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Important quantities of biological data can today be acquired to characterize cell
types and states, from various sources and using a wide diversity of methods,
providing scientists with more and more information to answer challenging
biological questions. Unfortunately, working with this amount of data comes at
the price of ever-increasing data complexity. This is caused by the multiplication
of data types and batch effects, which hinders the joint usage of all available data
within common analyses. Data integration describes a set of tasks geared towards
embedding several datasets of different origins or modalities into a joint
representation that can then be used to carry out downstream analyses. In the
last decade, dozens of methods have been proposed to tackle the different facets
of the data integration problem, relying on various paradigms. This review
introduces the most common data types encountered in computational
biology and provides systematic definitions of the data integration problems.
We then present how machine learning innovations were leveraged to build
effective data integration algorithms, that are widely used today by
computational biologists. We discuss the current state of data integration and
important pitfalls to consider when working with data integration tools. We
eventually detail a set of challenges the field will have to overcome in the
coming years.
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1 Introduction

This last decade has witnessed a sharp increase in the amount and complexity of data
produced for cellular biology, thanks to an ever-growing number of bulk and single-cell
profiling assays. These technologies allowed scientists to study heterogeneous cell
populations through many biological feature spaces (or modalities) such as mRNA
expression (Klein et al., 2015; Macosko et al., 2015), DNA methylation (Guo et al., 2013)
and chromatin accessibility (Buenrostro et al., 2015a; Buenrostro et al., 2015b), and
protein abundance (Aebersold and Mann, 2003; Westermeier and Marouga, 2005; Tibes
et al., 2006). These assays can be carried out either in bulk, which yields for each sample a
single averaged molecular profile, or at the single-cell level, which provides an exquisite
insight into cell states and types present in the cell population. In particular, carrying out
biological assays at the single-cell level snapshots cells at various points of a dynamical
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process, which can then be leveraged for various applications
such as lineage tracing (Schiebinger et al., 2019), transcriptional
dynamics (La Manno et al., 2018), inference of transcriptional
trajectories (Chen H. et al., 2019) and many more.

In addition, during the last few years, there have been several
joint assays proposed to profile single cells through several
modalities simultaneously, such as scM&T-seq for
transcriptome and methylome (Angermueller et al., 2016), sc-
GEM for genotype, transcriptome and methylome (Cheow et al.,
2016), CITE-seq for transcriptome and surface proteins
(Stoeckius et al., 2017), or SNARE-seq for transcriptome and
chromatin accessibility (Chen S. et al., 2019). It is also worth
mentioning spatial transcriptomics, which yields measurements
from a small number of cells in each well while also providing
positional information of cells within the biological tissue (Ståhl
et al., 2016). Finally, important phenotypical information can be
obtained from microscopic imaging data, such as whole slide
imaging (Pantanowitz et al., 2011).

Hand-to-hand with the surge of biological modalities, there has
been an explosion in the number of available datasets helped by
various scientific initiatives to make biological data more easily
available (Conesa and Beck, 2019); among these initiatives, one can
mention atlases of entire organisms such as the Tabula Muris
(Schaum et al., 2018) and Human (Tabula Sapiens Consortium
et al., 2022) Consortia. We would also like to talk about disease-
based atlas such as The Cancer Genome Atlas (TGCA) database
(Weinstein et al., 2013), and the IMMUcan database (Camps et al.,
2023) which provides an exquisite insight into the nature of tumor
microenvironment. When tackling difficult biological questions,
using data gathered across different sources or modalities is
enticing. On the one hand, combining data from different
sources helps to provide a comprehensive view of the biological
object of interest. For example, it can facilitate the discovery of rare
but relevant cell types or states, or help quantify the relative
abundance of cell types across a collection of biological samples.
On the other hand, having different modalities at their disposal
allows scientists to link them together, possibly leading to exciting
mechanistic discoveries. Finally, there can be an emergent property
where analyzing a biological object through several modalities
simultaneously could yield superior information compared to
analyzing each modality individually.

Unfortunately, there are several obstacles to overcome
before data from several sources and modalities can be used
within an analysis pipeline. First, the multiplicity of sources
comes at the price of all sorts of batch effects, as datasets can
come from different replicas, technologies, individuals, or even
species. Then, combining datasets containing measurements
from different modalities is a major computational challenge,
especially when samples are not linked across datasets, as there
is no trivial common space to embed samples together.
Therefore, there is a real need for methods and tools that
would be able to tie together biological datasets across
datasets (or batches) and modalities. In this review, we
investigate this question through the prism of machine
learning paradigms, and present how a few of these concepts
are today widely used within popular, state-of-the-art data
integration methods.

2 Data integration links biological
datasets across batches or modalities

Data integration describes a set of problems that represent
different facets of the question of tying together biological
datasets across batches and modalities: vertical, horizontal,
diagonal and mosaic integration (Argelaguet et al., 2021), which
indicate the nature of anchors that exist between datasets
(Figure 1A).

In vertical integration (VI), each dataset contains a set of
measurements carried out on the same set of samples (separate
bulk experiments with matched samples in different modalities or
single-cells measured through joint assays) (Figure 1B). VI identifies
links between biological features, such as scRNA-seq transcript
counts and scATAC-seq peaks, which can help formulate
mechanistic hypotheses across modalities. VI methods usually
rely on dimensionality reduction, matrix factorization, or
modeling. Some can be endowed with additional biological
knowledge, such as pathway data and functional interaction
between features across modalities.

Horizontal integration (HI) describes the complementary task
where several datasets have been acquired in the same biological
modality, allowing multiple batches to be expressed within a
common features space (Figure 1C). HI’s primary use is to
correct batch effects between datasets that can be explained by
experimenter variation, different sequencing technologies, or inter-
individual biological specificities (e.g., species, sex, or ethnicity). HI
has been a very popular research topic for the last few years, and
many HI tools have been proposed to this day. They can rely on a
large variety of computational paradigms such as nearest neighbors,
clustering, deep neural networks, matrix factorization, manifold
alignment, and many more. Some tools may require additional
priors, such as selecting a reference dataset or having access to
cell types as labels.

When no trivial anchoring exists between datasets, diagonal (DI)
or mosaic integration (MI) formalisms must be used. DI describes
the framework where each dataset is measured in a different
biological modality, while MI allows pairs of datasets to be
measured in overlapping modalities (Figure 1D). DI and MI are
the most challenging facets of data integration and are subject to
active research. Methods proposed to perform DI and MI usually
rely on advanced machine learning paradigms capable of high levels
of abstraction, such as deep neural networks, manifold alignment, or
transport theory. Some tools operate in a completely unsupervised
fashion, while others require additional information to help them
bridge the gap between modalities.

Data integration of biological data is tightly related to several
machine learning topics such as domain adaptation (Pan et al., 2010;
You et al., 2019; Farahani et al., 2021), data fusion (Castanedo, 2013;
Gao et al., 2020) and manifold alignment (Wang et al., 2011).
Therefore, it is unsurprising to observe strategies leveraging
similar machine learning paradigms such as supervised
dimensionality reduction, matrix factorization, nearest neighbors,
optimal transport, or deep autoencoders. Interestingly, newmethods
in all these domains go hand-to-hand with advances in machine
learning, with many recent methods featuring advanced machine
learning concepts. This is arguably a natural evolution as data
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complexity and quantity increase, which motivates the need for
more powerful models capable of increased levels of abstraction.

3 Horizontal integration (HI) links
batches anchored by their common
modality

Horizontal integration (HI) describes the situation where several
batches are all gathered in a common modality with overlapping

feature spaces. It is worth noting that depending on the tool, there
may only suffice that each pair of datasets contains an overlapping
feature space (e.g., dataset A containing features f1, f2{ }, dataset B
containing features f1, f3{ } and dataset C containing features
f2, f3{ }). HI is a convenient framework in which cells can
directly be compared across different batches due to their feature
space overlap, which allows the use of natural concepts such as
distances, neighborhoods, or similarity measures. Many tools have
been proposed to tackle HI, and we gathered a non-exhaustive list of
them in (Table 1). As we can see, these methods use various

FIGURE 1
Data integration describes a set of problems aiming to tie together data across different origins or modalities. (A) A biological object can be profiled
throughmultiple batches (columns) andmodalities (rows), and not all batches necessarily containmeasurements for all modalities. (B) Vertical integration
(VI) consists in using cells or samples as anchors to deduce links between features across modalities. (C) Horizontal integration (HI) consists in using
overlapping features as anchors to jointly analyze data coming from different sources. (D) Diagonal integration (DI) consists in embedding together
several batches with non-overlapping modalities. Mosaic integration (MI) is the problem of missing modalities inference.
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strategies to identify similar cells across batches and embed cells into
a joint space. Some require additional information, such as reference
datasets or cell labels. The remainder of this section is devoted to

describing the main computational principles and machine learning
paradigms HI methods rely on and providing some rationale and
guidelines about each of them.

TABLE 1 A non-exhaustive list of horizontal integration (HI) tools aiming to jointly embed single-cell datasets measured in the same modality into a common
space. BA, Bayesian; NN, Nearest Neighbors; DAE, Deep Autoencoders; DR, Dimensionality Reduction; IC, Iterative Clustering; MF, Matrix Factorization; MA,
Manifold Alignment; RE, Regression; FR, Framework.

Tool Strategy Input Output Year References

ComBAT BA RNA-seq Gene space 2007 Johnson et al. (2007)

MNN NN RNA-seq Gene space 2018 Haghverdi et al. (2018)

scmap NN RNA-seq Clustering 2018 Kiselev et al. (2018)

scvi DAE RNA-seq, spatial Embedding 2018 Lopez et al. (2018)

ingest DR RNA-seq Embedding 2018 Wolf et al. (2018)

CONOS NN RNA-seq Graph 2019 Barkas et al. (2019)

Scanorama NN RNA-seq Embedding 2019 Hie et al. (2019)

scAlign DAE RNA-seq Embedding 2019 Johansen and Quon (2019)

Harmony CL RNA-seq Embedding 2019 Korsunsky et al. (2019)

Seurat v3 NN RNA-seq Gene space 2019 Stuart et al. (2019)

LIGER MF RNA-seq Embedding 2019 Welch et al. (2019)

DESC DAE RNA-seq Embedding 2020 Li et al. (2020)

BBKNN NN RNA-seq Graph 2020 Polański et al. (2020)

SpaGE NN RNA-seq, spatial Embedding 2020 Abdelaal et al. (2020)

Tangram DAE RNA-seq, spatial Embedding 2021 Biancalani et al. (2021)

Canek NN RNA-seq Embedding 2022 Loza et al. (2022)

CAPITAL MA RNA-seq Embedding 2022 Sugihara et al. (2022)

SCISSOR RE RNA-seq Graph 2022 Sun et al. (2022)

Transmorph FR RNA-seq Embedding 2022 Fouché et al. (2022)

DAPCA MF Any Embedding 2023 Mirkes et al. (2023)

TABLE 2 A non-exhaustive list of global vertical integration (VI) tools that can be used to learn relations between features across modalities from joint single-cell
assays. FC, Feature Correlation; MD, Matrix Decomposition; NN, Nearest Neighbors; DAE, Deep Autoencoders; TM, Topic Modelling.

Tool Strategy Input Year References

CCA FC Any 1936 Hotelling (1992)

RGCCA FC Any 2011 Tenenhaus and Tenenhaus (2011)

JIVE MD Any 2013 Lock et al. (2013)

SGCCA FC Any 2014 Tenenhaus et al. (2014)

MOFA MD Any 2018 Argelaguet et al. (2018); Argelaguet et al. (2020)

DIABLO FC Any 2019 Singh et al. (2019)

scAI MD RNA-seq, epigenomic 2020 Jin et al. (2020)

Seurat v4 NN Any 2021 Hao et al. (2021)

scMM DAE Any 2021 Minoura et al. (2021)

SMILE DAE Any 2021 Xu et al. (2022b)

MIRA TM RNA-seq, chromatin state 2022 Lynch et al. (2022)
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Many HI methods rely on manifold alignment strategies to
integrate batches together (Figure 2A), allowing them to consider
the whole data structure instead of matching individual cells.
Perhaps the oldest and most natural manifold alignment
technique is Procrustes analysis (Gower, 1975), named after the
mythical greek thug who cut or stretched his victims so that they fit

the length of their bed. This is an old and intuitive machine learning
paradigm mostly used for shape alignment that aims at projecting
query datasets onto a reference one while only allowing simple
transformations (rotation, rescaling, and shifting). Procrustes-based
methods are not often used to integrate single-cell data, although
some attempts can be found in the literature (Eto et al., 2018). First

TABLE 3 A non-exhaustive list of diagonal (DI) andmosaic integration (MI) tools that integrate single-cell datasets gathered across different biological samples and
modalities. MA, Manifold Alignment; MF, Matrix Factorization; MMD, MaximumMean Discrepancy; NN, Nearest Neighbors; DAE, Deep Autoencoders; OT, Optimal
Transport; GW, Gromov-Wasserstein; LI, Linear Inference.

Tool Strategy Input Output Year References

MATCHER MA RNA-seq, epigenetic Gen. Model 2017 Welch et al. (2017)

CoupledNMF MF RNA-seq, ATAC-seq Clustering 2018 Duren et al. (2018)

MMD-MA MMD Any Embedding 2019 Liu et al. (2019)

LIGER MF RNA-seq, ATAC-seq, scMethyl Embedding 2019 Welch et al. (2019)

UnionCom MA Any Embedding 2020 Cao et al. (2020)

bindSC NN Any Embedding 2020 Dou et al. (2020)

SCIM DAE Any Embedding 2020 Stark et al. (2020)

MultiVI DAE RNA-seq, ATAC-seq Embedding 2021 Ashuach et al. (2021)

COBOLT DAE Any Embedding 2021 Gong et al. (2021)

Pamona OT Any Embedding 2022 Cao et al. (2022b)

Polarbear DAE RNA-seq, ATAC-seq Embedding 2022 Zhang et al. (2022a)

GLUE DAE Any Embedding 2022 Cao and Gao (2022)

SCOT GW Any Embedding 2022 Demetci et al. (2022)

scJoint DAE RNA-seq, ATAC-seq Embedding 2022 Lin et al. (2022)

sciCAN DAE RNA-seq, ATAC-seq Embedding 2022 Xu et al. (2022a)

scDART DAE RNA-seq, ATAC-seq Embedding 2022 Zhang et al. (2022b)

StabMap LI Any Embedding 2022 Ghazanfar et al. (2022)

UINMF MF RNA-seq, ATAC-seq, spatial Embedding 2022 Kriebel and Welch (2022)

FIGURE 2
Horizontal integration describes the problem of embedding together datasets measured along the same biological modality. Different types of
popular machine learning approaches are commonly used to match similar cells across batches. (A) Manifold alignment techniques find the projection
that create the optimal overlap between two point clouds. (B) Nearest neighbors techniques identifies similar cells across datasets based on a similarity
measure. (C) Deep autoencoders (AEC) learn a joint latent representation of the data in which batch effects are regressed out.
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introduced to infer cell differentiation trajectories (Schiebinger et al.,
2019), discrete optimal transport (OT) theory and its extensions
(Gromov-Wasserstein, partial OT, unbalanced OT) is the most
popular paradigm used for manifold alignment-based HI. It aims
to align cells as discrete probability distributions represented as
weighted point clouds in a metric space based on pairwise cell-cell
cost matrices between batches that are often distance matrices. OT
and its extensions have been successfully applied to horizontal and
diagonal data integration (Cao et al., 2022b; Demetci et al., 2022).
Manifold alignment-based HI is a powerful paradigm, but it can
sometimes struggle to solve complex alignment tasks (for instance,
when the structure of a dataset presents ambiguous symmetries or
when some batches contain specific cell types that must not be
aligned).

Another class of HI methods seeks similar cells across batches,
operating at the single-cell level rather than at a global level
(Figure 2B). Some are based on the nearest neighbors approach
like mutual nearest neighbors (MNN) (Haghverdi et al., 2018),
CONOS (Barkas et al., 2019), Scanorama (Hie et al., 2019), Seurat
(Satija et al., 2015; Butler et al., 2018; Stuart et al., 2019; Hao et al.,
2021) that include different integration schemes such as CCA and
robust PCA (RPCA), or BBKNN (Polański et al., 2020). All
nearest neighbors-based methods rely on the hypothesis that
batch effects are almost orthogonal to biological effects, which
would allow identifying similar cells across batches through
simple orthogonal projection. They then apply various
strategies to end up with a joint representation of cells like
correction vectors or joint graph construction. These methods
tend to work best when facing slight to moderate batch effects and
generally fail when batch effects are far from being orthogonal to
relevant biological signals. They tend to scale well to large datasets
thanks to various optimizations during nearest neighbors
computation like nearest neighbors descent (Dong et al., 2011).
Another metric-based approach is described in Harmony
(Korsunsky et al., 2019), which is probably the most used tool
in practice for HI of single-cell data. It uses an iterative algorithm
of successive biased clustering across batches and correction.
First, cells are clustered across datasets with such a bias that
penalizes clusters of cells with a homogeneous batch of origin.
Then, cells of a given cluster are pooled towards each other. An
optimality criterion is tested at each iteration to assess whether
batch mixing is sufficient, using a local purity metric called Local
Inverse Simpson’s Index (LISI). Due to its simplicity and
availability with both Python and R packages, Harmony is
widely used today and still achieves respectable results in
benchmarks (Anaissi et al., 2022) despite being limited when
facing strong batch effects (Luecken et al., 2022).

Deep autoencoders (DAEs) (and more recently variational
autoencoders) have been popular tools in single-cell for a few
years already and excel at performing a variety of complex
preprocessing tasks, such as dimensionality reduction (Wang and
Gu, 2018), or denoising and correcting dropouts (Eraslan et al.,
2019), as well as acting as generative models (Trong et al., 2020).
DAEs are neural networks that leverage a bottleneck structure to
learn a compressed data representation in a low dimensional space,
which can then be exploited for various tasks (Figure 2C). DAE is a
powerful framework to carry out horizontal data integration with
tools such as scvi (Lopez et al., 2018), scAlign (Johansen and Quon,

2019) or DESC (Li et al., 2020). In particular, scANVI, part of the
scvi framework, is the top performer tool in the (Luecken et al.,
2022) atlas-scale benchmark. DAEs generally have high
computational capabilities thanks to the fact to be able to exploit
GPU acceleration during training. The main downside of DAEs is
the large amounts of data necessary for their training and their lack
of interpretability, though there are efforts to improve on the latter
point (Svensson et al., 2020; Treppner et al., 2022).

In an attempt to organize these methods into a common
framework, we introduced Transmorph (Fouché et al., 2022), an
open-source computational framework that allows the user to
assemble custom HI pipelines from basic algorithmic blocks. This
framework focuses on methods that combine a matching step,
identifying similar cells across batches, and an embedding step,
where these correspondences are used to generate a joint
representation of all datasets. Transmorph also gives access to
pre-build HI pipelines, HI quality assessment routines,
benchmarking datasets and easy access to other state-of-the-art
HI tools such as Harmony (Korsunsky et al., 2019) and scvi
(Lopez et al., 2018). We hope to see more initiatives deployed in
the next years in this sense to provide frameworks that can help
organize the field of HI methods.

Despite the myriad approaches proposed to tackle HI, it remains
challenging today to correct strong batch effects. For instance, (Tran
et al., 2020; Luecken et al., 2022), showed that if several methods can
satisfyingly remove moderate batch effects, integrating datasets
across species remains difficult for unsupervised methods which
do not require cell labeling information. Also, many methods rely on
finding first an overlapping feature space between all datasets, which
can be an obstacle when building large atlases combining many
batches of varying quality, where the number of common features
can shrink drastically. Finally, the problem of selecting appropriate
metrics to assess data integration quality is still difficult. Most
benchmarks use a mixture of metrics to measure different aspects
of the data integration task such as batch mixture, label clustering or
topology preservation, depending on the information available:

• Batch mixture metrics such as batch-LISI are commonly used
to measure how much the data integration procedure brought
cells from different datasets close to one another. These
metrics are popular because they do not require additional
information, such as cell types or states, and can be used as
unsupervised tools. Unfortunately, a good integration does not
necessarily imply good batch mixture metrics, as two datasets
without overlapping cell types should not be mixed after
integration; similarly, projecting all datasets together onto a
single point would result in perfect batch mixing, but all the
biological information would be lost. For these reasons, even
though batch mixture metrics are quite informative and
widely used, most benchmarks also include other
integration metrics to compensate for these limitations.

• Label clustering metrics, such as normalized mutual
information or adjusted Rand index, provide an additional
axis to measure data integration quality by assessing if cells of
similar type cluster together after integration. Label clustering
metrics are usually quite good for controlling the data
integration quality if cell types can be identified confidently.
The main downside of these metrics is the necessity to have
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high-confidence cell labels available before integration, which
is often not the case (especially as one of the purposes of data
integration is to be carried out before clustering and cell type
inference).

• Finally, topology preservation metrics assess how data
integration has preserved relations between the different
cells and penalize cases where cells that were close before
integration have been brought far apart by the algorithm
(meaning cells that were initially similar but are dissimilar
after integration). Topology can be biology-driven by
observing the conservation of signals related to specific cell
processes, such as cell cycle or other transcriptomic
trajectories, or data-driven with algorithms as simple as
comparing the k-nearest neighbors of a cell before and after
integration and penalizing the differences.

Evaluating the quality of a HI can be daunting, as shown by the
large variety of metrics that have been developed for it. In practice,
we often use a batchmixture metric such as LISI, complemented by a
secondary metric that can be either a label clustering metric if high-
confidence labels are available and a topology preservation metric
otherwise.

4 Vertical integration (VI) connects
modalities measured in the same cells

Vertical integration (VI) uses several datasets containing
individual measurements from the same cells obtained from
joint single-cell assays measured through different biological
features (e.g., gene expression and chromatin accessibility) to
infer relations between the different modalities (Table 2). VI is
usually declined into two variants, namely, local VI and global VI.
Local VI identifies links between individual features (such as
genes and methylated promoters), and can be used to formulate
hypotheses of direct or indirect biological interactions between

the omics layers (e.g., gene expression and accessibility of a
chromatin region), with methods like LMM (Van Der Wijst
et al., 2018) or Spearman’s rank correlation coefficient
(Cuomo et al., 2020). On the other hand, global VI links
features across different modalities via global factors that can
be related to biological processes (e.g., identifying a group of
genes and chromatin regions to correspond to proliferation
activity).

A family of global VI tools are based on a methodology inspired
by canonical correlation analysis (CCA) (Hotelling, 1992), which
use joint feature measurements across datasets to identify correlated
features across modalities (Figure 3A). RGCCA (Tenenhaus and
Tenenhaus, 2011) extended this framework to simultaneously allow
the analysis of more than 2 datasets. These concepts have been
refined in (Tenenhaus et al., 2014) and DIABLO (Singh et al., 2019)
to achieve better feature selection.

On the other hand, other popular global VI tools are based on
matrix decomposition algorithms (Figure 3B) (Lock et al., 2013;
Argelaguet et al., 2018; 2020; Jin et al., 2020). These tools generally
aim to decompose each data matrix into a component explained by
global factors, a component containing dataset-specific and
modality-specific factors, and a noise term. They mostly differ by
their exact decomposition model and specific strategies used to infer
its parameters.

If deep autoencoders did wonders for HI, they were also
successfully applied to VI problems (Minoura et al., 2021) by
using two distinct encoders and decoders using a shared latent
space into which bothmodalities are projected. This strategy notably
allows the network to “translate” a modality into another. We can
also mention the recent MIRA method (Lynch et al., 2022), which
leverages a variational autoencoder approach to learn gene
expression and chromatin accessibility shared topics.

Overall, the VI framework has allowed the growth of methods
taking advantage of the powerful sample anchoring across datasets,
with many approaches proposed inspired by statistics and machine
learning. A few important benchmarks have been carried out to assess

FIGURE 3
Twomain strategies are used for vertical integration of joint assays. (A) Local strategies link features across modalities via pairwise correspondence.
(B) Global strategies link features across modalities via common biological factors.
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FIGURE 4
Several strategies can be carried out to tackle the diagonal integration computational challenge (A) A biological object (e.g., a population of cells).
can be profiled using different assays, without obvious means to link both representations. (B) Knowledge of interaction between features across
modalities can be obtained from vertical integration of external datasets generated using joint assays. This information can then be leveraged to compare
cells between batches even if they are not expressed in the same modality, which allows to use horizontal integration tools. (C) Datasets can be
independently encoded into abstractions that can then bematched in an unsupervised fashion to build a joint representation of datasets. (D)Datasets can
be jointly encoded into a unique abstraction, for instance through a learning process using a deep autoencoder framework, that can then be used as a
joint embedding of datasets.
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the quality of VI tools, notably (Cantini et al., 2021) which focuses on
joint dimensionality reduction (jDR) methods. Due to the difficulty of
setting up joint assays and the inability of these methods to function
without matched cells, there is a crucial need for diagonal integration
(DI) tools that aim to integrate datasets across batches andmodalities.

5 Diagonal and mosaic integration
jointly embed non- or partially-
anchored datasets

Diagonal integration (DI) and mosaic integration (MI) are two
data integration frameworks for single-cell data that do not require
datasets to be acquired through matched biological assays (Table 3).
In this paragraph, we use DI indistinguishably from MI. The goal is
to leverage datasets structure and possibly external information,
such as genomic locations, pathways, or partial sample or modality
overlap to infer complete bonds between cells across modalities
without relying on explicit sample anchoring (Figures 4A, B). DI
generally aims to build a joint embedding of datasets into a common
latent space, while MI focuses on inferring missing modalities from
partially anchored datasets. Let us focus on the two main families of
methods that exist for tackling DI: manifold alignment and deep
autoencoders. These two machine learning paradigms can handle
high levels of abstraction, which seems required to tackle DI in the
general case.

Manifold alignment methods (Welch et al., 2017; Liu et al., 2019;
Cao et al., 2020; Cao et al., 2022b; Demetci et al., 2022) for DI operate
similarly as in the HI case and work under the assumption stating
that smooth point clouds alignment corresponds to meaningful
biological correspondence (Figure 4C). This allows them to work in
an unsupervised fashion without requiring additional knowledge
other than data matrices. Despite working accurately in some cases,
it has been shown this hypothesis is far from being universal (Xu and
McCord, 2022). In this article, the authors show that under some
simple data tweaking, such as missing cell types or different sample
sizes, manifold alignment DI methods can generate erroneous
embeddings featuring clusters with mixed cell types. This is
concerning, as validating DI is a challenging task, given that it is
rarely the case to have reliable cell type labels across modalities at
disposal. Therefore, we suggest that these unsupervised manifold
alignment methods must be used carefully and only when
integration quality control is feasible. In other cases, it is
preferable to choose another DI method that allows the user to
provide additional information that helps bridge the gap across
modalities.

As for HI and VI, deep autoencoders are powerful tools for
solving DI tasks, with several advantages. First, they can take
advantage of GPU acceleration built in deep learning libraries to
greatly speed up the training process, and naturally scale to very
large datasets. The second benefit of using these neural networks
is that they offer the possibility to train a separate encoder and
decoder for each biological modality, which helps capture
modality-specific factors compared to manifold alignment
algorithms where all omics layers are treated similarly. These
separate encoders generally share a joint latent space (Figure 4D),
with some form of penalty to force latent representations to
overlap. They also present an algorithmic structure that

facilitates the introduction of external biological guidance, like
in the GLUE tool (Cao and Gao, 2022), which uses a guidance
graph as prior knowledge about functional relationships between
features across modalities. We would also like to mention in this
category the Polarbear tool (Zhang R. et al., 2022), which
leverages deep autoencoders to notably translate single-cell
data between RNA-seq and ATAC-seq.

To the best of our knowledge, there do not exist at the time of
writing a large-scale, independent benchmark of DI methods like for
HI (Luecken et al., 2022). This is arguably difficult to set up due to
the number of single-cell modalities available today, given the fact
that, in addition, not all methods can deal with all modalities. Some
may also require specific prior knowledge, and output type may
vary. Furthermore, there is a lack of reliable metrics for assessing the
quality of DI methods and real-life benchmarking datasets. A first
breakthrough is to note in this direction, with a NIPS single-cell
analysis competition organized recently which gave access to a
public multimodal dataset containing single-cell gene expression,
protein expression, and chromatin accessibility using CITE-seq and
Multiome (Lance et al., 2022). With the democratization of such
datasets, benchmarking DI methods will become more accessible,
which will help standardize the field and identify the best-
performing methods for each scenario.

To finish, there is a growing interest in integrating single-cell
data with other related data modalities, such as whole slide images or
spatial transcriptomics. There is a particular interest in
deconvoluting spatial transcriptomic spots by integrating them
with a single-cell RNA-seq dataset obtained from a similar same
tissue. This is a current challenge, and several methods have been
proposed for this task, notably benchmarked in (Li et al., 2022).

Overall, DI is arguably the most challenging data integration
problem, and solving it is still a very active research area. This very
convenient data integration paradigm is extremely versatile, as it
theoretically does not need any anchoring (cells or features) between
the different datasets. In practice, if many DI tools indeed work in a
completely unsupervised way leveraging data topology such as
MMD-MA (Liu et al., 2019), Pamona (Cao and Gao, 2022) or
SCOT (Demetci et al., 2022), others require additional information
to bridge the gap betweenmodalities like GLUE (Cao et al., 2022a) or
MultiVI (Ashuach et al., 2021) which can take a covariate design
matrix as an optional parameter. For the moment, it appears that
these biased methods offer more control on the results, as data
topology can be misleading in practice and yield aberrant results (Xu
and McCord, 2022). Therefore, using DI tools that can be enriched
with biological context seems to be the best choice in the
applications where such context can be obtained in a reliable
way, typically when integrating datasets where strong covariates
exist between modalities.

6 Discussion

Data integration consists of distinct challenges depending on the
anchoring that exists between datasets, and each facet of DI requires
distinct tools that leverage various algorithmic strategies. For
instance, metric-based methods excel at solving HI tasks, whereas
linear matrix analysis methods excel at solving VI tasks. Machine
learning paradigms with high abstraction levels, such as manifold
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alignment methods and deep neural networks, are excellent assets
for dealing with DI and MI problems, the latter also performing well
at HI and VI tasks. Overall, VI methods are pretty good at solving
the task, HI methods are capable of dealing with small to moderate
batch effects but still struggle to mitigate significant batch effects
such as inter-species data, and DI/MI problems are arguably still
unsolved in the general case.

We talked about the Transmorph framework that articulates
computational blocks to conceive HI pipelines, but this is not the
only framework that exists which is related to data integration. We
can cite MUON (Bredikhin et al., 2022), which facilitates the
handling of data consisting of different modalities, Polyphony
(Cheng et al., 2022), which carries out transfer learning across
datasets by leveraging data integration algorithms, or SinCast
(Deng et al., 2022) which is specialized in cell type inference by
mapping a query onto an atlas.

It is essential to note that there are important pitfalls to data
integration that must not be overlooked. The primary issue that
can be encountered is named overcorrection and describes an
undesirable event where a data integration method incorrectly
aligns cells that do not share the same biological type or state.
This typically happens when batch effects are too strong, when a
dataset contains specific cell types, when cell type distribution is
highly imbalanced, or when there is little anchoring between
batches. Overcorrection can be difficult to detect when there is no
easy access to cell labels and is a critical issue that hinder every
subsequent analysis step. Indeed, it can lead to cells belonging to
the same cluster without sharing critical biological properties
such as cell type or states. Other issues are worth noting even
though they are not exclusive to the data integration task, such as
the difficulty in differentiating between true zeros and missing
values in RNA-seq datasets or the fact that different modalities
are often expressed using different data types (e.g., binary or
integer data) which may be difficult to handle jointly within
mathematical frameworks. Finally, data integration tools based
on abstract machine learning paradigms such as deep
autoencoders often comes at the cost of a decrease in model
interpretability which is an important downside for any health-
related application. However, many efforts are made to overcome
this issue (Svensson et al., 2020; Treppner et al., 2022) and we
expect to see many more in the years to come.

There is always an urgent need for large-scale, independent
benchmarks like the HI benchmark proposed in (Luecken et al.,
2022), or the VI benchmark carried out in (Cantini et al., 2021).
To the best of our knowledge, there is still a lack of large-scale
independent DI and MI benchmarks. Two things are necessary to
carry out such benchmarks: high-quality datasets and reliable
metrics. A list of potential datasets can be found in (Argelaguet
et al., 2021). There is no clear consensus about which quality
assessment metric to use, and most benchmarks like (Luecken
et al., 2022) opt for a mixture of metrics that cover several aspects
of data integration: conservation of biological variance (CBV)
metrics which measure how close similar cells (type or state) are
after integration, and removal of batch effects (RBE) metrics.
Some CBV metrics are label-based, such as normalized mutual
information (NMI), adjusted Rand index (ARI), average
silhouette width (ASW), class local inverse Simpson’s index
(cLISI), isolated label F1 (ILF) and isolated label silhouette

(ILS), others are label-free and generally assess the
conservation of biological processes such as cell cycle, highly
variable genes, and transcriptomic trajectories. RBE metrics
include batch-PC regression, batch-ASW, graph connectivity,
iLISI, and kBet. We often observe a tradeoff between CBV and
RBE, which can lead to different methods choice depending on
the application, whether it is preferable to have good dataset
mixing or conservation of subtle biological signals.

To conclude, years of algorithmic and computational
advances made it possible to solve most HI and VI problems
with satisfying performance, with only the most complicated
instances still being problematic (e.g., HI of many batches with
strong batch effects). Solving DI and MI is the next
computational challenge. The most promising approaches that
have been developed to tackle it are based on deep learning
models, particularly deep autoencoders. It has been shown that
purely unsupervised DI may not be a well-posed problem and
could suffer fundamental flaws (Xu and McCord, 2022), which
greatly incentivizes using knowledge-driven tools that allow the
user to include external information to enhance models with
functional information that link features across modalities.
Finally, apart from developing new tools, there is also an
urgent need to enrich the data integration ecosystem with
organizing frameworks, standardized benchmarks, datasets,
and quality assessment metrics.
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