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In this study, we present an algorithmic framework integrated within the created
software platform tailored for the discovery of novel small-molecule anti-tumor
agents. Our approach was exemplified in the context of combatting lung cancer.
In the initial phase, target identification for therapeutic intervention was
accomplished. Leveraging deep learning, we scrutinized gene expression
profiles, focusing on those associated with adverse clinical outcomes in lung
cancer patients. Augmenting this, generative adversarial neural (GAN) networks
were employed to amass additional patient data. This effort yielded a subset of
genes definitively linked to unfavorable prognoses. We further employed deep
learning to delineate genes capable of discriminating between normal and tumor
tissues based on expression patterns. The remaining genes were earmarked as
potential targets for precision lung cancer therapy. Subsequently, a dedicated
module was formulated to predict the interactions between inhibitors and
proteins. To achieve this, protein amino acid sequences and chemical
compound formulations engaged in protein interactions were encoded into
vectorized representations. Additionally, a deep learning-based component
was developed to forecast IC50 values through experimentation on cell lines.
Virtual pre-clinical trials employing these inhibitors facilitated the selection of
pertinent cell lines for subsequent laboratory assays. In summary, our study
culminated in the derivation of several small-molecule formulas projected to
bind selectively to specific proteins. This algorithmic platform holds promise in
accelerating the identification and design of anti-tumor compounds, a critical
pursuit in advancing targeted cancer therapies.
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Introduction

The persistent challenge of effectively treating cancer patients remains a matter of utmost
significance as issues related to relapses and drug resistance in antitumor therapies continue
to pose unresolved hurdles. Addressing these challenges necessitates the development of
novel therapeutic agents that exhibit superior efficacy compared to those already sanctioned.
However, this pursuit of innovation inevitably contributes to escalated research and
production costs.
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To surmount these obstacles, the realm of bioinformatics has
embraced the power of computational methodologies, offering a
promising avenue to revolutionize drug discovery. Notably, deep
learning technologies have garnered substantial success across
diverse scientific and industrial domains, enabling the resolution
of intricate problems through an unparalleled degree of abstraction
unattainable by the human mind.

In this context, the integration of machine learning models
emerges as a transformative solution for identifying potential
candidates for novel drugs. A prime example lies in harnessing
machine learning to predict the therapeutic attributes of molecular
compounds, thereby facilitating systematic exploration within vast
chemical libraries. Furthermore, the predictive capabilities of
machine learning extend to deciphering intricate drug–protein
interactions, thereby unveiling precise protein targets and
potential inhibitor molecules.

An additional facet of machine learning’s prowess lies in its
capacity to forecast the outcomes of pivotal IC50 experiments. By
assimilating genomic expression profiles of cellular lines and
molecular structures, these models can prognosticate the
feasibility of achieving established IC50 values. This emulation of
in silico cellular experiments showcases the potential to streamline
research efforts and augment the drug discovery process.

This article delves into the application of machine learning
methodologies throughout the drug discovery process,
encompassing stages such as target identification, literature
retrieval, and selection of molecular inhibitors guided by target
interactions, as well as the strategic planning and predictive
modeling of preclinical studies (Figure 1).

Target identification

The foundational step in drug discovery hinges upon the precise
delineation of therapeutic targets. The multifaceted nature of this
endeavor necessitates adherence to several imperative criteria.
Primarily, targets should exhibit a degree of specificity that
highlights disparities between tumor and normal tissues.
Furthermore, their involvement in tumor cell survival pathways
is paramount. Equally significant is their amenability to small
molecule-based interventions. Notably, our research advances the
proposition that altered genes, underpinning increased disease
aggressiveness and decreased overall survival, hold promise as
prime targets. This aligns with the overarching objective of
machine learning-driven target identification—an effective
prediction of overall survival and relapse-free interval through
the discerning selection of indispensable genes while
simultaneously accounting for distinctive expression profiles in
comparison to normal tissues.

Optimizing target gene selection

A nuanced challenge arises from genes implicated in pivotal
cellular processes that are shared between tumor and normal cells.
The intricate balance of targeting such genes mandates a judicious
approach. To this end, we have incorporated a refined strategy.
Leveraging comprehensive gene expression data from tumor and

normal tissues, we discriminate against genes displaying marginal
expression differences. Employing deep learning algorithms, we
delineate genes that decisively demarcate tumor and normal
tissues, thus augmenting the precision of target gene selection.

Harnessing deep learning for literature
mining

Beyond the confines of experimental data, deep learning extends
its scope to the vast expanse of the published literature. Our research
capitalizes on this potential, streamlining decision-making processes
by assimilating insights from a meticulously curated repository of
scientific articles. A dedicated tabulated summary of findings from a
PubMed and PMC search fortifies the arsenal of tools for selecting
promising molecular inhibitors.

Predictive modeling for drug–protein
interactions

A pivotal axis of drug discovery revolves around predicting the
interaction dynamics between drug molecules and target proteins.
We introduce an innovative deep learning model, integrating
intricate protein and drug molecule information. This model
prognosticates the impact of drug molecules on target proteins,
ushering in a refined selection process. This stage inherently
winnows the gamut of potential targets, eliminating candidates
whose inhibition feasibility or binding efficacy raises concerns.

Navigating toward preclinical trials

Transitioning toward preclinical studies demands the emulation
of cellular experiments, a crucial precursor to laboratory validation.
Deliberations encompassing cell lines that accurately mirror real-
world conditions are pivotal. Our investigation extends to
prognosticating the likelihood of compounds from prior stages
attaining IC50 concentrations within select cell lines, paving a
trajectory toward informed preclinical trial design.

In the synthesis of these insights, our study embarks on a
journey through the intricate tapestry of machine learning-driven
drug discovery in oncology. From the meticulous identification of
target genes to the finesse of molecular interaction prediction and
the refinement of preclinical trial design, the amalgamation of
cutting-edge techniques and comprehensive data analyses
presents a formidable paradigm shift in the pursuit of effective
therapeutics.

Materials and methods

Target identification

To assess the effect of gene expression on disease prognosis, we
used the data on gene expression from the open database TCGA
https://gdc.cancer.gov (Cancer Genome Atlas Research Network
et al., 2013). In this section, gene expression data (RNA-Seq)
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were acquired and subsequently subjected to a normalization
procedure. Normalization was performed by aligning the
expression values to the reference levels represented by the control
gene GAPDH, commonly referred to as a “housekeeping” gene. This
process was undertaken to facilitate the integration of newly acquired
data into the database. The data on overall survival (OS), progression-
free interval (PFI), and the same parameters within the follow-up
period were derived from this database. The problem of OS prediction
was successfully solved in our previous study (Chebanov et al., 2021).

The essence of applying machine learning in this context can
be summarized as follows: a dataset is prepared comprising

features that include cancer-associated genes and patient
medical history data. The target variable is a binary outcome
representing whether the patient surpasses the median PFI or
OS value for the whole dataset. A model is constructed using a
multi-layer perceptron within the Python environment utilizing
the Keras library. Upon achieving satisfactory training quality, the
most influential features affecting the prediction are extracted
from the dataset.

As an example, we selected the diagnosis of lung cancer and
extracted a cohort of 514 patients with this diagnosis from the
database.

FIGURE 1
Overview of the overall pipeline structure.

FIGURE 2
1–Strength of the interaction between the compound and the
protein, described in both databases (STITCH and DrugBank).
2–Boxplot for all values from the STITCH database.

FIGURE 3
Model quality for predicting drug–protein interactions.
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In order to minimize training noise, we specifically curated a
dataset containing genes that are integral to tumor-associated
signaling pathways, as defined by the KEGG resource. This
meticulous curation resulted in the inclusion of a total of
1,821 genes (Kanehisa and Goto, 2000).

To begin, we initially trained the algorithm utilizing a dataset
comprising 514 patient records. However, following a rigorous five-
fold cross-validation procedure, we observed that the mean ROC-
AUC values were 0.69 (0.61–0.74) for overall survival (OS) and 0.61
(0.54–0.69) for progression-free interval (PFI). These results
collectively signify a level of predictive performance that falls
short of expectations, thus indicating the need for further
refinement and enhancement of our predictive model. The
reason is that it was a very small dataset for the application of
neural networks, even taking into account more than 1,800 features.

To avoid this, we generated additional data comprising
50,000 synthetic patients by applying a generative adversarial
network (GAN) to the tabular data on the existing 514 patients.
GAN technology has been successfully used in various industries,
such as image generation (Goodfellow et al., 2014). To use this
methodology, we leveraged the Python SDV library (Patki et al.,
2016) with a specific focus on utilizing the CTGAN module (Xu
et al., 2019).

Optimizing target gene selection

To refine the list of potential targets, we trained a deep learning
algorithm to classify tissue into healthy and tumor categories based
on gene expression. Subsequently, we ranked the features of the
original dataset by importance, and genes with the greatest influence
on the prediction were identified as more probable candidates for
targeting as they contribute more significantly to distinguishing
tumors from healthy tissue.

Gene expressions for tumor-normal data were taken from the
GENT2 database (Park et al., 2019). This database comprises
information on 68,287 samples of patients’ tissues and cell lines

for all the diagnoses, of which 58,041 were tumor samples and
10,246 were normal samples.

Literature mining
We developed a deep learning-based tool for named entity

recognition (NER) based on the technology of natural language
processing (NLP), with the help of the Python library Biopython,
for which we trained the NLP algorithm on the abstracts of articles
labeled by hand. We identified the name of the gene or protein of
interest and the name of its inhibitor. We used the BERT algorithm
(Devlin et al., 2019) as the basis.We applied the fine-tuning procedure
for this algorithm, which included training on the dataset of the
labeled abstracts with the BRAF gene and its inhibitors.

The created algorithm helped achieve 98% accuracy of
prediction.

Drug–protein interactions
We obtained the drug data from the open DrugBank database

(Wishart et al., 2017). This database contains data about drugs in
combination with targets, including the protein that the drug is
targeting, as well as structural representations of the molecules. We
have selected only those small molecules for which there is a
representation in the SMILES format. We needed two types of
data to prepare the dataset: a target protein and a structural
representation of the molecule.

As a result, the data array included positive examples with
19,256 interactions for 5,769 drugs and comprised 4,104 unique
proteins encoded by 3,516 genes.

A challenge was to find negative examples for the training set.
Researchers solve the problem in different ways: for instance, Wang
et al. (2018) reported that they randomly selected negative
drug–target pairs with no interaction data. Researchers of
another study also obtained negative examples by extracting pairs
with no interaction data while randomly choosing the number of
examples equal to the number of positive examples (Wang et al.,
2020). Some authors predicted the absence of an interaction by the
algorithm (Liu et al., 2015).

We analyzed the STITCH database (Szklarczyk et al., 2016),
which contains scores of interactions between proteins and
compounds.

To determine which score to regard as negative, we correlated
interactions from the STITCH database with the DrugBank
database, which included only pairs with a positive score. Thus,
we expected we could understand which value to consider a “positive
speed.”

The left part of Figure 2 presents a boxplot for pairs that are
present in both databases (STITCH and DrugBank); therefore,
they are considered positive. The right part presents a boxplot
for all values from the STITCH database. Thus, it is evident that
the range of positive rates does not intersect with the main range
of data from the database of all interactions and is an outlier
for it.

We used the lower quartile of interaction rates to form a sample
of non-protein-binding drugs. We sorted the compounds of the
obtained data, according to the number of known interactions with
proteins, and selected the 50,000 most common compounds.

Amino acid sequences were obtained from the UniProt database
(Martin et al., 2021). We presented them in vector form using the

FIGURE 4
Quality of the model designed to assess the likelihood of
reaching the compound IC50 data on lung cancer cell lines.

Frontiers in Bioinformatics frontiersin.org04

Chebanov et al. 10.3389/fbinf.2023.1225149

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1225149


approach described elsewhere (Asgari and Mofrad, 2015), where the
authors vectorized all possible amino acid triplets (8,000) in the form
of a 100-dimensional vector, and thus, the vector representation of
any protein consisting of these triplets was equal to their vector sum.

We also presented the compounds included in the dataset in a
vector form and in the form of 100-dimensional vectors, using the
embedding approach of natural language processing technologies
and implemented in the RDKit (RDKit), mol2vec (Jaeger et al.,

2018), and word2vec (Mikolov et al., 2013) libraries for
Python3 language.

To search for candidate molecules, we experimented with predicting
interactions for pairs of genes and compounds of all possible ones.

We used all the molecules from the PubChem library, which had
representations in the form of SMILES (23 million in total). They
were presented in a vector form similar to that in the learning
process. Amino acid sequences of the encoding proteins were

TABLE 1 Biological features of the discovered genes.

Gene Type of encoded protein Relationship with various processes in the cells or the organism

GNB3* Signal Obesity

CHRM1* Receptor and signal Regulation of nerve impulses

SHC4*** Signal Proliferation and apoptosis

FKBP4**** Signal Immunoregulation

IL17B* Cytokine Immunoregulation

ATP6V1E2* Membrane transporter ATP synthesis

FASLG Receptor and signaling Proapoptosis

DKK4**** Signaling Proliferation, stemness, and chemoresistance

GDF6**** Signaling Growth factor

GP6 Structural Platelet aggregation

WNT6**** and WNT8B**** Signaling Differentiation

HMOX1 Enzyme Respiration

LEF1**** Transcription factor Differentiation and morphology

ATP1A4 Membrane transporter ATP synthesis

ACVR2A*** Receptor and signal Growth activator

SMAD9*** Signal Proliferation

CUL1 Complex Protein utilization and cell cycle control

KRT10 Structural Cytoskeleton

PIAS4 Regulator Blocks STAT4

FSHR*** Receptor Proliferation

CCNA2** Regulator Cyclin

RPS6KA4*** Transcriptional CSF2 Proliferation

factor*** Cytokine Proliferation

EFNA3*** Signaling Proliferation

KRT24, KRT27, MYL10, and MYLPF Structural Cytoskeleton

ITGA3* Structural Adhesion

ZFYVE9*** Transcription factor Proliferation

ATP6V1G3* Complex Protein

HEY1 Transcription factor Differentiation

PIK3R6**** Receptor and signal Unknown

BIRC3*** Complex Inhibitor

GHSR* Receptor and signaling Obesity
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obtained from the UniProt database for 12 genes that we received
earlier. The prediction result was the DPI probability.

Preclinical trial modeling

The dataset for cell experiment emulation was formed using the
data on gene expression profiles of the cell lines from the Cancer Cell
Line Encyclopedia (CCLE) database and compound sensitivity data
for cell lines from the Genomics of Drug Sensitivity in Cancer
(GDSC) database (Barretina et al., 2012; Yang et al., 2013). We

selected only lung cancer cell lines. A total of 11,330 interactions
were obtained for 122 drugs and 32,000 genes in 106 cell lines.

Then, a study was performed for the prediction of these
106 lines’ interactions with potential inhibitors. We substituted
each of the 2,921 candidate inhibitors in turn and predicted the
success of the IC50 test. After that, we selected all molecules with a
probability of above 0.9, achieving IC50 from the results in the
A549 and CALU1 cell lines. These cell lines were chosen due to the
most frequent use of these lines in various studies of lung cancer.

The study resulted in the obtained data on the structure of
37 molecules with potential toxicity for lung cancer cells. We
performed visualization in our own module and found that the
resulting molecules were large and consisted of many repeating
structural elements of radicals. Therefore, we decided to isolate the
active parts of the molecule for further analysis. As a result, another
15 molecules, after their decomposition, were added to the initial set
of 37 molecules.

In the next step, we planned to test the selectivity of the obtained
molecules in all 1,018 cell lines. We designed a similar experiment to
predict the IC50 value.

Results

Target identification

We generated 50k patients’ data to reach the ROC-AUC value
equal to 0.73. We used the Lasso linear regression algorithm with a

TABLE 2 Results of the NLP search for keywords associated with the studied genes and their inhibitors. Tags:
green—low-molecular weight inhibitor that triggers apoptosis , blue—protein , and red—toxin .

Gene Gene +
‘target’

Gene +
‘cancer’

Gene +
‘lung
cancer’

Gene +
‘phase’

Gene +
‘drug’

Gene +
‘approval’

Gene
+ ‘FDA’

Total
mentions

Inhibitors

LEF1 9,661 9,138 4,301 4,962 4,771 2,129 665 35,627 Imatinib , wnt10b, dlx3 ,
sb203580 , ex527, dasatinib ,
t0070907, and sb431542

CUL1 4,854 4,245 1,823 3,629 2,518 634 374 18,077 fbx4 , selumetinib , fbxo7,
fbxo31, fbxo21, fbxo4,
and fbxw7

FSHR 2,143 2,150 466 1,657 1,752 752 205 9,125 Sunitinib , uk5099 ,
and clxbpa

GP6 1,385 1,977 460 1,023 770 766 199 6,580 ono1714

GHSR 1,308 926 365 828 1,224 382 417 5,450 Gefitinib , pd98059,

pd90859, and sb203580

KRT10 934 998 388 700 604 320 75 4,019 r115866 and sb431542

PIAS4 810 792 319 505 427 127 53 3,033 nur77 , pax8 , foxm1b,

trim32, and zif268

DKK4 652 661 339 312 368 139 48 2,519

EFNA3 542 541 328 272 318 141 28 2,170

MYLPF 301 251 98 192 168 90 17 1,117

ZFYVE9 166 155 82 85 75 46 12 621

MYL10 73 74 33 50 28 35 2 295

TABLE 3 Results of predicting the inhibitors for the target genes.

Gene Number of inhibitors found

LEF1 639

MYL10 524

FSHR 461

EFNA3 385

GHSR 279

CUL1 248

GP6 190

DKK4 134

PIAS4 61
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5-fold cross-validation to determine the significance of the
features. The result of each experiment was obtained as a list of
genes ordered by decreasing impact on the effect. We combined
the lists of genes obtained in the experiments with OS and
with PFI.

Consequently, we identified 36 genes whose expression
correlates with compromised survival indicators in individuals
diagnosed with lung cancer. Table 1 presents some characteristics
of these genes.

At the stage of implementation of the tumor–normal filter,
deep learning was performed according to the aforementioned
method with the ROC-AUC indicator of 0.83. A total of
4,912 genes were selected in the process of determining the
significant features. The genes with the expression associated
with distinguishing a tumor tissue from the normal tissue were
isolated from the previously found 36 genes with the help of the
obtained list of genes. These 12 genes were DKK4, GP6, LEF1,
CUL1, KRT10, PIAS4, FSHR, MYLPF, EFNA3, ZFYVE9, GHSR,
and MYL10.

Literature mining

As a result of automated literature mining inhibitors, we
obtained Table 2, which presents the number of articles
published in response to various requests for each of the
12 genes of interest. Such a table will help draw a conclusion
about the studying extent of the gene as a target.

However, some references may not mean that there is a direct
connection between the name of the gene and the drug used. In
other words, they may not be related to it in terms of inhibition but
are simply mentioned in a similar context.

As a result of the NLP search, we added the right column to the
table, which lists all inhibitors of a certain gene. These data allow a
researcher to make a decision on the basis of the available number of
inhibitors for each of the genes under consideration.

Drug–protein interactions

As a result, a dataset was obtained from 118,379 pairs, including
19,250 pairs describing the compounds bound to proteins and
99,129 precedents describing non-protein-bound compounds.

Deep learning was applied in a similar way, as in the previous
approach. ROC analysis of learning quality allowed us to obtain an
average area under the curve of 0.86 (Figure 3).

After search for candidate molecules, we received 160,000 pairs
with an interaction probability over 0.99 and 2,921 pairs with an
algorithm predicted probability of 1.0.

The following distribution by the inhibited genes was obtained
for these 2,921 potential inhibitors (Table 3).

Preclinical trial modeling

During the cell experiment emulation, the algorithm for
determining the importance of the features selected 129 genes.
The characteristics of the proteins encoded by the revealed genes
are presented in Table 4. ROC is shown on Figure 4.

At the cell experiment emulation stage, we chose interactions
with a probability of at least 0.9 from the data on the forecast.
Molecules were selected that acted on the minimum number of lines
with a probability higher than a given one, i.e., those with the highest
specificity.

As a result, five small molecules were selected. The certain cell
lines used for validation are “A549,” “NCIH23,” “NCIH460,”
“NCIH1299,” “HCT116,” “AMO1,” “PC3,” and “CAPAN1.”

Discussion

During the initial phase of target discovery, approximately 36 genes
were meticulously chosen for further investigation. Interestingly, a few
genes appeared to be associated with WNT signaling (DKK4, LEF1,

TABLE 4 Characteristics of proteins encoded by the revealed genes.

Encoded proteins Genes

Structural LAMB4, PDLIM2, C1QC, SPATA48, CDC42SE1, UPK3B, and APOBEC3

Inhibitor APOBEC3, HTN1, APOC1, CST5, and MRGPRX2

Metabolism MGLL, UPB1, PPIF, AMPD1, ESYT2, RAB30, SLC40A1, LHFPL2, GALNT14, TENT5B, PADI4, FABP6, AKR1B10, LIPK, AWAT1,
GAPDHP45, and CCDC71L

Energy SCN4A, SMOX, SLC34A1, ATP10A, and SLC12A8 membrane

Receptor TSPAN9, GPRC5A, OXT, ANXA10, ARTN, IL37, GNG11, EPB41L4A, OR11HGU1, GYAMC, UFCAM3, FKBP2, CCR4, OR10J5, OR1D2,
TNFAIP2, ANGPTL5, TMEM207, TRBV6-5, TRAV16, OMP, and FBXW7-AS1

Kinase PRKY, SERTAD2, and RN7SKP257

SH3BP1 SH3BP1 and BCL2L1

Transcription factor HOXA3, AGFG2, NKX3-1, MBD3L1, GBP6, AHNAK2, and ZNF680P1

Pseudogene TPRXL, OR5AZ1P, TTTY2, GNL3LP1, HIGD1AP16, RNU2-37P, RN7SKP172, KRT18P27, C1DP3, USP21P1, ABCD1P4, LINC01529,
LINC01209, LINC01433, FDPSP7, RPL4P2, DPYD-AS1, MTND6P24, LINC00892, RPS24P6, LINC01731, LINC01440, LINC00601,
LINC00993, HS6ST2-AS1, MCCD1P1, YRDCP2, HIGD1AP15, NRBF2P3, RPS13P4, RN7SL589P, RN7SL573P, VPS26AP1, RN7SL454P,
LINC02150, LINC02014, SALL4P1, AACSP1, IGHV3-52, LINC02700, MRGPRF-AS1, LBX2-AS1, LINC01580, LINC00524, NDUFB4P11,
CYCSP2, TBC1D3P5, RDM1P2, RDM1P1, ACTBP9, NTF6A, OR7E16P, VN1R80P, IMMP1LP3, and RDM1P4
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WNT6, and WNT8B), with BMP (SMAD9), and TGF (ACVR2A,
GDF6, and ZFYVE9). The study has found various components of
the cytoskeleton and membrane proteins responsible for the transfer of
various molecules. Potentially, each of these genes encodes proteins
suitable for targeted lung cancer therapy.

Four of the genes found at the stage of tumor–normal filter
encode cytoskeletal proteins. Notably, the processes of tumor
invasion and metastasis are often registered by the time of
diagnosis in patients with lung cancer (Kuo et al., 2021). These
features of the tumor are mediated by the developed cytoskeleton in
the tumor cells. Thus, it is not surprising that there is a correlation
between the expression of cytoskeletal proteins and a decrease in the
overall survival of patients with lung cancer.

One of the key considerations in deciding to use artificial
intelligence algorithms for drug discovery is the reliability of the
results obtained through their utilization. Similar to mathematical
modeling across various industries, there is a significant possibility of
forecast results not being validated in reality. This arises from the
following three primary factors: inadequacy of the model architecture,
incorrect data representation, and data insufficiency. The deep
learning model type has proven itself effective in the industry,
enabling the capture of nonlinear relationships that aptly describe
the subject area. The data representation developed within the
framework of this study yielded high predictive quality, which was
confirmed using standard cross-validation techniques. A factor
contributing to further accuracy enhancement is the quantity of
data, which is expected to accumulate with the proliferation of
high-tech diagnostic methods and the prevalence of data
management systems.

It should be noted that in this study, we proceeded from the
assumption that all genes with mutations are targets. However, in
practice, alterations in active signaling pathways often occur even
when inhibiting the activity of a key gene. Undoubtedly, the
obtained results require validation through laboratory methods.

Conclusion

The pipeline of methods presented in this paper can serve as the
basis for the technology of automated AI-driven drug discovery. The
application of modern methods of machine learning, in particular,
deep learning, as well as ways to present initial data for learning

algorithms, is demonstrated. The performance of the methods,
confirmed by cross-validation approaches on known results, was
demonstrated using data from open sources. Ways to improve the
methodology are the use of more data, including proprietary, as well
as a more detailed representation of the original knowledge, in
particular—three-dimensional modeling of interacting molecules.

Natural language processing technologies used in this work have
shown effectiveness for processing tens of thousands of articles.
They can also be similarly used to compile own databases of
scientific publications.
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