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Introduction: DNA methylation clocks presents advantageous characteristics
with respect to the ambitious goal of identifying very early markers of disease,
based on the concept that accelerated ageing is a reliable predictor in this sense.

Methods: Such tools, being epigenomic based, are expected to be conditioned
by sex and tissue specificities, and this work is about quantifying this dependency
as well as that from the regression model and the size of the training set.

Results: Our quantitative results indicate that elastic-net penalization is the best
performing strategy, and better so when—unsurprisingly—the data set is bigger;
sex does not appear to condition clocks performances and tissue specific clocks
appear to perform better than generic blood clocks. Finally, when considering all
trained clocks, we identified a subset of genes that, to the best of our knowledge,
have not been presented yet and might deserve further investigation: CPT1A,
MMP15, SHROOM3, SLIT3, and SYNGR.

Conclusion: These factual starting points can be useful for the future medical
translation of clocks and in particular in the debate between multi-tissue clocks,
generally trained on a large majority of blood samples, and tissue-specific clocks.
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1 Introduction

DNA methylation clocks are powerful tools in translational medicine as they carry the
potential to estimate biological age (methylage) and predict the risk of early-onset frailty
andmortality (Oblak et al., 2021). Indeed, the ability to identify markers of accelerated aging
carries the potential to develop strategies to prevent non-communicable age-related diseases
(NCDs), whose burden worldwide has been by now defined as a silent pandemic (Saha and
Alleyne, 2018). In particular, cancer being among the most deadly NCDs, research studies
on epigenetic clocks have very often concentrated on the early identification of persons at
high risk of cancer development and on the stratification of subtypes of oncological patients
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with different prognoses (Zheng et al., 2016; Durso et al., 2017a;
Durso et al., 2017b; Johnstone et al., 2022). From the pioneering
work of Hannum et al. (2013), Horvath (2013), and Weidner et al.
(2014), numerous new clocks (see EstimAge for a recent summary
(Di Lena et al., 2021)) and variants (Levine et al., 2018; Lu et al.,
2019; Belsky et al., 2020) have been designed. In the translational
perspective, the most appealing approach relies on minimally
invasive one-catch-all blood clocks, representing the holy grail of
cost-effective prevention, owing to the limited invasiveness (blood
drawn) and savings associated with effective prevention. However,
with the epigenome being among the most specific cell-defining
features, it is to be expected that tissue-specific clocks may better
express divergences from physiology. Despite their added
invasiveness and risks (pain, bleeding, and infection),
understanding in detail the differential performances of the two
(blood versus tissue-specific) approaches offers an important insight
into the real potential of epigenetic clocks and the bases for the
construction of more efficient tools. Focusing on the ability of
epigenetic clocks to provide methylage estimates that are
correlated with chronological age in healthy subjects, we offer a
broad analysis of the dependency of the performance of epigenetic
clocks on a number of relevant variables, including regression
model, size of the training set, sex, and sample tissue of origin.
Our work builds on existing research aiming at the exploitation of
methylage as a predictor of frailty, lifespan, and other clinically
relevant parameters and intends to assess the impact of covariates
that may hamper the real comparability of such translational
performances. These variables are parameters by which we assess
the clock performance and include the regression model, the size of
the training set, the impact of sex, the tissue specificity, and in
particular, given the expectations toward these techniques, the
differential performance of tissue-specific and blood-specific
tissues. This latter analysis is, in fact, deemed relevant to gain a
clear understanding of the performance of the so-called multi-tissue
clocks. Indeed, despite their name, multi-tissue clocks are, in
general, trained on a very large majority of blood samples, thus
leaving so far the actual predictive power of such universal models
unclear, which might be erroneously interpreted as derived from
multiple tissues. Our results represent a solid foundation to quantify
the clock performance at the state-of-the-art in this continuously
active research field, potentially paving the way for the development
of better performing epigenetic clocks.

2 Materials and methods

2.1 Dataset selection

In order to implement tissue-specific methylage clocks, we
retrieved all the DNA methylation datasets previously used by Di
Lena et al. (2020). These include all the DNA methylation datasets
obtained using the Illumina HumanMethylation450 BeadChip
(platform GPL13534) for which β-values are available on the
NCBI database Gene Expression Omnibus (Edgar et al., 2002).
The list of datasets was updated on 12 December 2020. All
datasets were carefully filtered according to the following criteria
using a combination of automatic and manual curation to ensure
that samples from healthy subjects would be selected (for instance,

excluding normal tissues adjacent to cancer tissues from oncologic
patients): only datasets for which tissue and subject age, sex, and
categorization based on health status (control or case) were available
were retained; samples from subjects younger than (≤) 20 years or
older than (> ) 85 years were removed due to the fact that the
relation between methylage and chronological age is known to be
not linear in those age ranges (Horvath, 2013; El Khoury et al., 2019).
This implies that fetal and placental samples were also discarded;
moreover, when paired samples (twins, subjects from the same
family, and repeated measurements on the same sample or
subject) were present, only one randomly selected sample was
used in the analysis. All tissues for which DNA methylation
samples were available were coded and hierarchically classified
based on the Medical Subject Headings (MeSH) vocabulary
(Lipscomb, 2000). The list of the datasets can be found in
Supplementary Table S1.

2.2 Data pre-processing

First, for each dataset, we imputed the missing data with
metyhLImp (Di Lena et al., 2019). Then, we selected a reference
dataset for each tissue, and we used regRCPqn (Sala et al., 2020) to
normalize the data. Within each tissue, before proceeding with the
training of the model, we selected only the CpGs present both in the
training and validation sets, and we filtered out the remaining CpGs
with missing values, as well as the unreliable CpGs, as defined by
Zhou et al. (2017), the rs (SNP) control probes, and all CpGs on the
X and Y chromosomes. The final number of CpGs used to train each
clock is given in Supplementary Table S1. Finally, we converted the
processed β-values into M-values using the logit2 transformation
(M-value = log2(β/(1 − β))) because of their more desirable statistical
properties (Du et al., 2010).

2.3 Modeling strategy

We obtained tissue-specific predictive models of methylage
considering three possible types of penalized linear regressions:
ridge (L2 penalization), lasso (L1 penalization), and elastic-net
[equally weighted L1 and L2 penalizations as in the studies by
Hannum et al. (2013); Horvath (2013); Horvath et al. (2018); Levine
et al. (2018); Zhang et al. (2019); Lee et al. (2020); Shireby et al.
(2020); and Voisin et al. (2020)]. Model fitting and prediction were
performed using the cv.glmnet function of the glmnet library
v4.1.2 in R v4.2.2 and selecting the penalty parameter that
minimized the mean-squared error. Each model was trained
using the default parameters but with nlambda = 50 rather than
100 to lower the RAM usage. Moreover, an internal 10-fold cross-
validation was performed when the number of samples was at least
10, while a leave-one-out cross-validation was performed when the
number of samples was lower than 10.

To assess the predictive accuracy of the models on external
datasets, a further leave-one-out cross-validation in which each
dataset is iteratively left out from the training set was performed
within each tissue. It should be noted that a clock was only computed
when there were at least three samples in both the training set and
validation set. In order to test how the model performance changes
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with the number of samples in the training set, we performed a
stratified subsampling (by age) of the training set of each clock
considering various possible dimensions, i.e., 25; 50; 75; 100; 125;
150; 175; 200; 300; 400; 500; 750; 1,000; 1,250; 1,750; 2,000; 2,250;
2,500; and 2,750 samples (when available in the training set), plus
the dimension of the training set itself, which was used as the
maximum dimension. When the size of the subsample was smaller
than that of the training set, some samples were excluded from the
training set and formed the test set. For each tissue, each clock was
computed by considering males and females either jointly or
separately. Finally, the clock trained on all blood samples was
also evaluated on samples from other tissues to verify the
possible advantage of tissue-specific clocks.

2.4 Evaluation of model performance

In order to evaluate the performance of the trained clock, we
fitted a linear regression model of the computed methylage as a
function of chronological age:

Methylage � θ1 + θ2 · Age + residuals, (1)
where θ1 and θ2 are the intercept and slope of the model, respectively.
A visualization of the model is shown in Supplementary Figure S1.

Then, we evaluated the goodness of fit of such amodel by computing
two assessment measurements (generally called Score in the following
sections): the root mean-squared error (RMSE) and the adjusted-R2.

Given n observations yi (Methylage) and given the predicted
values ŷi obtained from the model in Eq. 1 (predicted Methylage),
the RMSE is defined as in Eq. 2

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
. (2)

A graphical representation of the meaning of yi (Methylage) and
ŷi (predicted Methylage) is shown in Supplementary Figure S1.

The RMSE, hence, describes how far apart the observed values
are from the regression line (predicted values), on average. The
lower the RMSE, the better the model fits the data, meaning that it is
possible to accurately predict Methylage based on Age.

The adjusted-R2 in Eq. 3 is amodified version of theR2 that takes into
account the number of predictors in themodel (K = 2). It is computed as

Adjusted − R2 � 1 −
1

n−K∑n
i�1 yi − ŷi( )2

1
n−1∑n

i�1 yi − �y( )2 , (3)

where �y � 1
n∑n

i�1yi. The adjusted-R2 quantifies how well the
predictor (Age) describes the dependent variable (Methylage). Its
value ranges from 0 to 1, and it is related to the strength of the linear
relationship between the two variables. A high adjusted-R2, hence,
indicates that the model fits the data well, meaning that Methylage
and Age are highly correlated.

2.5 Comparison of model performance

In order to compare the performance of clocks computed under
different scenarios, we fitted a series of mixed-effect models
described in the following sections. The fitting was performed

using the lmer function of the lme4 library v1.1.31 in R. In each
model, a random intercept was introduced to take into account the
dataset of origin of the samples (GSE). This is indicated as (1|GSE) in
the formula of the models. Moreover, in all models, both the
dependent and independent variables were always standardized,
ensuring the interpretation of the partial slopes as partial
correlations. Finally, in all models, we used the logarithm of the
sample size instead of the sample size itself due to the skewness of its
distribution.

2.5.1 Dependence of the clock performance on the
number of samples in the training set

To verify whether the predictive accuracy (Score) of the model
evaluated on the validation set depends on the number of samples in
the training set (Sample size), we considered all clocks trained and
validated on males and females jointly and separately for each tissue
and each penalty. In detail, we computed the mixed-effects model in
Eq. 4 as follows:

Score ~ log Sample size( ) + 1|GSE( ). (4)

The partial slope relative to log(Sample size) was then evaluated
to assess the dependence of the Score on the sample size.

2.5.2 Dependence of the clock performance on the
type of penalization

To evaluate which among the ridge, lasso, and elastic-net
penalization allowed us to obtain the clock with better predictive
performance, we considered all the clocks trained and validated on
males and females jointly, and we evaluated the relationship between the
Score and the Penalty type by fitting for each tissue a -effects model as in
Eq. 5

Score ~ log Sample size( ) + Penalty + 1|GSE( ), (5)
where log(Sample size) is added to adjust the model for the number
of samples in the training set. For each pair of penalties, a dummy
variable Penalty is created so that its partial slope indicates how
much the Score changes when choosing one penalty or the other.

2.5.3 Comparison between sex-specific and
universal clocks

To evaluate the possible advantage of a sex-specific clock, we
considered for each tissue the results (Score) obtained training the
elastic-net model on males and females jointly or separately. In both
cases, the model was validated separately on males and females.
Specifically, for each tissue, we fitted a mixed-effects model as
follows in Eq. 6:

Score ~ log Sample size( ) + Sex.specific + 1|GSE( ), (6)
where Sex.specific indicates whether the clock was sex-specific (1) or
trained on males and females jointly (0) and log(Sample size) is added
to adjust the model for the number of samples in the training set.

2.5.4 Dependence of the clock performance on
the tissue

In order to compare the predictive performance obtained in
different tissues, for each pair of tissues, we fitted a mixed-effects
model as follows in Eq. 7:
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Score ~ log Sample size( ) + Tissue + 1|GSE( ), (7)
where Tissue is a dummy variable appropriately defined for each pair
of tissues and log(Sample size) is added to adjust the model for the
number of samples in the training set. Here, we considered the Score
obtained when keeping males and females jointly in the training and
validation sets. Moreover, elastic-net-only results are presented owing
to the better performance obtained, as per Results described below.

2.5.5 Performance of the tissue-specific versus
blood-trained clock

In order to compare the predictive performance of a tissue-
specific clock and a clock trained on blood samples, for each tissue

(except blood and whole blood, see “Datasets and tissues summary”
in Results for their definition), we fitted a model as in Eq. 8

Score ~ log Sample size( ) + Tissue.specific + 1|GSE( ), (8)

where Tissue.specific is a dummy variable equal to 0 if the model
was trained on blood samples and to 1 if it was trained on the specific
tissue and log(Sample size) is added to adjust the model for the
number of samples in the training set. Here, we considered clocks
trained on males and females jointly. Moreover, elastic-net-only
results are presented owing to the better performance obtained, as
per Results described below.

In all models, one-sample Student’s t-test was used to test the
null hypothesis that the model coefficients are equal to zero. p-values
were then adjusted using the Benjamini–Yekutieli (BY) approach
(Benjamini and Yekutieli, 2001).

2.6 Comparison with other existing clocks

Methylage estimated by previously existing clocks was
obtained using the EstImage webserver (Di Lena et al., 2021).

TABLE 1 Summary of the number of samples found for each specific tissue for females (F) and males (M).

Tissue code Tissue F M

A03.556.124.526.209.290 Supplementary Appendix 0 2

A03.556.124.526.356 Colon 0 1

A03.620 Liver 36 37

A08.186.211 Brain 3 3

A08.186.211.132.659 Mesencephalon 1 1

A08.186.211.132.810.428.200 Cerebellum 13 36

A08.186.211.200.885.287.249.487.550.184 Caudate nucleus 2 10

A08.186.211.200.885.287.500.270.548 Motor cortex 2 10

A08.186.211.200.885.287.500.382.500 Gyrus cinguli 2 10

A08.186.211.200.885.287.500.571 Occipital lobe 4 3

A08.186.211.200.885.287.500.571.735 Visual cortex 2 9

A08.186.211.200.885.287.500.670 Parietal lobe 4 19

A08.186.211.200.885.287.500.670.675 Somatosensory cortex 2 10

A08.186.211.200.885.287.500.863 Temporal lobe 5 10

A08.186.211.730.885.287.249.487.550.784 Putamen 10 32

A08.186.211.730.885.287.500.270 Frontal lobe 15 13

A08.186.211.730.885.287.500.270.700 Prefrontal cortex 127 250

A08.186.211.730.885.287.500.345 Hippocampus 6 12

A10.165.114 Adipose tissue 4 2

A12.207.152 Blood 1,389 1,209

A12.207.152.CD4 Blood CD4 30 7

A12.207.152.CD8 Blood CD8 28 3

A12.207.152.PBMC Blood PBMC 19 4

TABLE 2 Summary of the number of samples for each tissue.

Tissue code Tissue F M

A03.620 Liver 36 37

A08.186.211.730.885.287.500.270.700 Prefrontal cortex 122 235

A12.207.152 Whole blood 1,240 1,169
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These include Horvath13 (Horvath, 2013); PhenoAge (Levine
et al., 2018); Zhang19.enpred and Zhang19.blupred (Zhang
et al., 2019); Horvath18 (Horvath et al., 2018); Weidner14
(Weidner et al., 2014); Hannum13 (Hannum et al., 2013);
ABEC, eABEC, and cABEC (Lee et al., 2020); Vidal (Vidal-
Bralo et al., 2016); CorticalClock (Shireby et al., 2020); and
MEAT (Voisin et al., 2020). A detailed description of all such
clocks is given by Di Lena et al. (2022). The performance of the
tissue-specific elastic-net clocks trained on males and females
jointly (i.e., using the best performing setting according to our
results) was then graphically compared with those of previously
existing clocks using box plots.

3 Results

3.1 Datasets and tissues summary

As detailed in Supplementary Table S1, we found DNA
methylation data of healthy samples passing our filters for four
tissue categories: digestive system (A03), nervous system (A08),
blood (A12.207.152), and adipose tissue (A10.165.114). However,
only six samples (four females and two males) were available for the
adipose tissue. Hence, this tissue was not included in the analysis.
Table 1 summarizes the number of samples (females and males)
found for each specific tissue.

Based on the number of samples per tissue, we focused our
analysis on three tissues (liver, prefrontal cortex, and whole
blood) and three aggregated tissues (digestive system, nervous
system, and blood). In the second case, we also classified as
blood samples those including only specific subsets of blood
cells (CD4, CD8, or PBMC), and we included in the digestive
system and nervous system all tissues that belong to such
systems, according to the MeSH vocabulary (Lipscomb,
2000). Tables 2, 3 provide the number of samples available
for each tissue.

TABLE 3 Summary of the number of samples for each aggregated tissue.
Here, blood also includes samples with only specific subsets of blood cells
(CD4, CD8, or PBMC).

Tissue code Tissue F M

A03 Digestive system 36 40

A08 Nervous system 162 335

A12.207.152 Blood 1,317 1,183

FIGURE 1
Model performance and sample size. Partial correlation (Partial.Corr) between the score of the model performance (adjusted-R2 in (A) and RMSE in
(B)), and the number of samples in the training set (log-transformed). As indicated in the legend, different colors refer to models trained with different
penalties, while different symbols refer to one-sample t-test BY adjusted p-values (Adj.p-value) greater or smaller than the significance threshold 0.05
(see Materials and methods for details). As expected, the performance improves when the sample size is increased.
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3.2 Improvement of the clock performance
with the number of samples in the
training set

Using the approach described in Materials and methods, we
statistically evaluated the dependency of the clock performance on
the sample size (Supplementary Figures S2–S7 provide an overview
of such dependency). The partial correlations between each Score
and the logarithm of the sample size (log(Sample size)) are reported
in Supplementary Table S2, which includes results obtained in the
validation set and the training and test sets. The results for the
adjusted-R2 and RMSE obtained in the validation set are shown in
Figure 1. Figure 1A shows that, overall, a positive correlation
(Partial.Corr) exists between the model adjusted-R2 on the
validation set and the number of samples in the training set. The
effect is evident for all three types of penalization, and it is
statistically significant in blood, whole blood, the nervous system,
and prefrontal cortex but not in the digestive system and liver.
Figure 1B shows that, overall, the RMSE on the validation set
decreases as the number of samples in the training set increases
(negative Partial.Corr), confirming that the performance of the
model on the validation set improves when the sample size of
the training set increases. More precisely, such a trend is not
visible when using ridge penalization, where the only statistically

significant result is in blood and shows an opposite behavior, while
the results obtained with the lasso and elastic-net are in agreement
with the overall trend, although no statistical significance is found in
the digestive system and liver when using the lasso and in the
prefrontal cortex and liver when using the elastic-net penalization.

It should be noted that the non-significant effect of the sample
size in the digestive system and liver is possibly due to the small
number of samples available for such tissues (Tables 2, 3 show for
the number of samples available for each tissue and aggregated
tissue, and Supplementary Table S1 shows the number of studies for
each tissue and the number of samples available within each study).

3.3 Using the elastic-net rather than other
penalizations does not affect the clock
performance

We evaluated the impact of using different penalties on the
predictive performance of the clock computing the partial
correlation between the Score and the Penalty of the clocks, as
described in Materials and methods. Specifically, for each pair of
penalties, we obtained an estimate of the partial correlation
(Partial.Corr) describing how much the Score changes when
changing the Penalty.

FIGURE 2
Model performance and penalty. Partial correlation between score (adjusted-R2 in (A) and RMSE in (B)) and penalty. The model was fitted (and
validated) consideringmales and females jointly. The dummy variables in themodel are labeled as follows: “ridge V elnet”means ridge = 1, elnet = 0; “lasso
VS elnet”means lasso = 1, elnet = 0; and “lasso VS ridge”means lasso = 1, ridge = 0. As indicated in the legend, different colors refer to different tissues,
while different symbols refer to one-sample t-test BY adjusted p-values (Adj.p-value) greater or smaller than the significance threshold 0.05 (see
Materials and methods for details). Overall, choosing the elastic-net penalization does not affect the clock performance.
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We considered the Score values obtained on the validation set.
However, results on the training and test sets are also available and
given in Supplementary Table S3.

Average values of adjusted-R2 and RMSE per penalty within
each tissue are given in Supplementary Tables S4, S5.

Regarding the comparison between the lasso and elastic-net
penalization, Figure 2 shows that both adjusted-R2 and RMSE
improve when using the elastic-net, but the differences are not
statistically significant. Choosing the ridge penalization over the
lasso or the elastic-net, on the other hand, reduces the RMSE while
also reducing the adjusted-R2. This implies that the correlation
between methylage and real age is lower when using the ridge
penalization, even though the uncertainty of such correlations is
also reduced.

It should be noted that when considering the digestive system or
the liver, all p-values are > 0.05, possibly due to the small sample
size. However, the trend of the results is in agreement with those
obtained in the other tissues.

Overall, we conclude that the common choice of using the
elastic-net penalization does not impact the results when aiming
to obtain a predictive model of methylage that is in agreement
with the real age. Hence, in the following sections, we focus on
this penalization. The results for the other penalizations are
reported in Supplementary Tables, as detailed in the
following sections.

3.4 Sex-specific clocks do not perform
better than clocks trained on males and
females jointly

For each tissue, we evaluated the possible advantage of a sex-
specific clock in predicting methylage in the validation set, using the
approach described in Materials and methods. The results
comparing the clocks trained on males and females jointly or
separately for males and females are shown in Supplementary
Table S6. Average values of adjusted-R2 and RMSE per tissue and
per sex (i.e., sex selected in the training and validation sets) are
shown in Supplementary Tables S7, S8.

Overall, we do not detect any statistically significant difference in
the predictive performance of clocks when fitting a sex-specific clock
or a clock for males and females jointly (Figure 3).

3.5 Difference between results obtained in
different tissues

We compared the predictive performance on the validation set
of each pair of tissues, as described in Materials and methods. The
results are shown in Supplementary Table S9. The average values of
adjusted-R2 and RMSE per tissue are shown in Supplementary
Tables S10, S11.

FIGURE 3
Partial correlation between the score (adjusted-R2 in (A) and RMSE in (B) and model either fitted jointly on males and females (0) or separately for
males (blue) or females (red) (1). The model was trained using the elastic-net penalization. The results are shown for the validation set. A positive partial
correlation for the adjusted-R2 means that the performance is higher when fitting a sex-specific clock. The opposite holds for RMSE. In all cases, the one-
sample t-test BY adjusted p-value (Adj.p-value) is >0.05, and the null hypothesis that the partial correlation is zero cannot be rejected.
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Considering the results on the validation set (orange dots in
Figure 4), we do not detect any difference in the performance of
different tissue-specific clocks.

3.6 Training a tissue-specific model
improves the clock performance

Considering the easier clinical translatability of a clock
computed on blood compared to other tissues, we evaluated
whether methylation information from blood samples is already
effective in making blood-specific clocks comparable to their
tissue-specific counterparts. To this aim, for each tissue (except
blood and whole blood), we compared the predictive performance
on such tissues of a model trained on blood or on the specific
tissue. The details are provided in Materials and methods. The
results comparing the clocks trained on blood or on specific tissues
are shown in Supplementary Table S12. Average values of
adjusted-R2 and RMSE per tissue are shown in Supplementary
Tables S13, S14.

Overall, our results show that tissue-specific clocks perform
better than the blood-specific clock. Figure 5 shows, in fact, that

fitting a tissue-specific clock results in an increase in the adjusted-R2

and a decrease in the RMSE. The results for the digestive system and
liver are not statistically significant due to the small sample size but
have the same trend observed for the nervous system and
prefrontal cortex.

3.7 Comparison with other clocks

Based on the previous results, we selected the elastic-net tissue-
specific clocks trained on males and females jointly (this setting
was chosen because of their better performance, knowing that joint
male and female individuals increase the sample size) and without
performing any subsampling, and we compared the performance
of such clocks with that of previously existing clocks by evaluating
the concordance between methylage and real age on the validation
sets using the adjusted-R2 and RMSE. Supplementary Figures S8,
S13 show the results for each tissue. Overall, the performance on
the validation set has high variability for most clocks. The
graphical comparison provided by the box plots highlights the
utility of tissue-specific clocks. While the elastic-net clocks trained
on the liver and digestive system provide worse predictions than

FIGURE 4
Partial correlation between the score (adjusted-R2 in (A) and RMSE in (B) and having fitted/validated the model on one tissue or the other. As
indicated in the legend, different colors refer to results obtained for the training or validation set, while different symbols refer to one-sample t-test BY
adjusted p-values (Adj.p-value) greater or smaller than the significance threshold 0.05 (seeMaterials and methods for details). The model was trained on
males and females jointly using the elastic-net penalization. Given the label “tissue1 VS tissue2,” a negative Partial.Corr for the adjusted-R2 means
that the performance is lower in the first tissue (tissue1), while the opposite holds for the RMSE.
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multi-tissue and blood-specific clocks (Supplementary Figures S8,
S9), possibly due to the small sample size of the training set, the
tissue-specific elastic-net models for the nervous system and
prefrontal cortex achieve particularly good performance,

together with the CorticalClock, a clock specific for the cerebral
cortex (Supplementary Figures S10, S11). Regarding the blood-
specific elastic-net clock, Supplementary Figures S12, S13 show
that the results obtained using the elastic-net model are

FIGURE 5
Partial correlation between the score (adjusted-R2 in (A) and RMSE in (B) and having trained the model on the specific tissue (1) or on blood (0). As
indicated in the legend, different symbols refer to one-sample t-test BY adjusted p-values (Adj.p-value) greater or smaller than the significance threshold
0.05 (see Materials and methods for details). The model was trained on males and females jointly using elastic-net penalization. The performance was
evaluated on the validation set (tissue indicated in the x-axis). A positive partial correlation for adjusted-R2 means that the performance is higher
when fitting a tissue-specific clock, while the opposite holds for the RMSE.

FIGURE 6
Venn diagram of CpGs (A) and genes (B) shared in blood, the nervous system, and digestive system. Here, we considered the results obtained using
the elastic-net tissue-specific clocks trained on males and females jointly and without performing any subsampling. The Venn diagrams were then
obtained taking into account only the CpGs selected in all the training sets for each tissue.
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comparable with those obtained using most of the other blood-
specific clocks (except for Weidner14 and Vidal, two clocks based
on the methylation value of only a few CpGs: three in the case of
Weidner14 and eight in the case of Vidal), as well as with multi-
tissue clocks.

3.8 CpGs and corresponding genes selected
by the tissue-specific clocks

Considering, as in the previous section, the tissue-specific
elastic-net models trained on males and females jointly and
without performing any subsampling, we retrieved the list of

CpGs selected by each clock for the computation of methylage.
Overall, we observe that the number of selected CpGs increases
with the sample size of the training set. This is an expected result
related to an increase in the test power. The selected CpGs and
their partial effects within each clock are shown in
Supplementary Figures S14–S19. Here, all coefficients between
−0.1 and 0.1 were set to 0 to simplify the heatmaps. Moreover, the
less stable CpGs were discarded by removing the CpGs with non-
zero coefficients in less than 10% of the clocks within a
certain tissue.

The list of the CpGs selected by all elastic-net clocks for each
separate tissue is given in Supplementary Table S15. Overall, no
CpG is selected by all elastic-net clocks in all tissues. The Venn

FIGURE 7
Venn diagram of CpGs (A) and genes (B) shared in whole blood, the prefrontal cortex, and liver. Here, we considered the results obtained using the
elastic-net tissue-specific clocks trained on males and females jointly and without performing any subsampling. The Venn diagrams were then obtained
taking into account only the CpGs selected in all the training sets for each tissue.

FIGURE 8
Venn diagram of CpGs (A) and genes (B) shared in blood, the nervous system, and digestive system. Here, we considered the results obtained using
the elastic-net tissue-specific clocks trained on males and females jointly and without performing any subsampling. The Venn diagrams were then
obtained taking into account all the CpGs selected in at least one of the training sets for each tissue.
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diagram given in Figure 6A shows that, while a couple of CpGs
are selected both in blood and the digestive system or nervous
system, none of them are shared between the last two tissues. A

very similar result is obtained when grouping the CpGs at the
gene level (Figure 6B) or when considering more specific tissues
(Figure 7). Our results confirm the high heterogeneity of the
selected CpGs and genes. An overview of the genes selected by
both previously existing clocks and those found in our elastic-
net tissue-specific models is provided in
Supplementary Table S15.

When considering the CpGs selected in at least one elastic-net
clock, we find some CpGs shared by each pair of tissues but no CpG
shared by all the three tissues (Figures 8A, 9A). Figures 8B, 9B show
instead that, when aggregating the CpGs at the gene level, we
identify 11 genes that are selected in all the three aggregated
tissues (CPT1A, EIF5A2, ELOVL2, FHL2, FLJ45983, GATA3,
MMP15, SHROOM3, SLC9A3, SLIT3, and SYNGR3) and
5 genes that are selected in all the 3 specific tissues (CPLX2,
HAS3, MMP15, RPA2, and SYNGR3). Interestingly,
ELOVL2 and FHL2 are well-known as epigenomic markers of
aging (Garagnani et al., 2012) and are also selected by various
other existing methylage clocks (Table 4). Furthermore, Table 4
shows that among the remaining 12 genes, 7 are also selected by at
least 1 other methylage clock, while 5 are uniquely identified by the
elastic-net clocks (CPT1A, MMP15, SHROOM3, SLC9A3,
and SLIT3).

4 Discussion

Methylage clocks are novel biomarkers of aging (He et al.,
2021), which exploit DNA methylation to estimate biological age.
A common approach to develop such clocks is to fit a penalized
linear regression model that relates the chronological age of
individuals with their DNA methylation values, considering a

FIGURE 9
Venn diagram of CpGs (A) and genes (B) shared inwhole blood, the prefrontal cortex, and liver. We considered the results obtained using the elastic-
net tissue-specific clocks trained on males and females jointly and without performing any subsampling. The Venn diagrams were then obtained taking
into account all the CpGs selected in at least one of the training sets for each tissue.

TABLE 4 Column “Gene” lists the 14 genes found in at least 1 clock in all
3 tissues or aggregated tissues. For each gene, column “Clock” lists the
previously existing clocks in which such a gene was also used for the
computation of methylage.

Gene Clock

CPT1A

EIF5A2 cABEC

ELOVL2 Zhang19.enpr; Horvath18; Hannum13; eABEC; cABEC; ABEC;
CorticalClock; and ELOVL2

FHL2 Zhang19.enpr; Horvath18; Hannum13; eABEC; cABEC; ABEC; and
FHL2

FLJ45983 CorticalClock

GATA3 CorticalClock

MMP15

SHROOM3

SLC9A3

SLIT3

SYNGR3 Zhang19.enpr and eABEC

CPLX2 ABEC

HAS3 PhenoAge

RPA2 Zhang19.enpr; Horvath18; Hannum13; eABEC; cABEC; and ABEC

Zhang19.blupred was not considered in this table due to the high number of selected CpGs

(> 300k). The complete inventory of genes selected by each methylage clock is given in

Supplementary Table S15, together with the list of clocks using each respective gene.
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training set of control samples. In addition to the relevance of
methylage clocks, important aspects of their computational
strategy are not well-defined. These include the criteria by
which the training set samples are selected (e.g., males and
females jointly or separately, samples from a specific tissue or
from different tissues) and the model specifications (e.g., the type
of penalty). Our work aims at providing a broad analysis of the
dependency of methylage clock performance on a number of
relevant variables and identifies different significant aspects.
Among such aspects, the sample size of the training set is
indeed a critical point; as expected, a larger sample size
improves the predictive performance of the clock. For what
regards the choice of the penalty type, no statistically significant
difference is observed among the ridge, lasso, and elastic-net
penalization, confirming the suitability of the most commonly
used elastic-net approach. In addition to the well-known
differences in the aging process in males and females (Yusipov
et al., 2020; Hägg and Jylhävä, 2021; Iannuzzi et al., 2023), our
results do not find a significant advantage in computing a sex-
specific clock, meaning that methylage clocks capture a broader
signal, which is sex-independent. Another kind of unexpected
result is that the performance of diverse tissue-specific clocks is
not different. Since the aging process is linked to multiple cellular
alterations, which frequently exhibit specificity for particular
tissues (Ferrucci et al., 2020; Nie et al., 2022), we might expect
to obtain stronger signatures of aging in some tissues than in
others. However, this is not the case for methylage clocks,
according to our results. Interestingly, on the other hand,
tissue-specific clocks perform better than a generic clock trained
on blood. Blood is indeed a favored tissue for the computation of
methylage clocks due to its ease of sampling. However, such
differences in performance should be taken into account when
generalizing the results obtained on blood to other tissues or the
whole body. The importance of tissue specificity also emerges
when comparing the results obtained with our clocks with those
achieved with other existing clocks. For instance, despite the high
variability in the predictive performance of the clocks, it emerges
that the CorticalClock works better than clocks trained on other
tissues when predicting the age of prefrontal cortex and nervous
system samples.

Finally, our results show a high variability in the biological
signal taken into account by different clocks. Considering the sets
of selected CpGs, we find, for instance, that no CpG is shared by all
tissue-specific clocks. However, when we shift at the gene level and
compare the genes to which the selected CpGs are associated, we
find some commonality: 5 genes are selected in all the clocks
obtained from the 3 considered specific tissues (liver, prefrontal
cortex, and whole blood), while 11 genes are selected in all the
clocks obtained from the 3 considered aggregated tissues (digestive
system, nervous system, and blood). Among those common genes,
ELOVL2 and FHL2 stand out since they are two well-known
markers of aging (Garagnani et al., 2012). Moreover, the
majority of genes (9 out of 14) are also selected by other
existing clocks. On the other hand, CPT1A, MMP15,
SHROOM3, SLC9A3, and SLIT3 are first identified within our
clocks. Although the identification of such genes can be considered
by no means conclusive as to their power as methylage markers,

they remain a robust set of hypotheses for further
(experimental) testing.

To conclude, we mention that the limits of our study are
clearly related to the usage of data obtained using a single
technology (Illumina HumanMethylation450 BeadChip) and
model (penalized linear regression), as well as to the data
availability per tissue. Furthermore, additional experiments
like assessing the performance of blood clocks using only
CpGs linked to genes expressed in all tissues, or pre-selected
according to other biological criteria (for instance, the
remarkable case of genes associated with sex-specific
hormones), or testing tissue-specific models on different
tissues, represent as many questions that could provide
additional insights into the mechanisms of methylage.
Nevertheless, such a systematic analysis represents a useful
and needed evidence-based ground for additional and further
exploration in the translation of epigenetic clocks.
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