}
9: end if

10: until λ* is feasible

11: g ←AT(Aλ* − d)

12: if gij ≥ 0 for all ij ∈ A then

13: Return λ*

14: end if

15: Remove the pair ij from A that minimizes gij

16: λ ←λ*

17: end loop

Algorithm 2. Active-Set Method
A key component of the active-set method is the algorithm used

to minimize ‖Aλ − d‖ over all λ such that λij = 0 for all ij ∈ A. Let B
denote the matrixA restricted to columns not indexed by pairs inA.
This equality-constrained minimization is equivalent to finding y
which solves the normal equation:

BT By − d() � 0.

Two standard algorithms for solving this kind of linear system
are QR decomposition and Cholesky decomposition (Golub and
Van Loan, 2013). Neither is practical for the size of problem that we
are dealing with here due to both running time and memory
requirements. In SplitstreeCE, we use CGNR (Saad, 2003), a
version of the conjugate gradient algorithm designed for solving
normal equations. The algorithms of Section 4.1.2 can be used to
efficiently multiply vectors by B or BT without having to construct
either matrix in memory.

The classical implementation of the active-set method only
allows the active set A to change by one variable, or a few
variables, in each iteration (steps 8 and 15). In our experience,
the global solution typically has Ω(n2) entries in the active set,
requiring many iterations just to insert sufficiently many entries in
A. For this reason, we allow many variables to enter the active set in
each iteration. We choose ρ ∈ (0, 1), sort the entries in {ij: λij* < 0}
and add a proportion ρ of these entries to A, choosing those for
which λij

(λ−λ*)ij is the smallest. We use a default value of ρ = 0.6 in
SplitsTreeCE.

Under exact arithmetic, CGNR typically converges to a
solution in finite time much more quickly than exact linear
equation solvers. In practice, for large problems, numerical
problems can cause the method to break down and either
converge very slowly or not converge at all. We found that for
large problems, the algorithm often took too long to converge.
Figure 2A gives a plot of the (log) residual versus iteration for a
typical call to CGNR on the Streptococcus agalactiae data of
Morach et al. (2018). The graph shows the initial rapid
convergence followed by a long tail of linear convergence. The
residual reduces each iteration, but too slowly. We tried
implementing periodic restarts, but this had little effect. We
also designed a number of preconditioners (Saad, 2003) but
were unable to find one which reliably improved the
performance.

Our strategy is to not run CGNR to convergence. This is similar
to a standard restart, the difference being that we update the active
set between runs. We bound the number of iterations of the CGNR
by 50 or the number of taxa, whichever was larger.

Figure 2B shows the rate of convergence plot for the active-
set method as applied to the S. agalactiae data, both with and
without running CGNR to convergence, as a function of wall-
clock time (on a MacBook Air 2021). For both curves, the error
initially remains high, before dropping rapidly. This is to be
expected, and reflects the fact that once a good active set is
identified, the convergence is extremely rapid. Also note that
restricting the number of iterations of CGNR gives a two-fold
increase in speed.

Frontiers in Bioinformatics frontiersin.org06

Bryant and Huson 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

4.2.2 Gradient projection method
In each iteration of the active set method, we start at a feasible

point λ and move as far as we can toward the (approximate)
solution λ* of the subproblem, while still remaining feasible. The
gradient projection method takes a different approach. Instead of
moving along the line from λ to λ* and stopping as soon as the
point becomes infeasible, it moves along the line from λ to λ* and
projects any infeasible points back into the feasible region
(Nocedal and Wright, 2006).

Given a point λ, let π(λ) denote the feasible point which is closest
to λ, that is, π(λ) is a vector with

π λ()ij � λij if λij ≥ 0
0 if λij < 0.{

More compactly, π(λ)ij = max(λij, 0). For the gradient projection
algorithm, we select a search direction (in this case, the search
direction p = −∇f(λ) of the steepest descent) and carry out a one-
dimensional line search with respect to the function

q t() � f π λ + tp()() � 1
2
‖A π λ + tp()() − d‖2. (15)

Each pair ij of indices with pij < 0 is associated to a breakpoint tij
such that (λ + tijp)ij � 0. When t < tij, we have π(λ + tijp)ij> 0;
otherwise, π(λ + tijp)ij � 0. For values of t lying between
consecutive breakpoints, q(t) is quadratic.

Nocedal andWright (2006) propose a line search strategy which
examines breakpoints in the order of increasing magnitude,
stopping when q(t) reaches a local minimum. This strategy works
well for small numbers of taxa, however, when n is large, the number
of breakpoints becomes large, the gaps between them become tiny,
and the algorithm grinds to a halt.

Instead, we implemented a version of the gradient projection
method due to Cartis et al. (2012), though simplified, as we do not
require trust regions and do not incorporate regularization. In this

approach, the line search can terminate before reaching a local
optimum, provided the technical conditions are satisfied (see Conn
et al., 2000, Section 12.1; Cartis et al., 2012), conditions which
guarantee convergence of the method.

1: λ ← any feasible solution

2: while λ is not optimal, do

3: p ← − AT(Aλ − d)

4: Let t* be the first local optimum of q(t) = ‖A(π(λ +

tp)) − d‖
5: λc ← π(λ + t*p)

6: A ← {ij: λcij � 0}
7: end while

Algorithm 3. Gradient Projection Method
We carry out several iterations of the conjugate gradient

algorithm to find λ* such that f(λ*) ≤ f(λc) and (λ*)ij for all
ij ∈ A. We then find t, which minimizes

f π λc + t λ*−λc()()(),
and let λ = π(λc + t(λ* − λc)).

The rate of the convergence plot for the S. agalactiae data set is
shown in Figure 2B. Initially, the error drops quickly, more quickly
than for the active-set method. The rate of convergence then slows,
and the projected gradient norm fluctuates significantly from one
iteration to the next.

4.2.3 Accelerated projected gradient descent
method

The accelerated projected gradient descent (APGD) method
(Nesterov, 2003; Mazhar et al., 2015) is a first-order method
(using only first derivatives) and yet exhibits a guaranteed rate of
convergence. The basis of the method is a projected version of the
steepest descent

FIGURE 2
(A) Convergence (in the norm of the gradient) of the CGNR method and (B) convergence (in the norm of the projected gradient) of the active-set,
gradient projection, and APGD methods, as a function of wall-clock time.

Frontiers in Bioinformatics frontiersin.org07

Bryant and Huson 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

λ k+1() � π λ k() − α∇f λ k()()(),
where (as previously mentioned) π(λ) is the vector formed by
replacing the negative entries of λ with 0 and α is a carefully
chosen step length. Nesterov devised several acceleration
modifications. These are often described as including
“momentum” in the optimization algorithm. We implement an
adaptive scheme which resets the momentum term if the objective
function increases during an iteration.

1: λ(0) ← any feasible solution, y(0) ←λ(0)

2: Choose θ0 ∈ (0, 1)

3: for k = 0, 1, 2, . . . until convergence do

4: g ←AT(Ay(k) − d))

5: λ(k+1) ← π(y(k) − 1
‖ATA‖g)

6: θk+1 ← −θ2k+θk
����
θ2k+4

√
2

7: βk+1 ← θk(1−θk)
θ2k+θk

8: y(k+1) ←λ(k+1) + βk+1(λ(k+1) − λ(k))

9: if gT(λ(k+1) − λ(k)) > 0 then

10: y(k+1) ←λ(k+1)

11: θk+1 ←θ0

12: end if

13: end for

Algorithm 4. Accelerated Projected Gradient Descent Method
In our experience, there was essentially no difference in

performance for α0 = 0.1, 0.5, 0.9, or 1.0. The plot in Figure 2B
shows a steady rate of convergence, initially fast and then
leveling off.

4.3 Performance comparison

To compare the different approaches described above, we
selected 1,200 prokaryotic genomes that have a mash distance
of <0.3 from Escherichia coli K12, using a sketch size of
10,000 and k-mer size of 21 (Ondov et al., 2016) and computed
all pair-wise mash distances between them. From this distance
matrix, we randomly subsampled 20 replicates of smaller distance

matrices of sizes n = 50, 100, 140, . . ., 1,000. For each such replicate,
we computed a circular ordering and then applied the active-set
method, gradient projection method, or APGD method, as well as
the “SplitsTree4”method that is the implementation of the active-set
method that uses SplitsTree4 (Huson and Bryant, 2006).

The results of this study, summarized in Figure 3, suggest that
the APGD is the fastest method, while the active-set method is the
second fastest, providing the best fit (equal to the fit of the old
implementation of the same method in our program SplitsTree4),
and the smallest number of splits. The gradient projection method
runs the slowest, producing many more splits, with a much poorer
fit. Times reported are the wall-clock times, running all four
methods in parallel on a Mac Pro 2020 workstation. Based on
these observations (which we also confirmed on two other data sets
that are not shown here), in our program the SplitsTreeCE, we made
the (modified) active-set method the default method.

5 Third step: construction of a network

The third main step of the NeighborNet is to construct and draw
a network that represents the set of circular splits calculated in the
first two parts of the method. This step is described in Dress and
Huson (2004) and a simplified visualization is provided in Bagci
et al. (2021).

5.1 Split networks

As discussed above, if we are given a set of splits S on X that is
compatible (and contains all trivial splits), then a phylogenetic tree T
can be used to represent the set of splits; there is a one-to-one
correspondence between splits and edges in the tree. In a drawing,
the edges are usually scaled to represent the corresponding split weights.

More generally, any set of splits S on X can be represented by a
split network N. In such a network, each split S = A|B is represented
by a set of edges (usually drawn as parallel lines of the same length)
with the property that deleting those edges will result in exactly two
connected components, one containing the set of taxa A and the

FIGURE 3
For each data set of size 50–1,000, averaged over 20 replicates per size, and for each of four constrained least-squares approaches, we report (A)
wall-clock time in seconds, (B) number of internal splits, and (C) percent fit (as defined in Section 6.2.1).

Frontiers in Bioinformatics frontiersin.org08

Bryant and Huson 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

other containing B. The convex hull algorithm (Bandelt et al., 1995;
Dress and Huson, 2004) can be used to compute a split network for
any set of splits, resulting in an exponential number of nodes and
edges in the worst case.

The first two steps of the NeighborNet compute a circular
ordering θ = (x1, x2, . . ., xn) and a set of splits S that are
compatible with that ordering. For these data, there exists a split
networkN that represents S that is outer-labeled planar, that is, it can
be drawn in such a way that no two edges cross and all taxa appear on
the perimeter of the network. We show an example in Figure 4.

Here, we summarize the main properties of a split network.
(N1) Each edge is associated with a single split, and each split is

associated with at least one edge.
(N2) Removing all the edges associated with some split divides

the network into two connected components. Each component
contains the taxa on one side of the split.

Both of these properties also hold trivially for unrooted
phylogenetic trees. They imply that, for any two taxa x and y, a
path from x to y in the network will cross at least one edge associated
to each split that separates x and y. In fact, a stronger property holds.

(N3) The edges along any geodesic (shortest path) in the graph
are associated with different splits.

Hence, for any taxa x and y, any shortest path from x to y
contains exactly one edge associated with each split separating x and
y. Alternatively, we can replace (N3) by the following convexity
property.

(N3’) For any split, the two associated connected components
are convex, that is, each contains all the shortest paths between any
two nodes.

Properties (N1) to (N3) guarantee that the edges along any
shortest path between the taxa correspond exactly to the splits
separating those taxa. As a consequence, the total length of the
shortest path between the two taxa x and y is exactly

d x, y() � ∑
S∈S,S x()≠�S x()

λ S(),

where the sum is over all splits that separate x and y. This implies
that the split network is a faithful representation of the
decomposition into split metrics.

Split networks are known in other branches of mathematics
as partial cubes, which mean that there is a map from the graph to
a hypercube that preserves distances. It follows from this that we
can assume the following property for any drawing of a split
network.

(N4) The edges associated with a split A|B are parallel line
segments with the length equal to the weight of the split A|B.

5.2 Planar split networks

To draw a split network, we have to assign coordinates to all
nodes. We will discuss this for circular splits. The NeighborNet is
an attractive visualization technique because of the following
result.

Theorem 5. A set of splits S on X that is compatible with a circular
ordering θ = (x1, . . ., xn) can be represented by a split network N that
is outer-labeled planar.

One way to show this is using de Bruijn’s dualization (de Bruijn,
1986). We place the taxa on the unit circular in the order θ and then
represent each splitA|B by a line that separates those two parts of the
split. This is known as a line arrangement. The dual is the graph N
obtained by placing a node on each taxon and in each bounded
region of the arrangement. The edges are placed between any two
nodes whose regions intersect along a line segment. This
construction is demonstrated in Figure 5.

A general characterization of when a collection of splits S has a
planar splits network was worked out by Balvociute et al. (2017)
using orientedmatroids and the Bohne–Dress theorem (Bohne et al.,
1992). The result of which was more general than we require since
the NeighborNet only produces networks from circular splits. The
first proof that these split networks have planar drawings was given
by Dress and Huson (2004), who also provide the equal-angle
algorithm for efficiently constructing and drawing these networks
(also see Gambette and Huson, 2008; Phipps and Bereg, 2011). The
equal-angle algorithm is the one usually used to perform step 3 of the
NeighborNet algorithm, as implemented in our SplitsTree programs
(Huson and Bryant, 2006).

FIGURE 4
For 11 listed splits on X = {a, b, c, d, e, f} and weights, we show their representation as a split network, with edges labeled 1 − 11 to indicate the
associated splits.

Frontiers in Bioinformatics frontiersin.org09

Bryant and Huson 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

In both the equal-angle algorithm and outline algorithm (Bagci
et al., 2021), we first assign an angle to each taxon based on its
position in the ordering θ = (x1, . . ., xn), setting α(xi) � (i−1)

n 360°.
For each split S, we define its angle α(S) as the average angle assigned
to the taxa contained in �S(x1). The edges representing S are drawn
using this angle and their lengths reflect the weight of the split (using
additional considerations to place the edges; for more details, see the
cited works).

6 Interpretation of NeighborNet output

Split networks produced using the NeighborNet are a
generalization of phylogenetic trees and must be interpreted
accordingly (see Figure 1). In this section, we give some general
guidelines to help this process.

6.1 The networks do not explicitly depict
evolutionary scenarios

The most important fact to take into account is that a split
network does not provide an explicit evolutionary scenario (Huson
et al., 2010); internal nodes usually do not correspond to putative
ancestors and edges do not always represent different lineages or
reticulation events. Such a network provides an implicit
representation of evolution in which the key features are the
splits and their weights (or lengths).

6.2 The networks represent distances

In a phylogenetic tree, the length of the path between two taxa
represents the inferred evolutionary (patristic) distance between the
two taxa. Distance-based methods typically work by first estimating
pair-wise distances between sequences and then finding an
evolutionary tree so that the distances in the tree approximate
the distances used as input.

In a split network, the length of the shortest path between two
taxa represents the inferred evolutionary (patristic) distance.
Because split networks are a generalization of phylogenetic trees,
that often allow a better approximation of the input distances than
can be realized using a tree.

In SplitsTree, the closeness of approximation is measured using
a fit statistic. Let dij denote the input distances and pij denote the
distances in the network. The fit statistic is defined as

fit � 1.0 − ∑i,j dij − pij()2∑i,jd
2
ij

,

reported as a percentage. If the network distances exactly match the
input distances, then the fit is 100%.

In our experience, the fit statistic for biological sequence data is
usually above 90%, indicating that the distances in the network
provide a good approximation of the input distances. However, it is
easy to construct the input data that give rise to a poor fit. In
particular, Euclidean distances are not well suited as input, although
they fit well with multi-dimensional scaling techniques. A low-fit
statistic indicates that the network provides only a poor
approximation of the input distances and so inferences should be
made from the network with caution.

6.3 The networks are not based on
generative model

A widespread trend in statistical phylogenetics is to carry out
inference using complex stochastic and generative models. The models
are constructed so as tomimic asmany different evolutionary processes as
possible. These analyses prioritize statistical power, which makes good
sense if the model is reasonable and there are no surprises in the data.

The NeighborNet algorithm is not based on a generative model.
There are no model parameters or prior distributions controlling
where and how frequently reticulations occur. The only model of
data variability is the assumption of noise in the distance data
implicit in the least squares approach.

FIGURE 5
(A) Splits from Figure 4 drawn as lines separating points on a circle and (B) the corresponding dual graph.

Frontiers in Bioinformatics frontiersin.org10

Bryant and Huson 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

Because the method is statistically consistent on circular
metrics, we can say something about what the NeighborNet
will do when applied to data generated according to a
corresponding phylogenetic model. When the input distances
are additive, the NeighborNet will return the corresponding tree.
When the distances are almost additive, the NeighborNet will
return a split network that is close to a tree. If a distance is
generated from a mixture of trees and the combined splits of
those trees are circular, then the NeighborNet will represent the
averaged splits of the trees. This applies, for example, to a pair of
trees which differ by a single subtree transfer operation.

It is possible to bind the expected error that is introduced by
applying distance corrections for alignments composed of multiple
heterogeneous blocks (Bryant et al., 2003).

6.4 The networks are akin to phylogenetic
scatter plots

A useful analogy to use when interpreting the output of the
NeighborNet is a scatter plot. Suppose that we have a collection of
pairs of values (xi, yi), with 1 ≤ i ≤ n, and assume that we suspect that
the values are generated using a simple model

yi � αxi + β + ϵi,

where the two variables α and β are the parameters being inferred
and the ϵi values are independent random variables. The true model
is essentially a line and so a model-based inference would focus on
the line inferred or the corresponding parameters, perhaps with
their uncertainties. When we produce the scatter plot, we are not
making assumptions about the underlying model, nor are we
necessarily making concrete progress toward inferring the true
values of the parameters. Instead, we are learning more about the
data and their suitability for the model-based analysis that we might
have planned.

Just as a scatter plot might reveal outliers or strange patterns in
the data, a NeighborNet might reveal errors in sequencing or
labeling, or perhaps indicate the potential of conflicting signals in
the data whichmight make use wary of assuming the suitability of an
analysis based on a single tree.

In this sense, the process of going from distance data to a
split network in the NeighborNet is closer to a data transform than
a model-based inference. The method shares similarities to
Hadamard conjugation (Hendy and Penny, 1993), which also
produces a set of splits with weights. In the case that the splits
are circular, the NeighborNet applied to correct distances provides
an approximation of the spectrum produced by Hadamard
conjugation; an approximation which gets more and more
accurate as the sequence length increases.

7 Open problems and related work

Despite 20 years of work examining and improving the
NeighborNet, there are several problems that remain open.

7.1 Simplifying the NeighborNet ordering
algorithm

At present, the NeighborNet algorithm uses a two-stage selection
process when choosing how to join chains: first the two chains are
chosen and next the ends to be joined are selected for either chain. We
wish to determine whether this step can be reduced to a single-stage
criterion or whether such a simplified algorithm is impossible is
determined, see Bryant et al. (2007).

7.2 Searching through circular orderings

A standard strategy for inferring a phylogeny is to start with a
tree that is determined using a heuristic such as the neighbor-joining
and then carry out local search to optimize some criteria. The same
strategy could be implemented for inferring circular networks;
however, the question is which criterion to use.

Bandelt and Dress (1992b) observed that if d is a circular metric,
then a permutation σ corresponds to a circular ordering (xσ(1), xσ(2), . . .,
xσ(n)) compatible with d if and only if the tour length

ℓ σ() � d xσ 1(), xσ 2()() + d xσ 2(), xσ 3()() +/ + d xσ n−1(), xσ n()()
+ d xσ n(), xσ 1()(),

is minimal. Hence, we can infer a circular split network consistently
by solving the travelling salesman problem (TSP). This approach
was explored by Eslahchi et al. (2010), who proposed a simple
insertion scheme followed by randomized local search to find an
ordering with small total length.

One problem in using the TSP to infer the ordering is that it
appears highly vulnerable to noise in the distance estimates. With
such a large number of different pairs, there is a reasonable chance
that one distance might be substantially underestimated, with
significant, random, impact on the minimal tour.

A potential solution for this problem is to use a related criterion
which involves averages of larger numbers of distances, and thereby
reduces the impact of the outliers. Suppose that X is the set of taxa and
Y ⊆ X. The restriction d|Y of the distance matrix to elements in Y will
also be a circular metric. Furthermore, if σ corresponds to a circular
ordering compatible with d, then the restriction σ|Y of σ to elements inY
will be a circular ordering compatible with d|Y. This suggests a criterion

ℓw σ() � ∑
Y⊆X

w|Y|ℓ σ|Y(),

where w is a set of non-negative weights such thatw|X| > 0. Then, σ is
compatible with a circular metric d if and only if ℓw(σ) is minimized.
This criterion is consistent, involves averages of many estimates and
can be computed efficiently by carefully determining the
contribution of each distance pair d(xσ(i), xσ(j)).

7.3 Faster estimation of split weights

Say that practical implementations of the NeighborNet can
take a prohibitive amount of time to run on a data set of several

Frontiers in Bioinformatics frontiersin.org11

Bryant and Huson 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

thousand taxa. Then, the computational bottleneck lies in
the NNLS estimation of the split weights. The experimental
results that we report represent only a small fraction of the
total strategies attempted to make the NNLS algorithm run
more quickly. As mentioned, the running time is only one
factor, and the increase in numerical errors with more taxa is
of comparable significance.

In the past (SplitsTree4), we used the active-set method; now,
we use an improved implementation of such a method
(SplitsTreeCE). Both implementations make repeated calls to
CGNR, the conjugate gradient algorithm, so speeding up CGNR
would make a direct and substantial impact on the running time
of our implementation of the NeighborNet. The standard
technique for making conjugate gradients run better is to use
preconditioning (Saad, 2003); however, we have been unable to
design a preconditioner that gives a reliable improvement in
running time. Such a preconditioner would have to take
advantage of the special structure of the matrix A, restricted to
a subset of columns.

It may make more sense to avoid NNLS completely. The least
squares method is familiar and mathematically attractive, but does
not best capture the error in the observed distances. It may be
possible to adopt a different criterion that retains some of the
regularization ability of NNLS but can be computed far more
efficiently.

7.4 NeighborNet for non-distance data

Usually, reducing a data set down to a distance matrix
entails a significant loss in information. There have been several
investigations into adapting NeighborNet for other types of data.

A quartet is an unrooted, binary (fully resolved) phylogeny on
four taxa. The quartet with taxa a and b separated from taxa c and d
by the internal branch is denoted by ab|cd. One persistent
paradigm for constructing phylogenetic trees is to first infer a
collection of quartets on different subsets of taxa and use
combinatorial algorithms to assemble these quartets into a full
phylogeny.

The problem of constructing circular split networks adapts well
to quartet data. Grünewald et al. (2007) explored this approach
extensively, resulting in the QNet, a method that can be described as
a quartet version of the NeighborNet. Hassanzadeh et al. (2012)
implemented a simulated annealing algorithm to maximize a
quartet-based criterion for circular “super”-networks.

7.5 Inferring circular networks from trees

As previously mentioned, we considered different coefficients
for updating the distance matrices during the agglomeration
step. There is also scope for different weights when computing
the distances between clusters in the first selection step. Levy
and Pachter (2011) explored the effect of these weights
and demonstrated that the weights can be chosen such that the
neighbor-joining tree is embedded in the network. A consequence

(which also follows from Theorem 2) is that the neighbor-joining
algorithm could, by itself, be used to help construct circular split
networks (Guo and Grünewald, 2023).

The theorem suggests a new approach to infer split networks:

1. Infer an unrooted phylogenetic tree T (e.g., using the neighbor-
joining).

2. Search through circular orderings which are compatible with the
splits of T.

3. Estimate split weights for the corresponding circular splits.

Guo and Grünewald (2023) propose an integer linear
programming algorithm for the second step. The PQ-tree–based
algorithm for the TSP of Burkard et al. (2005) could also be used,
though it might be worth adapting the algorithm to optimize a
criterion that is not so vulnerable to random error.

7.6 Taking advantage of structure in the
alignment

One of the strengths of the NeighborNet is that it only requires
distance data, so it can be applied in a wide variety of contexts.
This is also one of its weaknesses. The reason is that the process
of computing distances from an alignment discards all of the
structural information on which groups of sites support which
phylogenetic signals.

As an illustration, consider the phi test (Bruen et al., 2006) for
recombination, a method which performs well in many situations.
The phi test evaluates a statistic that measures the extent to which
nearby sites are more compatible than distant sites and tests for
recombination by seeing how this statistic compares to those for the
same alignment with sites randomly permuted.

In a NeighborNet analysis, permuting the sites has no effect
on the distance estimation, so all of the signals in the data that
the phi test uses to detect recombination is ignored by the
NeighborNet. Addressing this while still maintaining the speed
and practicality of the NeighborNet would represent a significant
step forward.

8 Summary

The NeighborNet algorithm is related to the split
decomposition (Bandelt and Dress, 1992a), neighbor-joining,
and pyramidal clustering methods (Diday, 1984), yet differs
substantially from all these methods. The algorithm is widely
used in many different fields due to its ability to quickly visualize
data and incompatibilities.

The second step of the program is computationally intensive.
This has been a significant practical limitation, one which was quite
challenging to overcome. There is also scope for exploring facets of
the data which are not preserved in distance data.

The kind of analysis carried out using the NeighborNet is
complementary to many of the accepted approaches to
phylogenetic, phylogenomic, and phylodynamic analyses. The

Frontiers in Bioinformatics frontiersin.org12

Bryant and Huson 10.3389/fbinf.2023.1178600

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

analysis more resembles a signal transform or spectral analysis than
an estimation of model parameters. While the NeighborNet does not
address the problem of inferring the finer parameters of a
sophisticated model, it is widely used for data representation and
exploration.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material; further inquiries can be directed
to the corresponding author.

Author contributions

DB wrote the initial draft of the manuscript and did the work on
split weight estimation. DH created the SplitsTreeCE software
package and implemented the network visualization algorithms.
Both authors developed the new formulation of the agglomerative
cycle calculation algorithm and both wrote the full manuscript and
approved the final version.

Funding

The authors thank the Royal Society Te Apārangi
(New Zealand) for funding under the Catalyst Leader program
(Agreement # ILF-UOC1901). They acknowledge support by the
Open Access Publishing Fund of the University of Tübingen.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, editors, and reviewers. Any product thatmay
be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Bagci, C., Bryant, D., Cetinkaya, B., and Huson, D. H. (2021). Microbial phylogenetic
context using phylogenetic outlines. Genome Biol. Evol. 13, evab213. doi:10.1093/gbe/
evab213

Balvociute, M., Bryant, D., and Spillner, A. (2017). When can splits be drawn in the
plane? SIAM J. Discrete Math. 31, 839–856. doi:10.1137/15m1040852

Bandelt, H.-J., and Dress, A. (1992a). Split decomposition: A new and useful approach
to phylogenetic analysis of distance data.Mol. Phylogenetics Evol. 1 (3), 242–252. doi:10.
1016/1055-7903(92)90021-8

Bandelt, H.-J., and Dress, A. W. M. (1992b). A canonical decomposition theory for
metrics on a finite set. Adv. Math. 92, 47–105. doi:10.1016/0001-8708(92)90061-o

Bandelt, H. J., Forster, P., Sykes, B. C., and Richards, M. B. (1995). Mitochondrial
portraits of human populations using median networks. Genetics 141, 743–753. doi:10.
1093/genetics/141.2.743

Bohne, J., Dress, A. W. M., and Fischer, S. (1992). A simple proof for de Bruijn’s
dualization principle. Sankhya. Ser. A 54, 77–84.

Bruen, T. C., Philippe, H., and Bryant, D. (2006). A simple and robust statistical test
for detecting the presence of recombination. Genetics 172, 2665–2681. doi:10.1534/
genetics.105.048975

Bryant, D., and Dress, A. W. M. (2006). Linearly independent split systems. Eur.
J. Comb. 28, 1814–1831. doi:10.1016/j.ejc.2006.04.007

Bryant, D., Huson, D., Kloepper, T., and Nieselt-Struwe, K. (2003). “Distance
corrections on recombinant sequences,” in Wabi (Cham: Springer), 271–286.

Bryant, D., and Moulton, V. (2002). “NeighborNet: An agglomerative method for the
construction of planar phylogenetic networks,” in Algorithms in Bioinformatics, WABI
2002. Editors R. Guigó and D. Gusfield (Cham: Springer Science), 2452, 375–391. LNCS.

Bryant, D., and Moulton, V. (2004). NeighborNet: An agglomerative
algorithm for the construction of planar phylogenetic networks. Mol. Biol.
Evol. 21, 255–265.

Bryant, D., Moulton, V., and Spillner, A. (2007). Consistency of the neighbor-net
algorithm. Algorithms Mol. Biol. 2, 8. doi:10.1186/1748-7188-2-8

Bryant, D. (2005). On the uniqueness of the selection criterion in neighbor-joining.
J. Classif. 22, 3–15. doi:10.1007/s00357-005-0003-x

Buneman, P. (1971). “The recovery of trees from measures of dissimilarity,”
in Mathematics in the archaeological and historical sciences. Editors F. R. Hodson,
D. G. Kendall, and P. Tautu (Edinburgh: Edinburgh University Press), 387–395.

Burkard, R. E., Deineko, V. G., and Woeginger, G. J. (2005). “The travelling
salesman and the pq-tree,” in Integer Programming and Combinatorial
Optimization: 5th International IPCO Conference Vancouver, British Columbia,
Canada, June 3–5, 1996 Proceedings, British Columbia, Canada, June 3–5, 1996
(Cham: Springer), 490–504.

Cartis, C., Gould, N. I. M., and Toint, P. L. (2012). An adaptive cubic regularization
algorithm for nonconvex optimization with convex constraints and its function-
evaluation complexity. IMA J. Numer. Analysis 32, 1662–1695. doi:10.1093/imanum/
drr035

Chepoi, V., and Fichet, B. (1998). A note on circular decomposable metrics. Geom.
Dedicata 69, 237–240. doi:10.1023/a:1004907919611

Conn, A., Gould, N. I. M., and Toint, P. L. (2000). Trust-region methods, vol. 1 of
MPS-SIAM series on optimization. Philadelphia, PA: SIAM.

Dahlquist, G., and Björck, Å. (2003). Numerical methods (Courier corporation). New
York, United States: Dover Publications.

de Bruijn, N. G. (1986). Dualization of multigrids. J. de Physique 47, C3-C9–C3-18.
doi:10.1051/jphyscol:1986302

Diday, E. (1984). Une représentation visuelle des classes empiétantes: Les pyramides.
Ph.D. thesis (INRIA.

Dress, A. W. M., and Huson, D. (2004). Constructing splits graphs. IEEE/ACM Trans.
Comput. Biol. Bioinforma. 1, 109–115. doi:10.1109/tcbb.2004.27

Eslahchi, C., Habibi, M., Hassanzadeh, R., andMottaghi, E. (2010). Mc-net: Amethod
for the construction of phylogenetic networks based on the monte-carlo method. BMC
Evol. Biol. 10, 254. doi:10.1186/1471-2148-10-254

Gambette, P., and Huson, D. H. (2008). Improved layout of phylogenetic
networks. IEEE/ACM Trans. Comput. Biol. Bioinforma. 5, 472–479. doi:10.1109/
tcbb.2007.1046

Golub, G. H., and Van Loan, C. F. (2013). Matrix computations. Maryland,
United States: JHU press.

Grünewald, S., Forslund, K., Dress, A., and Moulton, V. (2007). Qnet: An
agglomerative method for the construction of phylogenetic networks from weighted
quartets. Mol. Biol. Evol. 24, 532–538. doi:10.1093/molbev/msl180

Guo, M., and Grünewald, S. (2023). Lpnet: Reconstructing phylogenetic networks
from distances using integer linear programming. Methods Ecol. Evol. 14, 1276–1286.
doi:10.1111/2041-210X.14086

Hassanzadeh, R., Eslahchi, C., and Sung, W.-K. (2012). Constructing phylogenetic
supernetworks based on simulated annealing. Mol. phylogenetics Evol. 63, 738–744.
doi:10.1016/j.ympev.2012.02.009

Hendy, M. D., and Penny, D. (1993). Spectral analysis of phylogenetic data. J. Classif.
10, 5–24. doi:10.1007/bf02638451

Huson, D. H., and Bryant, D. (2006). Application of phylogenetic networks in
evolutionary studies. Mol. Biol. Evol. 23, 254–267. doi:10.1093/molbev/msj030

Huson, D. H., Rupp, R., and Scornavacca, C. (2010). Phylogenetic networks.
Cambridge: Cambridge University Press.

Frontiers in Bioinformatics frontiersin.org13

Bryant and Huson 10.3389/fbinf.2023.1178600

https://doi.org/10.1093/gbe/evab213
https://doi.org/10.1093/gbe/evab213
https://doi.org/10.1137/15m1040852
https://doi.org/10.1016/1055-7903(92)90021-8
https://doi.org/10.1016/1055-7903(92)90021-8
https://doi.org/10.1016/0001-8708(92)90061-o
https://doi.org/10.1093/genetics/141.2.743
https://doi.org/10.1093/genetics/141.2.743
https://doi.org/10.1534/genetics.105.048975
https://doi.org/10.1534/genetics.105.048975
https://doi.org/10.1016/j.ejc.2006.04.007
https://doi.org/10.1186/1748-7188-2-8
https://doi.org/10.1007/s00357-005-0003-x
https://doi.org/10.1093/imanum/drr035
https://doi.org/10.1093/imanum/drr035
https://doi.org/10.1023/a:1004907919611
https://doi.org/10.1051/jphyscol:1986302
https://doi.org/10.1109/tcbb.2004.27
https://doi.org/10.1186/1471-2148-10-254
https://doi.org/10.1109/tcbb.2007.1046
https://doi.org/10.1109/tcbb.2007.1046
https://doi.org/10.1093/molbev/msl180
https://doi.org/10.1111/2041-210X.14086
https://doi.org/10.1016/j.ympev.2012.02.009
https://doi.org/10.1007/bf02638451
https://doi.org/10.1093/molbev/msj030
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

Johnson, S. C. (1967). Hierarchical clustering schemes. Psychometrika 32, 241–254.
doi:10.1007/bf02289588

Lawson, C. L., and Hanson, R. J. (1995). Solving least squares problems. Philadelphia:
SIAM.

Levy, D., and Pachter, L. (2011). The neighbor-net algorithm. Adv. Appl. Math. 47,
240–258. doi:10.1016/j.aam.2010.09.002

Mazhar, H., Heyn, T., Negrut, D., and Tasora, A. (2015). Using Nesterov’s method to
accelerate multibody dynamics with friction and contact.ACMTrans. Graph. (TOG) 34,
1–14. doi:10.1145/2735627

Morach, M., Stephan, R., Schmitt, S., Ewers, C., Zschöck, M., Reyes-Velez, J., et al.
(2018). Population structure and virulence gene profiles of Streptococcus agalactiae
collected from different hosts worldwide. Eur. J. Clin. Microbiol. Infect. Dis. 37,
527–536.

Nesterov, Y. (2003). Introductory lectures on convex optimization: A basic course, 87.
Cham: Springer Science and Business Media.

Nocedal, J., and Wright, S. (2006). Numerical optimization. 2. Cham: Springer.

Ondov, B. D., Treangen, T. J., Melsted, P., Mallonee, A. B., Bergman, N. H., Koren, S.,
et al. (2016). Mash: Fast genome and metagenome distance estimation using minhash.
Genome Biol. 17, 132. doi:10.1186/s13059-016-0997-x

Phipps, P., and Bereg, S. (2011). Optimizing phylogenetic networks for circular split
systems. IEEE/ACMTrans. Comput. Biol. Bioinforma. 9, 535–547. doi:10.1109/tcbb.2011.109

Saad, Y. (2003). Iterative methods for sparse linear systems. Philadelphia: SIAM.

Saitou, N., and Nei, M. (1987). The neighbor-joining method: A new method for
reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425. doi:10.1093/
oxfordjournals.molbev.a040454

Frontiers in Bioinformatics frontiersin.org14

Bryant and Huson 10.3389/fbinf.2023.1178600

https://doi.org/10.1007/bf02289588
https://doi.org/10.1016/j.aam.2010.09.002
https://doi.org/10.1145/2735627
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1109/tcbb.2011.109
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://doi.org/10.1093/oxfordjournals.molbev.a040454
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1178600

	NeighborNet: improved algorithms and implementation
	1 Introduction
	2 Splits, compatibility, and circularity
	3 First step: calculation of a circular ordering
	4 Second step: estimation of split weights
	4.1 Setting up the problem
	4.1.1 Linear algebra
	4.1.2 Fast matrix multiplication
	4.1.3 Numerical error

	4.2 Methods
	4.2.1 Active-set method
	4.2.2 Gradient projection method
	4.2.3 Accelerated projected gradient descent method

	4.3 Performance comparison

	5 Third step: construction of a network
	5.1 Split networks
	5.2 Planar split networks

	6 Interpretation of NeighborNet output
	6.1 The networks do not explicitly depict evolutionary scenarios
	6.2 The networks represent distances
	6.3 The networks are not based on generative model
	6.4 The networks are akin to phylogenetic scatter plots

	7 Open problems and related work
	7.1 Simplifying the NeighborNet ordering algorithm
	7.2 Searching through circular orderings
	7.3 Faster estimation of split weights
	7.4 NeighborNet for non-distance data
	7.5 Inferring circular networks from trees
	7.6 Taking advantage of structure in the alignment

	8 Summary
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

