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No-boundary thinking enables the scientific community to reflect in a thoughtful
manner and discover new opportunities, create innovative solutions, and break
through barriers that might have otherwise constrained their progress. This
concept encourages thinking without being confined by traditional rules,
limitations, or established norms, and a mindset that is not limited by previous
work, leading to fresh perspectives and innovative outcomes. So, where do we
see the field of artificial intelligence (AI) in bioinformatics going in the next
30 years? That was the theme of a “No-Boundary Thinking” Session as part of
the Mid-South Computational Bioinformatics Society’s (MCBIOS) 19th annual
meeting in Irving, Texas. This session addressed various areas of AI in an open
discussion and raised some perspectives on how popular tools like ChatGPT can
be integrated into bioinformatics, communicating with scientists in different
fields to properly utilize the potential of these algorithms, and how to
continue educational outreach to further interest of data science and
informatics to the next-generation of scientists.
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1 Introduction

The emergence of computational biology in the 1960s can be attributed to three pivotal
technological and conceptual developments (Hagen, 2000). First, the expanding repository
of protein and amino acid sequences (Chang et al., 1965) provided new avenues for
quantitative analysis but required computational power to derive insights from these early
datasets (Levitt, 2001). Second, molecular biology’s central idea that macromolecules, such
as DNA and RNA, contain biological information was developed, establishing a theoretical
framework for the use of computation to interpret genetic information (Crick, 1958). Lastly,
high-speed digital computers, developed during World War II for the purpose of breaking
codes, have now made these once scarce machines more widely accessible to biologists
(Luscombe et al., 2001). Though not yet universally adopted, this newfound computing
power gave initial adopters the ability to analyze biological data and develop foundational
algorithms. Together, these factors provided key data resources, a conceptual basis, and
essential computing tools that allowed pioneers to blend computation with biology’s most
pressing questions. Paulien Hogeweg and Ben Hesper coined the term “bioinformatics” in
1970, referring to the study of information processes in biotic systems (Hesper and
Hogeweg, 1970). At an early stage in computational biology and bioinformatics,
Margaret Dayhoff contributed significantly to the development of the field, and her
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Point Accepted Mutation matrix (PAM) quantified evolutionary
changes in amino acids based on protein sequences (Dayhoff, 1972).
Los Alamos National Laboratory was one of the first institutions to
analyze the increasing amount of nucleic acid sequence data
(Williams et al., 1978). By the end of the 1970s, these early
efforts laid the foundation for bioinformatics to emerge as a
quantitative approach to molecular biology.

Over the 1980s, bioinformatics continued to develop as a vital
interdisciplinary field, playing a pivotal role in advancing molecular
biology. The establishment of nucleic acid and protein sequence
databases, such as GenBank (NCBI, 1982) at the National Institutes
of Health in 1982, was a significant milestone during this period.
Meanwhile, ambitious efforts to sequence the human genome
(National Research Council, 1988) and the development of
computational tools for assembling and analyzing these large
datasets began. A decade after its introduction, bioinformatics
became an essential component of research in molecular biology
and biotechnology. Through the 1990s, high-throughput sequencing
marked an era of rapid growth and innovation in bioinformatics.
Projects such as the Human Genome Project (International Human
Genome Sequencing Consortium, 2004) have driven the necessity
for algorithms and databases to store, organize, and analyze massive
amounts of genomic data. To address these challenges,
bioinformaticians have developed new sequence alignment tools,
molecular modeling techniques, and approaches to identifying genes
and regulatory regions in DNA with degree programs established by
the mid-1990s to train scientists in this rapidly evolving field. A
landmark achievement of bioinformatics was the completion of the
Human Genome Project in 2003. Bioinformaticians have developed
advanced algorithms for statistical and machine learning (ML)
analysis to gain insight from this flood of omics data. Cloud
computing enabled the storage and analysis of large genomic
datasets. By the late 2000s, bioinformatics had become an
integral part of a wide range of fields, including molecular
biology and drug discovery such that data-driven biology
empowered by bioinformatics became the defining feature of the
21st century.

Researchers are developing artificial intelligence (AI) and
other computational tools at a rapid pace due to the
availability of data generated in the big data era. Popular AI
tools like ChatGPT stand to serve as a starting point for the next-
generation of AI models that can assist in research in
bioinformatics. As part of the 19th annual meeting for the
Mid-South Computational Bioinformatics Society (MCBIOS),
attendees participated in a no-boundary discussion to discuss
how bioinformatics will evolve in the next 30 years. The
discussion centered around four major themes: educating the
next-generation, leveraging AI tools, gaining new research
perspectives, and engaging students and faculty in outreach.

2 Directions

2.1 Educating the next generation

Bioinformatics education plays a pivotal role in training the
next-generation of scientists to oversee the deluge of biological data
in the modern era. As bioinformatics continues to evolve, the need

for core competencies in this field becomes increasingly important
for both students and researchers.

Previously, the NSF-funded group, Network for Integrating
Bioinformatics into Life Sciences Education (NIBLSE) published
core competencies for education in life sciences (Sayres et al., 2018).
These core competencies in bioinformatics provide students with a
solid foundation, enabling them to adapt to the rapidly changing
landscape of biological data analysis. These competencies serve as a
roadmap for students, ensuring they gain the essential skills needed
to address complex biological questions. The foundation of the core
competencies encompass proficiency in programming, statistical
analysis, database management, and biological knowledge. These
competencies go beyond technical skills, also involving critical
thinking, problem-solving, and effective communication.
Bioinformatics core competencies encourage interdisciplinary
collaboration as students learn to bridge the gap between biology
and computational sciences, and enable researchers to work
seamlessly across various scientific domains, fostering innovation
and discoveries. Integrating core competencies into bioinformatics
curricula ensures that students receive a well-rounded education.

Adopting competency-based learning outcomes empowers
educators to tailor programs to meet specific research needs.
Teaching bioinformatics core competencies can be challenging
due to the rapid evolution of technologies and tools. Instructors
must stay current and adapt their teaching methods to keep pace
with the field. A sturdy foundation in core competencies is essential
for researchers to leverage the full potential of bioinformatics in their
work. Researchers proficient in these competencies can expedite
data analysis, drive hypothesis-driven research, and enhance the
reproducibility of their studies. Advancements in AI and ML are
redefining bioinformatics core competencies, necessitating a
continuous learning approach. The integration of omics data and
single-cell sequencing presents new challenges and opportunities in
bioinformatics education. Bioinformatics education and the
cultivation of core competencies are vital for driving
advancements in the life sciences. As the field of bioinformatics
continues to grow, educators and researchers must adapt, ensuring
that core competencies remain relevant and robust. To meet the
evolving demands of bioinformatics, educational institutions should
establish continuous professional development programs for
instructors. Aggregating resources for bioinformatics education
into central repositories has been a viable avenue to make
instructional content more readily available (Dinsdale et al.,
2015). Additionally, as part of the efforts by the NIBLSE
community to address the training of students, they conducted a
survey of 1,260 faculty across the US to identify their thoughts on
what such training should involve. Approximately 95% of those
surveyed agreed with the statement, “I think Bioinformatics should
be integrated into undergraduate life sciences education.”
Nevertheless, there exist variations in faculty viewpoints across
diverse types of institutions. These discoveries offer valuable
understanding regarding diverse educational outlooks and the
challenges educational institutions might encounter while
assimilating bioinformatics into their life sciences programs. It is
crucial to acknowledge the disparities between the educational
requirements of bioinformaticians and life scientists, as well as
the distinctions between the objectives of undergraduate
education compared to graduate or professional education. The
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prevailing discourse in the literature concerning bioinformatics
education has primarily centered around the training of
bioinformaticians or the advancement of graduate and
professional skills, neglecting the context of undergraduate
education. As the popularity of data science and AI tools
increases, the tools we use for education need to be more
inclusive and target students who may not have programming
experience but are interested in bioinformatics. Several tools are
starting to emerge as interactive demonstrations to utilize in active
learning environments.

Two examples of NIBLSE tools featured during the
2023 MCBIOS workshop delivered by Drs. Elizabeth Ryder,
Adam Kleinschmit, and William Morgan were: 1) An inquiry
based and “under the hood” approach for incorporating
molecular sequence alignment in introductory undergraduate
biology courses; and 2) RNAseq data analysis using Galaxy. Both
resources exemplify valuable, freely accessible tools that educators
can employ in their classrooms, utilizing them effectively for
bioinformatics education.

2.2 Leveraging artificial intelligence tools in
bioinformatics

With tools and platforms like ChatGPT, DALL-E, and other
language/image neural network models currently serving as the
zeitgeist for AI research, research workflows incorporate AI tools
to increase knowledge of the chemical space in cheminformatics and
various genomes in bioinformatics. The rise of generative pre-
trained transformer (GPT) models—ChatGPT—has led to a
boom in research highlighting ChatGPT in both a positive and
negative light. Applied as a tool for glaucoma patients, ChatGPT
provided generic and repetitive information that is written at a level
to be understood by those at a higher grade level (12.5 ± 1.6) in
comparison to the explanations provided on AAO.org (9.4 ± 3.5)
according to the Flesch-Kincaid Readability Test (Wu et al., 2023).
In chemical education, ChatGPT was implemented in the laboratory
to show how that would affect students’ ability to write lab reports
(Humphry and Fuller, 2023; West et al., 2023). These studies found
that students still need to develop the skills to effectively ask
ChatGPT the right questions if the goal is for ChatGPT to be an
effective substitute for writing lab reports even though ChatGPT
cannot successfully generate both specific experimental details and
meaningful data analysis. However, ChatGPT can be used as a
curationmodel to scan the literature effectively and essentially create
a computer-based lab assistant through prompt engineering. In
work by Zheng et al., 26,257 parameters of roughly 800 metal
organic frameworks (MOFs) sourced from peer-reviewed studies
were used to train a GPT model to predict MOF crystallization
conditions with over 87% accuracy and answer questions about
chemical reactions and synthesis procedures from a data-grounded
perspective (Zheng et al., 2023). Therefore, with proper training of
both model and user, popular AI models like ChatGPT can benefit
scientists in both an educational and research environment.

Pertaining to bioinformatics, Vision Transformers (ViT) models
(Dosovitskiy et al., 2020) like AlphaFold (Jumper et al., 2021) have
dramatically improved protein structure prediction from amino acid
sequences, enabling better understanding of protein function.

Transformers are also instrumental in providing highly improved
performance and reducing complexity in the segmentation of
medical images (Deng et al., 2021). Language-Image models such
as CLIP (Contrastive Language-Image Pre-Training) (Radford et al.,
2021) are gaining popularity in bioinformatics for integrating
images and text. One application is generating textual
descriptions of the contents and biological context visible in
microscopy images through bioimage captioning (Aono et al.,
2023). More broadly, CLIP provides a way to connect
multimodal biomedical data by associating images and text from
papers, reports, and social media to gain new biological insights
through multi-modal biomedicine (Lin et al., 2023). By learning
visual concepts from natural language supervision, CLIP offers an
efficient framework for making sense of diverse image and text data
in biology. Recently, domain-specific pre-trained models
(Najgebauer et al., 2020) have leveraged the strengths of large-
scale language models while ensuring the language representations
are finely tuned for unique challenges and opportunities in each
domain. BioBERT (Lee et al., 2020) is a prime example
demonstrating the effectiveness of pre-training language models
on biomedical text corpora (Black et al., 2022), which creates
representations specialized for biomedical natural language
processing tasks. Similarly, BioMegatron (Shin et al., 2021) was
pre-trained onmassive biomedical datasets totaling 18 billion words.
These datasets encompassed materials such as PubMed abstracts,
clinical notes, and full-text articles from the biomedical domain,
which exposed the model to a vast vocabulary within the biomedical
space. The pre-trained BioMegatron model can then be fine-tuned
and applied to various downstream tasks like question answering,
natural language inference, and PICO (Population, Intervention,
Comparison, Outcome) extraction. These models highlight how
bioinformatics research successfully leverages AI models.

2.3 Gaining new perspectives

As scientists sequestered in our respective fields, we often
network and collaborate with people that closely align with our
research in the experimental “wet” fields. For those who straddle the
boundaries of self-taught skills in coding within their respective
field—biology, chemistry, physics—reaching out to colleagues in
different departments, like computer science, can benefit both
parties by providing insight into new research avenues. For
example, when deciding which ML models to use, people often
do not take the time to understand the nuances of eachmethod. As is
the case for various unsupervised machine learning techniques for
clustering, the distribution shape of data plays a significant role in
whether the data can be effectively clustered through centroid-based
(K-means), density-based (DBSCAN), or distribution-based
clustering (Gaussian Mixture Models). If one is not careful with
the type of clustering technique chosen, the data interpretation
could lead to an ineffective conclusion. Therefore, a better
understanding of the mathematical and coding principles used to
create these models serves the community at large to better
understand the tools for AI model development rather than
blindly trusting that the models are rigorous.

However, collaborating with experimental scientists in one’s
respective field can still lead to gaining a new perspective. Focusing
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on rational drug design, computational efforts include neural
networks built on physical, structural, and chemical properties
used to screen potential drug candidates. Collaborative efforts
between computational and experimental researchers can lead to
insight into the chemical nature of various drug-like molecules. For
example, discussions with an experimental chemist has led to insight
into how the subtle structural effects such as the orientation of the
lone pairs on the N atoms in the N,N-disubstituted piperazine ring
moiety of drug molecules like fluphenazine and trazodone leads to
favored solubility of a drug molecule in different solvents, which
affects how drugs are absorbed in the human body Draper et al.
(2023). These subtle features may get overlooked by a data scientist
focused on quantitative accuracy of AI models and this anecdote
serves as a reminder when training AI models. Overall, discussions
with colleagues in different fields can help one link computer-
generated data to the underlying scientific principles that dictate
the training of AI models.

2.4 Student and faculty engagement
and outreach

As part of the opportunities to address barriers to
implementation of bioinformatics core competencies into
curriculum, NIBLSE developed the idea of “incubators” in
collaboration with the Quantitative Undergraduate Biology
Education and Synthesis (QUBES; https://qubeshub.org/)
network. The goal of these small online faculty groups is to
develop new curricular modules and nurture a growing network
of faculty implementing bioinformatics modules in the classroom
(Ryder et al., 2020). An incubator is a short (6–10 weeks),
focused, online community that refines an existing teaching
lesson submitted by its author into a more polished and
widely useable learning resource (Ryder et al., 2020).
Incubator participants are composed of both experts and
novices on the resource topic to ensure both accuracy and
accessibility of the finished product. Active NIBLSE members
are recruited to participate in an incubator as well. The
incubators themselves can provide useful support networks;
faculty that participate in the incubator are also likely to
implement the resource in their classrooms.

As faculty, we need to continue to refine our approach to content
delivery for students. One example is teaching through
demonstrations—conducting mini-experiments and analyzing
data during live demonstrations in the classroom. Incorporating
real-world examples and/or case studies are increasingly becoming
essential so that students can develop an awareness of past, current,
and future perspectives in the field. Instructors should continue to
challenge students to share their opinions, by encouraging
brainstorming sessions, group projects, and oral presentations.
Students should leave the classroom knowing what it means to
be a good researcher and collaborator, as this is often the case with
research-related jobs and professions where the work is conducted
as part of a team of investigators.

The ability to read the primary literature is crucial in training
students to think like scientists. For upper-level courses or graduate
programs, coursework should continue to reflect dedicated exercises
where students are expected to spend time reading and analyzing

primary research journal articles. The importance of digging deeper
should be emphasized to help reinforce the students’ understanding
of primary literature and help them improve scientific writing skills.
Practical applications need to be highlighted for the theories being
discussed. Students learn concepts, but most importantly, the ability
to troubleshoot, actualize, and practice use case scenarios. The goal is
to provide the students with a depth of understanding that helps
further their understanding of the subject area. Learning is a distinct
mechanism by which there is a harmonious exchange of information
from the delivery process to the application of the shared
information.

As informatics continues to experience technological advances,
faculty should remain abreast of emerging developments and
adaptable to integrate specialized skills training into courses.
Some examples of these skills in the current Bioinformatics and
Machine Learning for Biology courses at the University of Dallas
(UD) include creating interactive visualizations, managing data
analysis workflows, contributing to data reproducibility and
transparency, and data parsing and interpretation. These
technical skills have broad interests from students and offer them
important insights. Another pathway for implementing the core
competencies is through Course-based Undergraduate Research
Experiences (CUREs), which splits students into teams to
undertake an active research project over the course of a
semester under the guidance of the instructor. Project updates in
the form of reports and presentations build the students’ practical
research skills and can lead to student-led published work. At UD,
the Physical Chemistry II lab is a CURE that explores how
computational chemistry can apply to a research topic that
interests the student, e.g., computational drug discovery.
Computational CUREs work as low-cost course-based research
that addresses elements of the core competencies previously
published by NIBLSE.

3 Conclusion

Overall, this No-Boundary Thinking perspective covers the
numerous areas of growth we see for utilizing AI tools in
research and in the classroom. Collaborative instructional tools
like the core competencies and course-based research experiences
can help train the next-generation to promote the active
development of AI models for continued growth in
bioinformatics research.
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