
A proof-of-concept pipeline to
guide evaluation of tumor tissue
perfusion by dynamic
contrast-agent imaging: Direct
simulation and inverse
tracer-kinetic procedures

Irene E. Vignon-Clementel1*, Nick Jagiella1, Jules Dichamp1,
Jérôme Kowalski1, Wiltrud Lederle2, Hendrik Laue3,
Fabian Kiessling2,4, Oliver Sedlaczek5 and Dirk Drasdo1,6*
1Inria, Palaiseau, France, 2Institute for Experimental Molecular Imaging (ExMI), University Clinic and
Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany, 3Fraunhofer
MEVIS, Institute for Digital Medicine, Bremen, Germany, 4Fraunhofer MEVIS, Institute for Digital Medicine,
Aachen, Germany, 5Department of NCT Radiology Uniklinikum/DKFZ Heidelberg, Heidelberg, Germany,
6IfADo - Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany

Dynamic contrast-enhanced (DCE) perfusion imaging has shown great
potential to non-invasively assess cancer development and its treatment by
their characteristic tissue signatures. Different tracer kinetics models are
being applied to estimate tissue and tumor perfusion parameters from
DCE perfusion imaging. The goal of this work is to provide an in silico
model-based pipeline to evaluate how these DCE imaging parameters may
relate to the true tissue parameters. As histology data provides detailed
microstructural but not functional parameters, this work can also help to
better interpret such data. To this aim in silico vasculatures are constructed
and the spread of contrast agent in the tissue is simulated. As a proof of
principle we show the evaluation procedure of two tracer kinetic models from
in silico contrast-agent perfusion data after a bolus injection. Representative
microvascular arterial and venous trees are constructed in silico. Blood flow is
computed in the different vessels. Contrast-agent input in the feeding artery,
intra-vascular transport, intra-extravascular exchange and diffusion
within the interstitial space are modeled. From this spatiotemporal model,
intensity maps are computed leading to in silico dynamic perfusion images.
Various tumor vascularizations (architecture and function) are studied and
show spatiotemporal contrast imaging dynamics characteristic of in vivo
tumor morphotypes. The Brix II also called 2CXM, and extended Tofts
tracer-kinetics models common in DCE imaging are then applied to
recover perfusion parameters that are compared with the ground truth
parameters of the in silico spatiotemporal models. The results show that
tumor features can be well identified for a certain permeability range. The
simulation results in this work indicate that taking into account space
explicitly to estimate perfusion parameters may lead to significant
improvements in the perfusion interpretation of the current tracer-kinetics
models.
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1 Introduction

Certain histological features have been found to be characteristic
for classification of tissue pathologies, in particular the grading of
solid tumors and their evolution in absence of or in response to
treatment (Noguchi et al., 2008; Hu et al., 2009; Li and Padhani,
2012; Essock-Burns et al., 2013), hence their knowledge can impact
on clinical decisions. These features can be quantified by parameters
such as the density and type of cells, the density, morphology and the
spatial architecture formed by the vessels, which may also provide
indirect information on leakiness (e.g. depending on fenestration of
vessels etc.). However, histological information is not readily
accessible unless biopsies are taken, which, besides being invasive,
only provide local, and mainly morphological, information. For this
reason, it is valuable to infer information on tissue microarchitecture
from macroscopic imaging modalities, ideally complemented by
functional signatures like the vessels’ flow and leakiness. Specific
imaging modalities such as dynamic contrast-enhanced (DCE)
perfusion imaging, or diffusion weighted imaging (DW)-MRI
have been developed to gather information about such
parameters down to the histology level non-invasively
(Palmowski et al., 2008b; Lassau et al., 2011; O’Connor et al.,
2011). As these modalities do not typically give direct access to
the set of microscopic parameters, the signal measured with a given
non-invasive imaging modality needs to be related to the
information of interest at the histological level. This includes the
spatial micro-architecture, as usually the signal corresponds to an
average over many micro-structural elements, and the functional
information as, for example, vessel leakiness, given that knowing the
localisation of a blood vessel wall alone is insufficient to infer its
permeability. Consequently, these non-invasive modalities, if
correctly applied and interpreted, have the potential to provide
histological and functional information, and, due to their non-
invasiveness, can be applied during the development and
treatment of the disease making them potentially very valuable
for clinical decisions. For DW-MRI, the signal information can,
under certain conditions, be easily related to the quantitative local
tumour density (Yin et al., 2018) and even be probed by biopsies
(Yin et al., 2021). For DCE imaging, numerous tracer kinetics (TK)
models (e.g. Brix, Tofts, . . . ) have been constructed such that a small
set of model parameters is believed to reflect the information of
interest for the vasculature, and hence permit to retrieve this
information from the imaging signal (DCE-MRI, DCE-CT, DCE-
US).However, validation of these TK models remains a great
challenge. Structural parameters can be compared to invasive
histological data (Zwick et al., 2009). Functional parameters can
be included for validation with in vitro phantom experiments
(Driscoll et al., 2011; Gauthier et al., 2012). However to construct
a representative vascularised tumor phantom at scale is challenging
and difficult to adapt to different micro-architectures. Comparison
to other blood flow imaging measurement modalities have validated
flow (Lee et al., 2003), but only at the macro-scale. An alternative
could be a “virtual” validation: by setting up a spatial temporal
model that, even if it represents a simplification of the tissue micro-

architecture, captures the important parameters and features of a
tissue at the histological level, and then testing at least in silico, in
how far TK-models can be expected to infer information on the
parameters of interest, potentially proposing inference strategies
that are expected to improve the inference of microscopic
information from macroscopic signals.

We here establish a proof of concept for the entire path i.e., a
workflow, starting with establishment of a direct model of blood
vessel network and function, and simulating in how far two
frequently used representatives of TK-models, e.g. the so called
Brix and Tofts models, are able to infer information on tissue
architecture and function from in silico DCE images
(Figure 1).Our approach is not exhaustive but guided by
Einstein’s principle that “everything should be made as simple as
possible, but no simpler” to avoid unnecessary complexity. To limit
the number of parameter sets, we focus on those parameter sets, that
are capable of reproducing typical DCE-MRI signal patterns
(Figure 2). These include the enhancement of a tumor’s border
in case its microvascular density is elevated, while the core remains
dark indicating necrosis (Figure 2A and movie
TumorRimPerf.mov). Also an entire tumor can light up (in
particular, if small) (Figure 2E) leading to characteristic
fingerprints in the dynamic signal intensity (Figure 2F, f1, f2),
which, for example, do not occur in muscle tissue (Figure 2F, f3).
Even millimetre tumors are clinically observed (Figures 2C,D),
which show a moderate elevated DCE signal (see also
Supplementary Appendix SA8) and may display a necrotic core
(Figure 2G).The workflow within this work connects a number of
building blocks. For each of them, some aspects have already been
addressed in published references, which for the sake of clarity we
summarize only briefly in the introduction (more extensive
information has been depicted in Supplementary Appendix SA2).

The first contribution of this work is a flexible tool for vascular
network creation and adaptation, control of features such as regional
microvascular density and necrotic core, and computation for flow
in this architecture (Figure 1A). The first step is flow modelling in
blood vessel networks characterized by hallmarks of cancer
vascularization, namely angiogenesis and necrosis (Hanahan and
Folkman, 1996; Bergers and Benjamin, 2003; Vaupel, 2004).
Stamatelos et al. (2014) were able to reconstruct the
microvascular network of tumor Xenografts by a tremendous
effort, but for demonstration of our workflow, the required
network must be much greater than the tumor itself and its
topology under control. Moreover, during the image
reconstruction process, network connections may be missed out,
which can be avoided if the network is constructed in silico.
Representing hierarchical arteriovenous networks is however
important to study tumor vascularization (Rieger and Welter,
2015). Hence by contrast to previous modelling work that mostly
did not take it into account (Drasdo et al., 2010; Perfahl et al., 2011)
or that rather focused on the development process (Welter et al.,
2008; Welter and Rieger, 2010), we here concentrate on the
generated tumor vascularization within a hierarchical network
since it can be considered static at the time-scale of dynamic
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FIGURE 1
Benchmark concept and its different steps: in silico vascular network (A), in silico DCE-MRI generation (B), dynamic signal extraction (C),
interpretation of the parameters with a tracer kinetics model (here a two-compartment model for extravascular contrast-agent (D)) by an inverse
procedure (E), and comparison of obtained parameter maps (F) with the original ones. CA represents the input concentration, F blood flow, CP

concentration in the vessels, VP their volume, KPS the exchange rate with the interstitial space, CI concentration in the latter, VI its volume.

FIGURE 2
Tissue perfusion characterization. Examples of tumors in human (upper row) and animal model (lower row). (A) DCE-MR-Image of Non-small cell
lung cancer (NSCLC) tumor showing a characteristic enhanced ring after injection of a contrast agent (arrow: tumor of 4.1 cm (bar)). (B) Time course of
the DCE-MRI signal intensity measured every 20s in a region of interest for an NSCLC tumor. (C) Prostate tumor (3.8 mm) in T2-weighted MRI. (D) DCE-
MRI image of same tumor (circle). (E) DCE-derived parameter map of two Xenograft tumors (e1,e2) andmuscle (e3) overlayed on T1-weighted MRI.
(F) Corresponding signal intensity for tumors (f1,f2) and muscle (f3). (G) Histological cross-section of a few mm tumor grown in a Xenograft model
showing cell nuclei (blue) surrounding a necrotic area (red).
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image acquisition. However, we only focus on the microvascular
scale as these vessels mostly mediate the exchange of nutrients and
contrast agents with the extravascular compartments and as they are
representing the angiogenic sites.

The second contribution of this work is in the generation of in
silico images from the coupled modeling of the contrast-agent in
such a tumor vascular network and tissue, which here includes
extravasation and diffusion in the interstitial space (Figure 1B).
Indeed, given a computed blood flow, the transport of contrast agent
or drugs inside these vessels and outside can then be computed. The
spread of such compounds has been modelled either only
intravascularly or considering a refined model of flow and drug
concentration exchange, but not taking into account transport in the
hierarchical networks feeding the tumor (Rieger and Welter, 2015).
Closer to our work, Mescam et al. (2010) studied a multiscale model
of blood flow and contrast-agent spread in liver, to better understand
DCE-MRI images in the presence of a tumor. Flow is computed in
realistic 3 d networks down to 40 μm connected with functional
tissue units that do not resolve the microvascular (e.g. capillary)
structure. By contrast, the model considered here simulates flow and
transport in explicit vascular networks including capillaries, with
transport computed inside the networks with emphasis on the
essential exchange between the intra-and extravascular spaces.
2 and 3 d vascular networks as well as 1 d vessels are considered.
The results show different functional examples and their influence
on dynamic perfusion images.

Given a dynamic signal over time (Figure 1C), the next step is to
infer some parameters from it, that reflect the underlying tissue
(Figures 1E,F). The signal is interpreted at the image voxel level or in
a whole region of interest (ROI), typically a region that is thought to
be the tumor or a non-tumor zone, by a variety of TK models. None
of the ones used in DCE imaging practice take space into account
(Sourbron and Buckley, 2013). Semi-quantitative parameters (time
to peak, maximum slope, etc.) can be easily extracted but without
being specific for the different underlying tissue parameters. This
work focuses on TK models that contain parameters surrogate for
what is seen in typical tumors such as zones of higher microvascular
density or significant leakage (Figure 2): the contrast agent
concentration is often described by two interacting
compartments, one for blood and one for the extravascular space
(Tofts et al., 1999; Lee et al., 2003). It is assumed that the feeding
concentration to the blood compartment is the same for all voxels, in
some works with a delay-parameter (Lee et al., 2003; Koh et al., 2011;
Sourbron and Buckley, 2013). Many TK models fit into the general
theoretical framework proposed by Sourbron (2014).The third
contribution of this work is in the assessment of the inverse
procedure in 1, 2, and 3 d on synthetic DCE imaging data for
two common TK models. Overall the goal is to validate the
relationship between microscopic information and DCE imaging
data in silico. Zwick et al. (2010) investigated how parameters of
2 TK models correlate to the tissue input parameters of an effective
one-dimensional model of contrast-agent spread inside and out of
the microvasculature i.e., without explicitly representing the vascular
network and thus the tumor tissue structure in space. The same
conceptual idea is pursued here, but starting from a more complex
model, where space is explicitly taken into account both in the
transport of the contrast agent in branching trees and connected
tumor vascularization, and in the possible diffusion of the contrast

agent outside the blood vessels, hence different from Zwick et al.
(2010) generating spatial perfusion images and parameter maps
(Figures 1B,D).

The structure of the paper (cf. Table of content before the
Reference list) in Material and Methods and Results follows the
different steps of the workflow (see Figure 1); namely functional
microvascular network and tumor characteristics, generation of in
silico dynamic perfusion images and estimation of the
corresponding parameters from 2 TK models. This proof of
concept of validating the relationship between microscopic data
and DCE imaging data and the obtained results are finally discussed.
The findings suggest that a more accurate parameter inference may
be achieved if the distance of the feeding artery (if it is known) from
the ROI is taken into account. The main components of each step of
the workflow is explained in Section 2. This section also describes
more precisely the novelties. Complementary technical information
and results not necessary to understand the main conceptual line of
the paper are given in the SI so that the paper is self-contained and
the results can be reproduced (see also the Benchmark code section;
some additional information can be found in ref (Jagiella, 2012)).

2 Materials and methods

In the methods section, the spatial vascular architecture and
perfusion model are described, followed by the contrast-agent intra-
and extravascular transport modeling. Inference procedures are
explained based on two common TK models similarly as in Brix
et al. (2010).

2.1 In-silico tumor vascularization

In this subsection we briefly summarize qualitatively how the
vasculature is generated with focus on the tumor vasculature
(technical details, see Supplementary Appendix SB1). The
construction of the vasculature requires and thereby implies the
simulation of flow. The structure and remodeling of the
microvascular networks closely follow previous works of Goedde
and Kurz (2001) or Welter and Rieger (2010). But the purpose here
is different: we consider the time scale of diagnosis, not of growth
and remodeling. The vascularization is constructed to be directly
reflective of different tumor architectures. Hence, novel local rules
are proposed for the tumor region.

Vascular networks along with their flow properties (flow-rate,
pressure, wall shear-stress) are constructed based on graphs placed
on a regular lattice (in 1, 2, 3 d) by placing points into the center of
each unit (a cube in 3d, square in 2 d, line segment in 1 d) and
linking those with 3 d cylinders according to a certain set of rules
specified in Supplementary Appendix SB1.1. Networks are first
initialized from arterial and venous tree roots (Supplementary
Appendix SB1.2), which become functional, interpenetrating trees
connected by capillaries by shear-stress homogenization
(Supplementary Appendix SB1.3). Vessel radii are recursively
computed from capillaries up to the roots of these hierarchical
networks, according to a power-law of coefficient α (equation (B.1)).

Inside growing tumors the micro-environment is different than
in healthy tissue. In order to create a “tumor-like” vascularization,
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two regions - a tumor region and a necrotic core - are defined, where
the rules and parameters for the homogenization algorithm are
different (Supplementary Appendix SB1.3). Due to high
proliferation, tumor cells consume much more nutrients than
cells in the surrounding healthy tissue. Consequently, an
increased production of VEGF in hypo-nourished parts of tumor
stimulates vessel sprouting and increases microvascular density
(MVD), and a delicate interplay of different growth factors and
nutrient availability leads to different tumor vascularization
scenarios (Drasdo et al., 2010; Welter and Rieger, 2010). During
algorithmic vessel generation the parameter quantifying vessel
sprouting (the “vessel sprouting probability” pspr

tumor) is increased
while another parameter characterizing vessel collapse (the “vessel
collapse probability” pdeg

tumor) is decreased to reproduce a highly
angiogenic tumor with PDGF (platelet-derived growth factor)
mediated vessel maturation in the tumor model (see Table 1). In
addition, the higher MVD is mimicked by connecting neighboring
capillary ends with n parallel vessels, which modifies the relation of
vessel radii at branching points and computation of flow along
capillaries (Supplementary Appendix SB1.4).

The plasma volume fraction ϕP, given by the ratio of volume
occupied by vessels to total volume within a tissue region of interest,
in tumorous tissue was found increased by one order of magnitude
(ϕP = 0.04 ± 0.01 in pectoral muscles; ϕP = 0.2 ± 0.07 in carcinoma;
see (Brix et al., 2004)). In the following, unless otherwise specified,
the default value is n = 10 for inter-tip-connections inside tumoral
regions (see Table 1).

Beyond a certain size, the central parts of the tumor are not
nourished sufficiently anymore: a necrotic core appears. It was
observed that this necrotic zone is not only lethal to tumor cells,
but to endothelial cells and thus to small blood vessels as well
(Kiessling et al., 2003; Palmowski et al., 2008a). Thus in this region,
the vessel sprouting probability pspr

necrotic is decreased and the vessel
collapse probability pdeg

necrotic increased compared to healthy tissue
(see Table 1).

2.2 In-silico contrast-enhanced perfusion
images

The vascular network structures are then used to simulate the
transport of contrast-agents through vascularized tissues and create
in silico perfusion images.

2.2.1 Contrast-agent modeling
Multi-phase equations model the macroscopic transport of the

contrast agent in the tissue namely both inside the vascular network
and the interstitial space. This model fits into the class of multiphase

reaction-advection-diffusion models that for tracer kinetic models
have been suggested to be generated by combining key process
modules, namely, convection, diffusion, leakage, absorption, decay
and sources (Sourbron, 2014). See Supplementary Appendix SB2.1
for its link to microscopic model and interphase exchanges.

The mass concentration of contrast-agent (CA) inside the
plasma follows

z

zt
ϕPcP( ) + ∇ · ϕPcPv( ) � −kPS cP − cI( ) inΩ,

cP|zΩin
� cA t( ),

(1)

where cA is the arterial (or more generally, vascular) input
function (AIF), the blood plasma concentration in the arterial
root nodes zΩin. cP = nP/VP is the macroscopic (local averaged
microscopic) plasma CA concentration, and cI = nI/VI is the
macroscopic (local averaged microscopic) interstitial CA
concentration, whereby nP, nI are the number of CA
molecules in phases P and I, VP and VI the volumes of phases
P and I in the tissue volume V = VP + VI. v is the macroscopic
blood velocity, and kPS the volumetric macroscopic membrane
exchange rate, both defined later. Parker et al. (2006) proposed an
AIF functional form derived from patient data (see
Supplementary Appendix SB.2.2, Supplementary Table SB4).

Assuming no advection but only diffusion in the interstitial
space as a consequence of cells and extracellular matrix, and no-flux
conditions at the tissue border, the CA mass concentration in the
interstitial space follows

z

zt
ϕIcI( ) � ∇ · ϕIDI∇cI( ) + kPS cP − cI( ) inΩ,
zcI
zn

∣∣∣∣
zΩ � 0

(2)

where ϕIDI is the effective diffusion coefficient due to the fact that
the molecules are not diffusing freely among the whole volume, but
are limited by the cells and vessels borders. DI is taken as 103 μm2/s
(Lemke et al., 2009) while kPS will be defined later. For an in-depth
derivation of the macroscopic equations from homogenization
theory, see (Penta et al., 2015).

2.2.2 Generation of parameter maps and in silico
images

Eqs 1, 2 are then discretized and solved numerically for each
voxel i (see Supplementary Appendix SB2.3). The flux fi,j from node i
to node j relates to the velocity vi,j as fi,j � vi,jπr2i,j. The nodes are
placed in the middle of each voxel (volume element on the regular
lattice), i serves at the same time as a lattice identifier
(Supplementary Appendix SB1.1). Parameter maps can then be
defined for all voxels of an in silico image. Given the vascular
graph G (defined in Supplementary Appendix SB1.1) gives for

TABLE 1 Vascularization parameters specific to healthy, tumorous and necrotic tissue zones. τ denotes the wall shear stress, τmin and τmax minimal and maximal
values, respectively (Supplementary Appendix SB1.3).

Normal tissue Tumor Necrotic core

Sprouting Probability pspr
normal � 0.5 pspr

tumor � 1 pspr
necrotic � 0.1

Degeneration Probability pdeg
normal � τmax−τ

τmax−τmin
pdeg
tumor � pdeg

normal/10 pdeg
necrotic � pdeg

normal · 10

Micro-Vessel Density nnormal = 1 ntumor = 10 nnecrotic = 10
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each voxel i its connected voxels j, the vascular volume fraction for
voxel i of volume Vi is given by

ϕP,i �
VP,i

Vi
� π

2l2
∑
j∈
r2i,j. (3)

VP,i being the voxel vascular volume, and the extra-vascular volume
fraction is

ϕI,i � 1 − ϕP,i. (4)
The associated flow rate Fi is the sum of all entering fluxes:

Fi � ∑
j∈connected neighbors

fj,i|+. (5)

The volumetric exchange rate kPS,i in voxel i relates to the exchange
rate KPS,i as kPS,i = KPS,i/Vi in a voxel i. This exchange rate between
the plasma and the interstitial space can be written as the product of
the surface of the blood vessel walls Si,j, and the permeability
coefficient, Pi,j:

KPS,i � ∑
j∈connected neighbors

Pi,jSi,j
2

� ∑
j∈connected neighbors

Pi,jπlri,j (6)

By identification with the microscopic scale, Pi,j represents Dm
i,j/H

m
i,j.

Note, that half of the connecting vessel between two nodes i, j is
associated with voxel i, the other with voxel j, which explains the
division by a factor 2. In the rest of the paper, the permeability
coefficient Pi,j is a homogeneous constant noted P that can vary
between healthy and tumor regions. Finally, the total concentration
in a voxel i is then naturally defined as:

ci t( ) � ϕPicPi t( ) + ϕIicIi t( ) (7)
In case the ROI is a volume that contains several voxels, the in silico
generated measurement is the total concentration averaged over all
voxels of the ROI. The associated parameters are:

ϕP,ROI � ∑
i∈ROI

ϕP,i

FROI � ∑
i∈ROI

∑
j∈ connected neighbors of i{ }∩j∉ROI

fj,i|+

KPS,ROI � ∑
i∈ROI

KPS,i

(8)

Here it was used that all voxels are by construction of the same size,
and KPS is an extensive quantity.Finally, the total concentration
relates differently to the signal intensity depending on the image
modality (Brix et al., 1991; Hoffmann et al., 1995; Brix et al., 2004).
Without loss of generality, it is here directly taken as the surrogate
for the in silico image signal over time in each voxel.

2.2.3 Direct model parameters
The direct model parameters are not always known, and hence

to choose representative values is a challenge. The network is
constructed to reflect the increase from healthy to tumor tissue
of plasma volume fraction (section 2.1). The healthy value is taken
from muscle and can be changed. Tumor values are more variable
(e.g. (Brix et al., 2004) reporting ranges of 0.1–0.4), and are
extensively varied here (Supplementary Appendix SC3). A
baseline permeability of p = 0.1 μm/s is used everywhere (in
healthy and tumor zones). This value is inferred from (Brix

et al., 2004; Brix et al., 2009) who found close KPS/(ϕp*V) values
for both muscle and carcinoma tissues, by estimating S/V and S/
(ϕp*V) from this paper’s networks and assuming a tissue density of
1g.mL−1. p = 0.1 μm/swas also reported for caco-2 (adenocarcinoma)
and p = 0.35 μm/s MDCK (kidney) cells for paracetamol (Irvine
et al., 1999), which has a diffusion coefficient of approximately
650 μm2/s Ribeiro et al. (2012) close to what is chosen in this work.
In Mescam et al. (2010); Zwick et al. (2010), KPS/V is varied from 0,
0.01, 0.1 and up to 1 min−1. Taking all this information into account
motivated to vary P from 0, 0.01, 0.1–1 μm/s in most cases. These
papers focused on gadolinium contrast agents, but permeability can
be further varied.

2.3 Estimation of functional parameters

DCE images give a value of the total CA concentration in every
region of interest (ROI) for each acquisition time. The exact
structure of the vascularization in each ROI and the
interconnection between ROIs are completely unknown. In DCE
imaging, simplified non-spatial models representing in each ROI
separately the circulation of CA and its exchange with the rest of the
tissue are fitted in an inverse procedure to recover perfusion and
permeability information from the imaging dynamic curves.

2.3.1 Tracer kinetic models
In DCE imaging, a number of two-compartment models (Brix

et al., 1991; Tofts and Kermode, 1991; Brix et al., 1999; Tofts et al.,
1999; Sourbron, 2014) are the basis for quantification of regional
blood flow, vessel permeability, and relative compartmental volumes
within an ROI. In the following we will focus on two most common
models proposed by Brix et al. (1999) and Tofts et al. (1999).

2.3.1.1 The Brix II model
This model, sometimes in the literature referred to as 2CXM

(Sourbron and Buckley, 2013), takes into account in each ROI the
blood (or plasma) and interstitial (extravascular) compartments (see
Supplementary Figure SC13) of respective relative volumes ϕP and
ϕI in ROI volume V, coupled by the intra-vascular-extra-vascular
exchange rate KPS.

Each ROI blood compartment is fed directly from the AIF, with
blood flow rate F going in and out of the compartment. No further
transport or diffusion are taken into account. The corresponding
equations are thus

d ϕPCP( )
dt

� F

V
CA − CP( ) − KPS

V
CP − CI( ) (9)

d ϕICI( )
dt

� KPS

V
CP − CI( ) (10)

The total concentration of contrast agent in the tissue is thus
assumed to be defined similarly to Equation 7. These equations
are solved numerically with an implicit Euler scheme.

2.3.1.2 The Extended Tofts model with and without delay
Tofts et al. (1999) proposed another two-compartment model

(sometimes called Generalized Kinetic model), first neglecting the
blood contribution assuming a negligible blood volume.
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d ϕICI( )
dt

� Ktrans CP − CI( ) (11)

In the extended Tofts version, the blood pool contribution is added
(Sourbron and Buckley, 2011). The total tissue concentration is then:

C t( ) � ϕPCP t( ) +Ktrans∫
t

−∞
CP t′( )e−Ktrans/ϕI · t−t′( )dt′. (12)

ϕP and ϕI being the plasma and interstitial compartment relative
volumes respectively. The second term on the right hand side of Eq
12 denotes the solution of Eq 11, which emerges if the plasma
volume is neglected (ϕp = 0). C(t) is here explicitly given as a
function of the CA plasma concentration CP(t) assumed to be the
AIF, and of a transfer constant Ktrans × V whose meaning depends
on the balance between the aforementioned flow F and permeability
KPS (Tofts et al., 1999). As the AIF CA(t) might be measured in an
area far away from the ROI, this assumption may not hold in most of
the cases. Thus, a parameter t0 can be added (Koh et al., 2011;
Sourbron and Buckley, 2013), accounting for the time delay between
the measured signal in the feeding artery and the vessels in the ROI.
Eq. 12 becomes

C t( ) � ϕPCA t − t0( ) + Ktrans∫
t

−∞
CA t′ − t0( )e−Ktrans/ϕI · t−t′( )dt′.

(13)

2.3.2 Parameter inference
The feeding concentrations CA(t) are assumed to be the same as

the previously defined AIF cA(t). In practice, the dynamic signal for a
given ROI is acquired with a certain temporal resolution Δt, for Nt

time steps of index n. This ROI-CA concentration at each time step c
(n ·Δt) is compared to the TK solution C (n ·Δt) for this ROI with the
L2 norm S covering the entire acquisition time:

S β( ) � ∑
Nt

n�1
c n · Δt( ) − C n · Δt, β( )( )2 (14)

Note that S(β) corresponds to the quadratic error. The same formula
directly permits quantifying the goodness of the agreement between
the ROI-CA and the TK solution of both Brix II and DE-Tofts
model, as both have the same number of parameters (3, see below).
To get the best fitting set of parameters β, S is minimized with the
Levenberg-Marquardt algorithm with 100 iterations. For both tracer
kinetics models, as a first approximation Eq. 4 is added as a
constraint, since this is how the in silico dynamic signal is
generated. For the Brix II model, β = {ϕP, F, KPS} whereas for the
Delay Extended Tofts Model (named thereafter DE-Tofts model) β =
{ϕP, Ktrans × V, t0}.

An interesting information may be obtained by directly
comparing the inferred parameters of the Brix II and the DE-
Tofts model, which is straightforward for ϕP and relatively
straightforward for KPS = Ktrans × V, but there is no simple
equivalence in the DE-Tofts model, that corresponds to the flow
parameter F in Brix II. As the information of the volume flow rate F
in the Brix II model has to be related to a parameter combination of
the three Tofts model parameters, a first approach is by dimensional
analysis, leading to the possible definition F � ϕP V

t0
. However, as will

be explained in the Results (Section 3.2.1), this definition needs to be
modified. This modification for DE-Tofts gives a rational to do the

same for the Brix II flow. When necessary to make a distinction
between the flow F from the original map (Eq. 5) and the recovered
one from the inference procedure, the latter is then labeled Frecov.

3 Results

First the results of the generation of in silico vascularizations and
their validation against known architectural and functional
properties are summarized. Then, the in silico dynamic contrast-
enhanced images, the last step of the direct problem, are presented.
The final part focuses on the results of the kinetics models

FIGURE 3
Comparison with experimental measurements. Left: simulation
results for three different arterial-venous trees with pairs of exponent
α (denoted by A for the arterial, V for the venous tree), with the same
applied inlet and outlet pressures: in black the pair (A,V)=(3,2), in
red the pair (2.7,2.4) and in blue the even pair (2.7,2.7). For shear stress,
velocity and pressure, arteries are shown on the negative diameter
side, while veins are on the positive diameter side. For flow their trees
are plotted together to demonstrate that flow in arteries and veins
follow the same power laws as the corresponding diameter (dα), and
can be identified by their exponent. Right: literature data. The different
rows showwss (from Fung (2013)), flow (fromHuo and Kassab (2007)),
velocity (from Pries and Secomb (2008)) and pressure (from Fronek
and Zweifach (1974)), versus diameter.
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assessment, i.e. the comparison of the parameters estimated with
these models, against the original parameters from the in silico
model. This leads to the proposal of a new interpretation of the
estimated parameters to improve the perfusion assessment from the
dynamic images.

Note that the 2 d models are 60 μm thick tissue slices, i.e. have a
thickness of 60 μm ≪ extension in (x,y)-plane. The vascular graph
itself lies on a 2 d plane with vessels having a certain cylinder
volume, thus forming a connected network of a certain plasma
volume as described in the Methods. The 3 d model is based on a
vessel graph that extends in each of d = 3 dimensions. In all
dimensions, each voxel has thus by default a size of (60 μm)3.

3.1 From vessel architecture to in silico
dynamic contrast-enhanced images

3.1.1 Functional vascularization
Firstly, we verified that the vascular network generation

algorithm (see Section 2.1) generates vessel networks that
reproduce known morphological and functional features. Initially,
the arterial and venous trees stay well separated from each other
(Supplementary Figure SC11). Large parts of the vascular networks
have low to almost no flow, and, consequently, are not functional.
The construction algorithm is iterative; with the number of
iterations, inter-tree-connections increase and with them the
overall flow, resulting in interpenetrating hierarchical arterio-
venous networks with a homogeneous wall shear stress in both
the 2d and 3 d models (see Supplementary Appendix SC1).

Importantly, the model results actually compare well with
measured data on wall shear stress, mean vessel segment flow,
pressure-velocity distribution and pressure, in terms of order of
magnitudes and changes with vessel radius (Figure 3, right column).

The precise relations depend on the exponents αart and αven of
the power-law (equation B.1). In several statistics of the obtained
micro-circulation properties, we observe differences between
vascular trees (e.g. pressure, see Figure 3) and asymmetries
between venous and arterial vessels (e.g. wall shear stress and
blood velocity, see Figure 3). Three different in silico
vascularizations in 2d, with varying exponents αart and αven are
considered. The higher the exponent α, the higher the flow for a
given applied pressure drop (Figure 3, second row) indicating a drop
of flow resistance. This results from two competing effects that can
also explain the differences of decay between flow rate, velocity and
wall shear stress with respect to diameter when increasing the
exponent (see Supplementary Appendix SC2). The best fit of the
asymmetric properties between model and data leads to choose for
the rest of the article different default values for arteries, αart = 3 and
for veins, αven = 2.7 (Figure 3).

3.1.2 Vascularized tumor cases
After having generated normal vascularizations, we now study

vascularized tumor cases for various MVDs reflected in the
parameter value of n defined in equation B.5) (Supplementary
Figure SC12). Above a certain MVD volume fraction ϕP becomes
locally sufficiently different from its values in neighboring regions
(second row in Supplementary Figure SC12). The higher volume
fraction leads to a higher flow, also well detectable already at smaller

n (last row in Supplementary Figure SC12). In the necrotic core
(Supplementary Figure SC12 last column), the model induces the
destruction of the small vessels in it, but the larger vessels remain
inside it. In the tumor periphery, there is an increased ϕP. The latter
corresponds to a characteristic observation in patient tumors
(Figure 2A). This structure of larger vessels remaining inside
tumors with low vessel density in the center and high density at
the periphery is typically observed in multi-modality imaging in
Xenograft experiments (Kiessling et al., 2004b,a). The later also
reports dilated vessels feeding the tumor as emerges in the model
here as well.

3.1.3 In-silico dynamic contrast-enhanced images
Based on microcirculation reflective of the normal and tumor

regions, in silico DCE images (quantifying c(t) as defined in Eq. 7),
illustrate the kinetics specific to each component (Figure 4; and
movies for further varied parameters in Supplementary Appendix
SC3). The reference case leads to a quite homogeneous vascular
volume fraction and hence capillary-tissue exchange rate KPS. The
larger vessels are visible due to their larger values. The
corresponding in silico overall image intensities follow in their
time course the kinetics of the AIF, with the peak of the first
pass, then a large decrease, then a second peak followed by a
slower decay. Compared to the average image intensity, the
larger vessels are highlighted, and the zones of capillary-tissue
exchange appear as a haze. By contrast, as soon as MVD is
locally increased (n = 30) in the tumor region, this increases the
local capillary-exchange rate. On top of the previously described
dynamics, the tumor outer-rim always appears highlighted.
Modelling the tumor by an increased permeability (p =
100 instead of 0.1 μm/s) only also leads to a local capillary-tissue
exchange rate increase. However, the in silico DCE-images are
different (Figure 4 bottom row): the tumor is highlighted much
later, with a diffuse glow around the entire tumor zone. The
explanation is that in case of elevated MVD the simulated signal
intensity reflects directly the MVD and hence, follows the kinetics of
tumor perfusion, dictated by the AIF, while in case of an elevated
permeability, the marker leaks into the extra-vascular space and
returns as soon as the vessel marker concentration drops below the
extra-vascular marker concentration, which generates the delay.

These results correspond to well-known tumor enhancement
differences. For example, hepatocellular carcinomas,
neuroendocrine tumors, renal cell carcinomas, and squamous
cell carcinomas have strong arterial feeding and high MVD and
thus, are clinically characterized by their early enhancement after
contrast agent administration in CT and MRI scans. The other
extreme are low to moderately differentiated gliomas where the
disruption of the blood brain barrier leads to enhanced vascular
permeability. These tumors are best seen in late enhancement
phases after contrast agent injection, when the contrast agent had
sufficient time to slowly distribute in the extravascular tumor
space. These special vascular features are of high importance for
diagnosing and differentiating many tumors and have strongly
influenced the clinical guidelines on the performance of CT and
MRI examinations.

Hence, the different components of what defines a vascularised
tumor lead to different dynamical features of the DCE-images. It is
thus natural to extract quantitative differences in parameters based
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on the dynamics differences seen in DCE images. This is the focus of
the next section.

3.2 Inference results

The problem of inferring model parameters from a dynamic
intensity in a region of interest is called an inverse problem, or inverse
procedure. This procedure requires to have a measurement (here the
concentration over time) and to select a model to interpret this
measurement. In-vivo the exact mathematical model that represents
this dynamics is not known, and in practice simplified models are
selected. Here we generate in silico images with a known model, and
perform the inverse problem with simplified models (Brix II and
DE-Tofts models) to better understand their relevance.

3.2.1 Intravascular agents
As a reference case we study intravascular agents in one, two and

three dimensions (= d) (Figure 5). The advantage of performing in
silico simulations is the opportunity of such a strategy starting with a
great simplification, and then step-wise studying more complex
cases gives the opportunity of gaining a step-wise understanding.

3.2.1.1 The one dimensional case
In a first step we study the inverse procedure based on Brix II

and Tofts models in the simplemost case, which is a one-
dimensional straight piece of tissue, as for this case the
concentration over time can be analytically calculated. Despite
this case looks extremely simplified, it may be compared to the
case where the ROI is small compared to the distance between the
feeding point and the ROI, in which case the Euclidean distance
between feeding point and ROI may be of the order of the distance
that the blood has to travel between them. The tissue piece is
assumed to be a rectangular cuboid of length of 6mm and cross-

sectional area of L*L = 60 μm*60μm, containing a straight cylindrical
capillary inside of constant radius r = 4 μm (thus ϕP ≈ 0.014) along
the long axis (see Supplementary Figure SC13). An intravascular
agent enters at the inlet (at x = 0) with the known concentration
CA(t) taken equal to the AIF. In that case, the plasma concentration
cP is obtained from Eq. (7) by dropping the vessel leakage term to

cP x, t( ) � CA t − x/v( ) � CA t − xπr2/F( ) � CA t − xϕPL
2/F( ),

(15)
representing “travelling wave” i.e., a concentration profile that
performs a rigid movement with a certain velocity v = F/(ϕPL

2)
(F is the volume flow rate, ϕP the plasma volume fraction).

The common case is when the ROI does not contain the feeding
point of the contrast-agent (Figure 5A1, Supplementary Figure SC13C)
(the case where the ROI contains the feeding point is considered in
Supplementary Appendix SC4, Supplementary Figure SC13A, B).
Consider as a measurement a fixed volume Vi = L2*li = (60 μm)3

but which center is at varying distance x from the feeding point
(green volume in Figure 5A1). Considering conservation of mass,
equation C.1 becomes d�c

dt � d(ϕP�cP)
dt � F

Vi
(CA(t − (x − li/2)/v) −

cP(x + li/2, t)) � F
Vi
(CA(t − (x − li/2)/v)− CA(t − (x + li/2)/v)). In

this case the ratio of volume and flow, or equivalently li/v, are small
relative to the characteristic duration of the signal represented by the
timewidth of the CA concentration peak (Figure 1), li/v < time-width of
CA peak, or equivalently F/(ϕPVi) > 1/time-width of CA peak. The fact
of replacing the outlet concentration at position xi + li/2 by the average
concentration in the inverse Brix II model (Eq. (9)) is a good
approximation. The issue is the inlet flux: with increasing x, taking
CA(t) instead of CA (t − (x − li/2)/v) is becoming decreasingly accurate
(see Supplementary Appendix SC4.1). Thus Eq. (9) under-predicts
more and more the flow, as the estimated flow Frecov ≈ F/Ni, whereNi =
x/li (Figure 5A2) i.e., Frecovx is a constant that depends on the chosen size
of the ROI, li. This is validated by the fact that rescaling the recovered

FIGURE 4
Increased MVD and/or permeability. Increased MVD in the tumor region (first row) by comparison to the reference simulation (second row), with
permeability p = 0.1 μm/s for these two simulations. Increased permeability in the tumor region (p = 100 μm/s, last row) by contrast to the reference
simulation, with normal MVD for these two simulations. Plasma volume fraction (first column, ϕp), exchange rate KPS (second column, in μm3/s) and in
silico DCE images at four different times (remaining columns). KPS in μm3/s. Voxels of (60 μm)3, domain:100 × 100 voxels. Movies: see list in
Supplementary Appendix SC3.
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flow Frecov by multiplying it by Ni, one recovers the exact flow
(Figure 5A2, Supplementary Figure SC13C).

In a next step, we consider the DE-Tofts model for the same
configuration (Supplementary Figure SC13D). In this model, we
have apriori defined the estimated flow as Frecov = ϕPV/t0. In our
simple case, Eq. 13 written for an intravascular agent reduces to
ϕPCA(t − t0). On the other hand, the analytical solution (Eq. 15) at x
identifies t0 = xϕPL

2/F. So for an ROI small enough, in the sense
described above of F/(ϕPV) > 1/time-width of CA peak, the
concentration is sufficiently homogeneous in the ROI and l ≈

Ni*li. Hence when taking this ROI concentration for the
parameter inference, one recovers t0, and thus Frecov = ϕPV/t0.
But as in fact, t0 ≈ NiϕPV/F, the recovered flow Frecov ≈ F/Ni.
Thus, here too it needs to be rescaled by the voxel-distance to
the feeding point to recover the original flow F.

Sensitivity to noise: As described in Supplementary Appendix
SC4.2, a measurement error or random noise in the tissue
measurement affects the inference of the flow more than the
inference of the plasma volume fraction. The latter is always
estimated with an accuracy of ~±20% even for noise up to 20%.

FIGURE 5
Inference for zero permeability (A) 1 d case geometry (green voxel of (60 μm)3) and flow parameter along the 100-voxel domain (data, recovered
and rescaled). (B) 2 d case of 100 × 100 voxels with the data (left column) and the Brix II recoveredmaps (right column) (DE-Tofts: see (C) 15) for (60 μm)3

voxels. The feeding artery is in the center of the image (c1): vascularization topology (from high (red) to low (blue) pressure) and four different regions of
interest (ROI size = 709 voxels, ≈ 2mmdiameter). I contains the tumor necrotic zone (red circle) inside the tumor rim (green circle). Feeding artery in
the center of the image (c2): the fit (continuous curves) of the measured contrast-agent concentrations over time (circles) for the four zones by the Brix II
model. (D) Parameter inference from 3 d data (6mm × 3mm × 3 mm). The feeding artery is on the left of the images (central slices in z-direction) (d1) ϕp
(1rst row) and flow (second row) for a (60 μm)3 resolution; (d2) ϕp (1rst row) and flow (second row) for a 300 × 300 × 3000 μm3 resolution. Columns: data,
Brix II (A–D) F is in μm3/s.
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3.2.1.2 Two dimensional case
In a next step the case of intravascular agent propagation

through a vasculature which contains a vascularised tumor is
considered (Figure 5B). The in silico contrast-agent images are
generated as in section 3.1 (displayed in Supplementary Figures
SC11, 12), with blood and the contrast-agent entering through an
artery in the middle of the tissue, the contrast-agent feeding
temporal profile following the typical AIF of equation
Supplementary Appendix SB2.2. The corresponding plasma
volume fraction (Figure 5B1) and flow (Figure 5B2) range from
0 to 0.14 and 0–106 μm3/s respectively, while P = 0 μm/s. The
measured concentration in each voxel, computed as the solution
to Eq. (7), is the input to the inverse procedure.

Without assuming that the agent is intravascular, the estimated
parameters are thus the plasma volume fraction, the plasma-tissue
exchange coefficient and the flow. For Brix II, the estimated plasma
volume fraction map is visually identical to the initial one
(Figure 5B1 right vs. Figure 5B1 left): the main vasculature
structure, and the vascularized tumor zone are well detected.
Finally, the estimated flow map (Figure 5B2 right), shows the
microvasculature structure and the vascularised tumor zone. Due
to the rescaling of the flowwith the Euclidean distance of the voxel to
that feeding point, the flow maps are close to the initial data
(Figure 5B2 left). Without the rescaling, the flow going away
from the central feeding point is rapidly underestimated, similar
to the 1d case (Supplementary Figure SC15). The DE-Tofts model
gives very similar results to the Brix II model (Supplementary
Figures SC15 right). While in regions where the plasma volume
fraction is non-zero, the exchange coefficient is negligibly small as
expected, in regions of zero plasma volume (and very low flow), as
for example in the necrotic region of the tumor, the exchange
coefficient deviates from zero (Supplementary Figures SC15
third row).

3.2.1.3 ROIs of multiple voxels
Next the signal considered for the inverse problem is for a region

of interest (ROI) larger than one voxel, as this is often the case in
practice (Figure 5C). First, a 2 d vascularised tumor case is modelled
with the transport of an intravascular contrast agent (Figure 5C1).
The measurements from which parameters are estimated are the
spatial average concentrations in four different ROIs, three in the
normal zone (II, III, IV) and one containing a tumor (I). Each region
contains 709 voxels, thus are all of diameter around 2mm (typically
a few in-plane voxels on DCE-MRI images). The concentrations for

the four ROIs are similar to the AIF, although with a peak scaling
from 0.46 to 1mM and some time-dispersion due to ROI averaging
(see zoom picture in Figure 5C2). For both Brix II and DE-Tofts, the
measurement curves are well reproduced after parameter
estimation, for all four regions, with small deviations between the
two first passes as seen in the zoom pictures (Figure 5C2,
Supplementary Figures SC16A3). The inverse procedure leads to
estimated parameters, one for each ROI, that are compared to the
original ones (as defined over each ROI according to Eqs 1, 2) in
Table 2 The plasma volume fractions range from 0.08 for zone IV to
0.2 for zone I, overestimated on average for bothmodels by 27%. The
rescaled flows range from 5 107 μm3/s for zone IV to 108 μm3/s for
zone I, with an average error for both models of 13%. In the
inference procedure, the plasma-tissue exchange parameter was
not set a priori to zero, and was recovered low for both models
(at least four order of magnitude lower than the flow). Despite these
errors, the four zones are ranked in the same order as the original
data in terms of plasma volume fraction and flow, for both models:
the region with the highest flow and plasma volume fraction is the
one that contains the tumor.

3.2.1.4 The three dimensional case
Finally, a 3 d example with an intravascular agent is presented,

where the vascularized tumor tissue is built in the same manner as
for the previous 2 d case but with now a 3 d network graph
(Figure 5D). In this example, the vascular tumor rim is a thick
sphere: 2 d central cuts of the resulting flow and plasma volume
fractions show the main vessels, the tumor rim and necrotic core.
When the inverse procedure is performed for each voxel (as in
Supplementary Appendix SC5), only Brix II gives reasonable
results, i.e. the recovered parameter maps show the same
structures as the original ones (Figure 5D1, right vs.
Supplementary Figures SC16B1 right). Despite the Euclidean
distance rescaling of the flow, one can see the influence of the
distance to the feeding artery in the quality of the results. For the
DE-Tofts model, this influence gets rapidly worse (Supplementary
Figures SC161, right). In such conditions, considering ROIs of the
size of a typical DCE-MRI voxel (0.3 mm*0.3 mm*3 mm) leads to a
major blur of the parameters (Figure 5D2, Supplementary Figures
SC16B2). In the original data, the larger vessels and tumor zone
cannot be numerically distinguished in the flow, but only the
tumor zone in the plasma volume fraction can. The same patterns
are seen in the Brix II recovered parameters. As expected by the
results at the voxel level, the DE-Tofts model barely recovers the

TABLE 2 Data (direct problem) and estimated parameters for Brix II and DE-Tofts for each ROI I, II, III and IV of Figure 5. KPS and F are in μm3/s. ROI size: 709 voxels,
≈ 2mm diameter and ≈ 0.15 mm3 volume V. Relative errors ((data-recovered)/data) are reported for ϕP and F. For KPS, since data is 0, no relative error can be
reported.

Zone Data Brix II DE-tofts Error brix II Error DE-
Tofts

ϕP KPS F ϕP KPS F ϕP KPS F ϕP F ϕP F

I 1.67E-01 0 1.26E+08 2.05E-01 2.71E+03 1.08E+08 2.00E-01 9.30E+03 1.12E+08 0.23 0.14 0.20 0.11

II 7.61E-02 0 6.24E+07 9.78E-02 1.90E+02 8.27E+07 9.70E-02 1.20E+03 8.16E+07 0.29 0.33 0.27 0.31

III 6.63E-02 0 5.24E+07 8.50E-02 9.48E+02 5.15E+07 8.35E-02 3.04E+03 5.32E+07 0.28 0.02 0.26 0.02

IV 6.10E-02 0 4.73E+07 8.12E-02 3.80E+02 5.09E+07 7.99E-02 1.96E+03 5.09E+07 0.33 0.08 0.31 0.08
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tumor zone in plasma voume fraction map (Supplementary
Figures SC16B2, right).

In summary, the simulation results show that plasma volume
fraction, exchange rate and the flow can be reasonably well
estimated, the latter by scaling the flow rate with the
Euclidean distance between feeding point and ROI. This
tendency holds true in d = 1, two for the Brix II and DE-Tofts
models. In 3 d the Brix II model performs better than the DE-
Tofts model. Generally, the quality of parameter inference
decreases with d.

3.2.2 Extravascular agents
Next, extravascular cases are considered. Direct simulations for

four different levels of permeabilities P are carried out in one and
quasi-3d cases, to test the influence of permeability level on the
recovery procedure. For the quasi-3D cases, the initial maps are
inherently composed of varying vessel density, flow and exchange

parameters. Each time the inference procedure is tested for every
voxel with the 2 TK models.

3.2.2.1 The one dimensional case
Different from the purely intravascular situation (Figure 5A)

now the exchange rate can be non-zero. The default value is taken
as P ~ 0.1 m/s and in the simulations a range of permeability
values is considered (see Section 4.3 on the choice of these
values). In the direct simulations, the permeability is varied by
several orders of magnitude, resulting in the CA tissue
concentration deviating more and more from the AIF, both
close and far from the inlet (Supplementary Figures SC17): the
first peak gets lost in the signal that continues to rise much later
than the AIF, and significantly higher than the first peak
contrarily to the AIF. The different models can in general well
capture these shapes. The plasma volume fractions and exchange
rates (Supplementary Figures SC18 bottom and middle

FIGURE 6
Inferred TK model parameters from contrast-agent time course in quasi-3d. Columns: left = data, center = Brix II, right = DE-Tofts, vessel
permeability is p = 0.1 μm/s. First row: vascular density ϕP, second row: flow, third row: rescaled flow, fourth row: exchange rate KPS. Voxel size: (60 μm)3,
domain: 100 × 100 × 1 voxels. F and KPS in μm3/s. Same scale bar for all ϕP, F, KPS.
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respectively) are well estimated with the different models, but this
becomes increasingly more difficult with increasing permeability
and distance to the inlet, eventually failing for P = 1 μm/s. The
apparent flow parameters estimated by the different models differ
from the input flow. Flows can be recovered as in the previous
section by rescaling with the length of the path from the feeding
artery (Supplementary Figures SC18). But this is getting more
inaccurate as permeability increases. In fact, the models become
unable to capture the signal shape for slow apparent flows
typically recovered in voxels far from feeding artery
(Supplementary Figures SC17 third row) for P = 1 μm/s.
Because of boundary conditions at the entrance and exit of
the tube, an artefact can occur for these voxels
(Supplementary Figures SC17).

3.2.2.2 The multi-dimensional case
Next the 2 d case is considered as in Figure 5B, but this time for

an extravascular agent. Note that even though the vasculature graph
is embedded in 2 d (plane), the simulation is 3 d in the sense that
diffusion in the extravascular space occurs everywhere in the
domain, like in a 3 d slab of tissue (2 d plane that includes the
vasculature over a 6 mm*6 mm square and a small height of 60 μm).
We refer to this case as ‘quasi-3d’. Different permeabilities are
modelled keeping the other parameters unchanged. Thus the flow
and plasma volume fraction parameter maps are the same for p =
0.1 μm/s (Figure 6) and P = 1 μm/s (Figure 7) as for the intra-
vascular agent described above (Figure 5, Supplementary Figures
SC15). The resulting plasma-tissue exchange coefficient by contrast
increases with an increasing permeability, making apparent the

FIGURE 7
Inferred TK model parameters from contrast-agent time course in quasi-3d. Columns: left = data, center = Brix II, right = DE-Tofts, vessel
permeability is P = 1 μm/s. First row: vascular density ϕP, second row: flow, third row: rescaled flow, fourth row: exchange rate KPS. Voxel size: (60 μm)3,
domain: 100 × 100 × 1 voxels. F and KPS in μm3/s. Same scale bar for all ϕP, F, KPS.
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necrotic zone (very low KPS), the larger blood vessels and the tumor
rim (very high KPS). The measured concentration c(t) in each voxel,
solution to Eqs 1, and, is then the input to the inverse procedure. We
do not show p = 0.01 μm/s, because the results are as close to P =
0 μm/s as in the 1 d case. For p = 0.1 μm/s (Figure 6 two last
columns), the inferred plasma volume fraction is well captured
by both models. The rescaled flow and plasma-tissue exchange
coefficient are also well recovered, except in zones where there
are no blood vessels. For P = 1 μm/s (Figure 7 two last columns), the
situation is markedly different: BrixII is the only one to recover the
structures of the flow maps but not the other two parameters,
whereas with DE-Tofts, the map structures of plasma volume
fraction and KPS (where there are blood vessels) are captured but
the flow structures are very degraded.

4 Discussion

The main contribution of the paper is the proof of concept
presented in Figure 1, which is based on spatial in silico perfusion
images. We constructed in silico vasculatures to solve the direct
problem of contrast agent perfusion (intra-vascular transport, intra-
extra-vascular exchange and diffusion within interstitial space) for
evaluation of parameter estimations from different tracer kinetics
models used in dynamic contrast-enhanced (DCE) perfusion
imaging. The transport in and out of the 2 d or 3 d vascular
networks is modeled by multiphase equations that use as an
input a 1 d model of blood flow inside the vessels, the latter
limiting the computational cost. Here, as a proof of principle we
showed the evaluation procedure of Brix II and DE-Tofts with in
silico perfusion data of a contrast agent after a bolus injection. For
the inverse procedure, six ground truth 1D cases (varying
permeability and noise levels), four ground truth 2D/quasi-3D
cases (varying permeability levels), and one ground truth 3D case
were carried out as direct simulations. For 2D/3D cases, vessel
volume fraction, flow and exchange parameters were inherently
varying locally. Different inverse procedures were tested each time -
i.e. varying ROI location and size, and TK models. For each 2D
simulation, the inverse problem was performed for the 104 voxels,
and in 3D, the inverse problem was performed for 2.5 105 voxels and
for the coarser case for 200 ROIs.

4.1 Discussion on the generated architecture
and DCE-images

The direct model parameters are not always known (see section
2.2.3), and hence to assess if they are representative of real tissues is a
challenge. In healthy vasculature (e.g. Figure 6), KPS = 200 μm3/s,
and thus KPS/(ϕp*V) = 1.4 min−1, which is close to the value of
0.2 min−1 reported in (Brix et al., 2004). In the tumor region in
Figure 6 where parameter inference is successful for p = 0.1 μm/s,
KPS/V = 0.3 min−1, which is close to the values reported by (Brix
et al., 2009) and used as baseline in (Zwick et al., 2010) KPS/V =
0.2mlmin−1. g−1. Regarding flows, the obtained healthy and tumor
flows F/V ≈ 15–150 min−1 on a voxel level and F/V ≈ 20–40 min−1 for
the ROI cases (Table 2) are higher than the values reported in (Brix
et al., 2004; Brix et al., 2010) but the increase by a factor of 2–10 from

healthy to tumor values is reasonable. Moreover, a number of
healthy perfusion parameters compared well with literature data
over several vessel diameters and tree architectures (Section 3.1.1).

For the tumor vasculature and DCE-images, qualitative
comparisons were made in Sections 3.1.2, 3.1.3 to further assess
the realism of simulations. Besides, the change of shape of the
concentration over time, when increasing permeability (e.g.
Supplementary Figures SC17) is similar to that reported in
Figure 2B for a lung tumor or also in (Brix et al., 2004; Zwick
et al., 2010).

The model can be readily adapted if more precise parameter
information is available, concerning each component of the pipeline,
including the vascular network generation and their related
functional values (if e.g. more detailed experimental studies
simultaneously providing information on micro-vascular network
architecture and function become available).

4.2 Discussion on the parameter inference
assessment

Regarding the interpretation of the perfusion parameters, overall
parameter inference through TK models successfully detected the
tumor area, with increased vascular density, flow and exchange rate
(leakage). Studying the influence of space, we thus propose the
following parameter inference procedure:

• directly interpret the plasma volume fraction,
• where the former is non-negligible, consider the plasma-tissue
exchange-rate recovered value,

• rescale the flow-rate by the distance of the voxel to the
contrast-agent arterial input function location.

Similarly to (Zwick et al., 2010), we found that the vessel volume
fraction was a very robustly recovered parameter in all cases: with or
without noise, in multiple dimensions, varying permeability. For the
perfusion parameter (flow) however, we showed how results from
DCE-imaging parameter estimation need to be interpreted with
care. This is especially true the further the voxel is from the feeding
artery: in this case, the flow is more underestimated compared to its
true value.

We proposed to rescale the value with the distance to the
feeding artery. Actually, the real distance traveled by the
contrast-agent should be taken into account, so by rescaling
with the true graph distance (if accessible) instead of by the
Euclidean distance to the feeding artery the parameter inference
would be expected to further improve. A simple estimate of this
distance may be obtained by computing the average time of
transport through the identified network and the blood flow,
yielding a flow-related distance. The distributed parameter
models based on the 1 d cylindrical capillary-tissue system are
attempts to take this spatial component into account but they
have not gained practical use (Koh et al. (2011); Sourbron and
Buckley (2013)), probably because the overall network leads to
more complex spatial influences (see discussion on dispersion
below). A TK model that take only diffusion fluxes into account
but with a known diffusion parameter, has been shown to
improve the inverse procedure compared to the standard Tofts
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model for a direct model that does not included advection but
focuses on diffusion (Pellerin et al., 2007).

For permeability or the plasma-tissue exchange rate KPS, the
recovered value was reasonable if the intrinsic permeability P is not
too high compared to F/S i.e., if the dimensionless number P/(F/S) =
(PS)/F = KPS/F was not too high (see for example Supplementary
Figures SC17). The value should be discarded though when the
vessel volume fraction or perfusion are close to zero, because in this
case the signal intensity is not sensitive to this parameter. For the
DE-Tofts model, this is consistent with the interpretation of Ktrans as
being KPS only in high flow regime (Tofts et al., 1999).

The 2 d simulations (Figures 6, 7, quasi-3d in that they have been
performed in a 2 d slice of thickness 60 μm) suggest a possible
strategy by combining both BrixII and DE-Tofts models to infer the
parameter set composed of plasma volume, plasma-tissue exchange
rate and flow (even if unusual for DE-Tofts). If both give similar
results for the plasma volume, the permeability is likely to be not too
high, and both models may be used to estimate all three parameters.
In our simulations, very similar results were obtained for zero up to
moderate plasma-tissue exchange rates. If both give different values,
this may indicate a high permeability. In that case, BrixII gives
reasonable estimates of the flow and plasma-tissue exchange rate,
while DE-Tofts better captures the plasma volume fraction.
However, a complex 3 d network architecture fed by a distant
feeding vessel (as in Figure 5) surprisingly hindered a reliable
parameter estimation in particular by the DE-Tofts model even
for zero vessel permeability, indicating further need of extensive
studies for 3 d vasculatures.

This work also highlights the dispersion effects introduced by
heterogeneous vessel networks. Although interesting
(Bassingthwaighte and Goresky, 1984), this is another challenge
for parameter estimation: the current tracer kinetics models do not
contain dispersion per say, and thus the recovered parameters are
affected by it. Nevertheless, in 2d, the ranking of the different zones
(more or less vascularized and with functional flow) could be
distinguished. More work is needed in this direction. In
particular, one could use the direct problem to model dispersion
in a discretized vascular network in a similar approach as Koch et al.
(2020).

In fact, as the size of the ROI increases, dispersion and other
effects e.g. due to several feeding vessels entering and leaving the
ROI, might affect the overall ROI signal. As a consequence, the
recovered ROI parameters will be effective, and may or may not
relate to the microscopic parameter as in Eq. 8. The preliminary
results on the 3 d case indicate that varying ROI sizes or image
resolution impacts the structures that can be identified. To study
how ROI parameters scale with ROI size will allow to compare their
values with those reported in vivo at typical image resolution. In that
sense, the proposed framework can be used to study the effects of the
perfusion image resolution on understanding the underlying
microscopic structure and function.

4.3 Current limitations

Several simplifications have been made in the current
framework that could be improved as future work. First, the
vascularization is built on a regular lattice and thus the vessel

diameter is limited by the lattice constant. This constant is
60 μm, reflecting a reasonable orthogonal minimal capillary
distance of the order of the diffusion length of oxygen in tissue
and typical values determined in tissue micro-architectures but the
precise value would depend on the particular tissue under
consideration (Pries and Secomb, 2011). To consider larger
vessels and thus larger trees, generation of the vasculature in
lattice-free space could be favorable even if computationally more
expensive. Here the choice was made to have tumors embedded into
an otherwise normal hierarchical vasculature, and as a consequence
these tumors are small. Although tumors of similar sizes (2–4 mm)
are found histologically and on DCE-MRI data (Figures 2C,D,G),
studying larger tumors with the same proof of concept would be a
valuable future complement to the current work.

Furthermore, the extravascular compartment does not
distinguish between intracellular and extracellular spaces, to
reduce the number of estimated parameters. As long as the cells
do not take up the CA as well, this is not changing the qualitative
kinetics meaning only the precise concentration values may change.
I.e. it does not affect the conclusions of this work. In all cases the
same workflow described in this work can be pursued to study the
precise parameter values of the different inference models.

Finally, additional physical effects could be implemented in the
direct problem such as tumor filtration as done by Penta et al.
(2015), without changing the workflow.

4.4 Strengths of approach

The model is flexible since one can vary architecture and
function of the vascularization (control of features such as
regional microvascular density, necrotic core, etc.) and see their
effects in synthetic images. This framework allows to test hypotheses
supported by that another recent work points into similar directions
(Nuha Abdul et al., 2021). Different other TK models can also be
tested within the same framework. Moreover, such model permits to
study the ambiguity caused by different tumor vasculatures (highly
permeable versus high microvessel density) leading to similar
perfusion images (bright tumor area, dark necrotic core) and
their characteristic differences (temporal occurrence as e.g.
delayed clearance in case of high permeability). In that sense, it
brings function to histological data. While histological slices (see an
example in Figure 2G) provide direct tissue information, they only
give vessel density information or, after challenging image analysis,
architecture, but not functional information. Moreover, often part of
the vessels found in pathological specimen are not perfused. In-silico
modeling may thus provide an interesting complement to interpret
such data.

Different injection procedures (bolus injection versus gradual
administration) could be easily studied along with other
implications for diagnosis (temporal resolution and duration of
acquisition).

5 Conclusion

To conclude, this work presents the construction of a pipeline
to investigate the link between DCE images and the underlying
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tissue microstructure and function, and demonstrates its
possibilities on a variety of cases. This pipeline is based on a
spatial model of vascularization and contrast-agent transport in
and out of the vasculature. The direct model parameters for
healthy and tumor zones are based on literature values and varied
for sensitivity analysis of the in silico images to model inputs.
Overall the parameter inference from the TK models typically
applied to characterize DCE images, successfully detects the
tumor features compared to the surrounding tissue. The
results of the parameter inference indicate that the inference
for both Brix II and delay-adjusted extended Tofts models is
robust for low permeability and little dispersion due to network
heterogeneity. The plasma volume fraction and the vascular-
tissue exchange rate where the former one is non-negligible, are
directly accessible while the recovered flow parameter needs
some reinterpretation. Rescaling the flow by the ROI distance
to the feeding artery significantly improves its estimation, the
Euclidean distance being a work-around up to a certain point to
estimate the time the injected CA volume needs to travel to the
ROI. The results indicate the importance of taking explicitly into
account space in inverse models. This study lays the foundation
for better studying the effect of coarse-graining (or ROI sizes) in
such dynamic imaging modalities and also for better interpreting
histological data since they only provide structural but not
functional parameters.
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Nomenclature

V Graph vertex set

E Graph edge set

G = (V, E) Graph

li,j Length of edge (i, j)

ri,j Radius of edge (i, j)

η(ri,j) Apparent viscosity of edge (i, j)

Gi,j � π
8 ·

r4i,j
η(ri,j)·li,j Hydraulic conductance of edge (i, j)

Δpi,j = pi − pj Pressure difference on edge (i, j)

fi,j = Gi,j ·Δpi,j Flow rate on edge (i, j)

τi,j � 4η(ri,j)f i,j
πr3i,j

Shear stress on edge (i, j)

ϕP,i � VP,i

Vi
Plasma volume fraction in voxel of volume Vi

ϕI,i = 1 − ϕP,i Extra-vascular volume fraction in voxel of volume Vi

F Flow rate in voxel of volume Vi (volume flow rate)

cm Microscopic concentration

Dm Diffusion coefficient

Hm Membrane thickness

Sm Membrane surface

J = −Dm∇cm Diffusion flux

vm Microscopic velocity field of the fluid containing the contrast
agent

cP Plasma macroscopic concentration

kPS Volumetric macroscopic membrane exchange rate

kiPS Volumetric macroscopic membrane exchange rate in a voxel i

Ki
PS Exchange rate in a voxel i

Pi,j � Dm
i,j

Hm
i,j
Permeability of edge (i, j)

P Permeability constant over a region for all its vascular edges

v Macroscopic velocity field

cA, CA Arterial input function concentration

cI Extra-vascular macroscopic concentration

DI Diffusion coefficient in extravascular domain

ci = ϕPicPi + ϕIicIi Total concentration in voxel i

CP Brix II/Extended Tofts plasma concentration

CI Brix II/Extended Tofts extravascular concentration

Ktrans Transfer constant in extended Tofts model

t0 Tofts delay

β Set of parameters to fit

S(β) Quadratic fitness function to minimize

Frecov Estimated flow rate from compartment models
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