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Detection of reproducible liver
cancer specific ligand-receptor
signaling in blood
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Cell-cell communication mediated by ligand-receptor interactions (LRI) is
critical to coordinating diverse biological processes in homeostasis and disease.
Lately, our understanding of these processes has greatly expanded through
the inference of cellular communication, utilizing RNA extracted from bulk
tissue or individual cells. Considering the challenge of obtaining tissue biopsies
for these approaches, we considered the potential of studying cell-free RNA
obtained from blood. To test the feasibility of this approach, we used the
BulkSignalR algorithm across 295 cell-free RNA samples and compared the
LRI profiles across multiple cancer types and healthy donors. Interestingly, we
detected specific and reproducible LRIs particularly in the blood of liver cancer
patients compared to healthy donors. We found an increase in the magnitude
of hepatocyte interactions, notably hepatocyte autocrine interactions in liver
cancer patients. Additionally, a robust panel of 30 liver cancer-specific LRIs
presents a bridge linking liver cancer pathogenesis to discernible blood markers.
In summary, our approach shows the plausibility of detecting liver LRIs in blood
and builds upon the biological understanding of cell-free transcriptomes.
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1 Introduction

Cancer remains one of the most pressing healthcare challenges globally,
being the second leading cause of death worldwide (GBD, 2015 Mortality and
Causes of Death Collaborators et al., 2016). Numerous studies have shown that early cancer
detection significantly improves the survival rate, emphasizing the importance of improved
detection methods (Crosby etal., 2022). A promising method for minimally invasive yet highly
informative diagnostics is liquid biopsy. This methodology focuses on analyzing body fluids
- primarily blood - utilizing various omics techniques such as proteomics, genomics, and,
notably, transcriptomics (Heitzer et al.,, 2019). In particular, the analysis of cell-free RNAs -
which are RNAs that have exited the cells either as a result of cell death or active secretion and
are shed into the bloodstream from around the body (Jin et al., 2023; Vorperian et al., 2022)
- is increasingly promising (Cabus et al., 2022) due to the fact that transcriptomic signatures
can reveal tissue and cell-type specificity which would greatly aid diagnostics (Jin et al., 2023;
Koh et al., 2014; Vong et al., 2021; Vorperian et al., 2022; Zaporozhchenko et al., 2018).
Beyond diagnostics, cell-free RNA can in principle offer many insights into cellular processes
of cells throughout the body since RNAs are constantly being shed into the bloodstream
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(Ibarra et al.,, 2020; Zaporozhchenko et al., 2018). Yet, to which
extent we can learn about inter- and intracellular processes solely by
investigating the limited subset of cell transcriptomes that enter into
the bloodstream is currently unknown.

In recent years, numerous approaches have focussed on
mapping ligand-receptor interactions as they are crucial for
comprehending cellular responses and intercellular communication
networks (Cabello-Aguilar et al., 2020; Dimitrov et al, 2022;
Efremova et al., 2020; Lu et al., 2022; Jin et al., 2021; Wangzhou et al,
2021). In particular, single-cell RNA sequencing (scRNA-seq)
technology enables the measurement of ligand and receptor
expression across various cell types, facilitating the systematic
decoding of intracellular communication for the maintenance of
homeostasis but also in cancerogenesis (Ghoshdastider et al., 2021;
Ramilowski et al., 2015; Zhou et al., 2017). In order to experimentally
gain these insights, however, tissue biopsies are needed which are
difficult to extract and only provide a snapshot in time. Thus, we asked
the question as to which degree one could observe LRI differences
between cancer and normal tissue solely by exploring the cell-free
RNA found in the blood of patients and healthy donors.

In this BulkSignalR
algorithm (Villemin et al., 2023), we queried LRIs in close to 300

proof-of-concept study, using the
blood samples, including those from cancer patients and healthy
donors. In our analysis of all the samples, liver cancer samples
notably distinguished themselves. We showed not only the possibility
of inferring relevant LRIs from cell-free transcriptomes in blood
from liver cancer patients but also highlighted an increase in the
number of interactions associated with hepatocytes in these patients.
Furthermore, we curated a panel of 30 highly robust LRIs in the cell-
free transcriptome specific to liver cancer. Within this panel, we find
previously documented liver- and liver cancer-relevant marker gene
ligands SERPINC1 and GPC3 LRIs to be specific and unique to liver

cancer blood samples and thus serve as potentially potent biomarkers.

2 Materials and methods
2.1 Research strategy

The central aim of the study was the investigation of the
possibility of deriving ligand-receptor interactions (LRI) and cell-
cell interactions (CCI) from blood cell-free transcriptomes. The
software tool used to analyze LRIs in blood cell-free transcriptomes
was the recently developed BulkSignalR (Villemin et al., 2023),
which detects directional LRIs from bulk RNA-seq data and
has specific features that differentiate it from similar tools
designed to analyze single-cell RNA datasets, such as CellPhoneDB
(Efremova et al., 2020) or SingleCellSignalR (Cabello-Aguilar et al.,
2020). The latter tools deal with populations of single-cell types
where it is evident which cell types express the ligand and the
corresponding receptor. Therefore, the output of CellPhoneDB and
similar tools include directional CCI corresponding to different
directional LRIs. In this instance, the main challenge is designating
a method for identifying biologically relevant LRIs, which, for
example, CellPhoneDB achieves by randomly permutating the cell
type labels of all cells and calculating the average ligand and receptor
expressions in each cell type, which yields a null distribution for
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each LRI responsible for a particular CCI (Efremova et al., 2020).
The null distribution is used to calculate a p-value describing the
enrichment of each ligand-receptor pair in the cell type populations
being analyzed and, as such, allows to prioritize the more cell-type
specific interactions (Efremova et al., 2020).

On the other hand, bulk RNA-seq data does not possess cell-type
level information and represents an aggregation of gene expressions
across different cell types. Therefore, BulkSignalR achieves the
removal of false positive LRIs by calculating p-values from null
distributions of Spearman correlation coefficients between ligand-
receptor pairs in each randomized gene expression dataset generated
from the input dataset (Villemin et al., 2023). Another consideration
is that while BulkSignalR is capable of providing directional LRIs,
it is unable to produce CCIs due to the previously outlined lack
of cell-type level information in bulk RNA-seq data. A potential
workaround for this limitation is the leveraging of single-cell RNA-
seq data, which can provide information about CClIs, and it is this
strategy - the alignment of LRIs derived from bulk and single-cell
RNA-seq datasets - that we employed in the current study to analyze
CCIs from blood cell-free transcriptomes.

2.2 Detection of LRIs

We used publicly available RNA-seq datasets generated by
Chen etal. (2022) and Zhu et al. (2021) to study the LRIs in blood cell-
free transcriptomes. The count matrices of raw reads were downloaded
from Gene Expression Omnibus (GEO) with the ascension numbers
GSE174302 and GSE142987. In total, 295 blood samples from five
types of solid tumors and healthy donors were analyzed (Table 1).
Liver cancer (LC) blood samples (n = 62) were mainly drawn
from hepatocellular carcinoma (HCC) patients, with only eight
samples drawn from intrahepatic cholangiocarcinoma (ICC) patients
(Chenetal.,,2022; Zhuetal., 2021). Additionally, more than 60% of liver
cancer patients had chronic hepatitis B (CHB) infection (Chen et al.,
2022). In order to infer LRIs, the count matrices were separately
(per biological condition) prepared for subsequent analysis using the
function “prepareDataset” from the R (version 4.1.2) (R Core Team,
2021) package BulkSignalR (version 0.0.9) (Villemin etal., 2023). Next,
the function “learnParameters” from the package BulkSignalR was
employed to estimate the statistical model parameters and finally, with
the function “initialInference” from the package BulkSignalR LRIs are
inferred and stored in a BSRInference object. Dataframes of inferred
LRIs were extracted from the BSRInference objects using the function
“LRInter” from the package BulkSignalR. A threshold of 0.1% FDR
was applied, as described in the original study (Villemin et al., 2023).

A count matrix of bulk RNA-seq dataset of CHB HCC tissue
samples (Jiang et al., 2019; Zeng et al., 2020) was downloaded from
GEO under the ascension number GSE124535. The count matrix
contained FPKM values of 35 HCC liver tissue samples and was used
to infer LRIs with the R package BulkSignalR as described with the
parameter “normalize = FALSE” in the “prepareDataset” function. In
order to get only high-confidence LRIs, a threshold of 0.1% FDR and
a minimum ligand-receptor correlation value of 0.5 were applied.

Finally, a single-cell RNA-seq dataset of HCC patient liver
tissue samples (Lu et al, 2022) was downloaded from the GEO
database under the ascension number GSE149614. After selecting
cells extracted from primary tumor sites of CHB patients, there
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TABLE 1 Main characteristics of the RNA-seq datasets used in the study. The values indicate the number of donor/patient samples in each dataset.
Accession numbers refer to the Gene Expression Omnibus (GEO) database.

Dataset HD LC STAD LUAD CRC ESCA Accession number Reference
Chen et al. (2022) 46 27 37 35 54 31 GSE174302 Chen et al. (2022)
Zhu et al. (2021) 30 35 NA NA NA NA GSE142987 Zhu et al. (2021)
Single-cell RNA-seq NA 17,392 cells/5 patients NA NA NA NA GSE149614 Lu et al. (2022)
Bulk RNA-seq NA 35 NA NA NA NA GSE124535 Jiang et al. (2019), Zeng et al.
(2020)

HD, healthy donor; LG, liver cancer; STAD, stomach adenocarcinoma; LUAD, lung adenocarcinoma; CRC, colorectal cancer; ESCA, esophageal cancer.

remained 17,392 cells from five patients. To assign cell types we  target cell type found in the liver. First, the healthy donor blood LRIs
used the R Bioconductor (Huber et al, 2015) package SingleR  were removed from the lists of LRIs identified in the blood of cancer
(version 1.8.0) (Aran et al,, 2019) and a healthy liver single-cell RNA-  patients. Then, the scRNA-seq LRI dataframe was filtered by LRIs
seq dataset (MacParland et al., 2018) as reference. The latter was ~ found in each cell-free data type. Then, in each resulting dataframe
downloaded from the GEO database and included log2CPM valuesof ~ the number of interactions between cell types was calculated and
8,444 cells from five healthy donor liver tissues. After collapsing the  the top ten most abundant interactions were selected. Finally, the
annotations for hepatocytes, macrophages, T cells and liver sinusoidal ~ selected cell interactions were used to construct cellular networks
endothelial cells (LSECs), 11 cell-type annotations remained and,  with the R package circlize (version 0.4.14) (Gu et al., 2014) using
together with the liver cancer scRNA-seq data were used as input  the function “chordDiagramFromMatrix”. Hepatocyte autocrine
for the “SingleR” function of the SingleR package with the parameter  interactions were highlighted where present with a dashed line.
“de.method = “wilcox™ Then, the annotated liver cancer scRNA-
seq data was normalized with the function “NormalizeData” of the
Seurat R package (version 4.3.0.1) (Hao et al, 2021). Finally, LRIs 2.4 Generation of an LC-specific and
were inferred from the annotated and normalized HCC single-cell ~ reproducible panel of LRIs
RNA-seq data using the function “liana_wrap” from the LIANA R
package (version 0.1.12) (Dimitrov et al., 2022) with the parameter To generate a panel of LC-specific and reproducible LRIs, we
“resource = “LRdb™ as the package BulkSignalR also uses the  first excluded every LRI found in liver cancer cell-free dataset of
database LRdb (Cabello-Aguilar et al.,, 2020). In order to acquire Chen et al. that could also be found in Chen et al. healthy donor,
only high-confidence LRIs, we applied a threshold of 0.05 for the  esophageal cancer, stomach adenocarcinoma, colorectal cancer and
CellPhoneDB p-values (Dimitrov et al., 2022; Efremova et al,, 2020) ~ lung adenocarcinoma cell-free datasets. Then, we intersected the
andathreshold of 0.5 for the correlationsbetweenligandsandreceptors ~ remaining LRIs with those found in Zhu et al. liver cancer cell-free
(Dimitrov et al., 2022; Villemin et al., 2023). dataset and finally excluded LRIs found also in Zhu et al. healthy
The LRIs inferred from Chen etal. liquid biopsy datasets  donor cell-free dataset. The final list included 30 LRIs which were
were used as input for the “UpsetR” function from the UpsetR  used to generate a heatmap with corresponding average expressions
R package (version 1.4.0) (Conway et al, 2017) to generate  in the scRNA-seq dataset of Lu et al. (2022), which were calculated
UpSet plots. Only the first ten intersections ordered by size were  using the “AverageExpression” function in the Seurat R package.
shown for visualization purposes. The intersection between liver = Considering that LRIs may be associated with multiple biological
cancer samples from Chen etal. and Zhu etal. datasets was  pathways, we visualized the largest downstream pathways per LRI.
visualized using the “venn” function from the R package ggvenn To further contextualize the identified LRIs, the online portal
(version 0.1.10) (Yan, 2023) with the parameter “auto_scale = T”. CITE (Crosstalk Interactions within Tumor microenvironment;
The total number of LRIs identified in Chen et al. and Zhu etal.  https://cite.genome.sg/) (Ghoshdastider et al., 2021) was used to
datasets was visualized using the R package ggplot2 (version 3.4.3)  acquire the estimated Relative Crosstalk (RC) score for each
(Hadley, 2016) and ggpubr (version 0.6.0) (Kassambara, 2023). The ~ LRI in HCC. RC scores represent the relative concentration of
relationship between tissue bulk and single-cell RNA-seq LRIs was LR complexes in cancer and stromal cell compartments in the
visualized with the “ggvenn” function from the ggvenn R package  tumor microenvironment and the directionality of interactions
with the parameter “auto_scale = TRUE”. between compartments (Ghoshdastider et al., 2021). The portal
contained information about 11 of the identified 30 LRIs and after
retrieving the RC scores, they were used to generate a heatmap

2.3 Inference of cellular interactions using the function “pheatmap” from the R package pheatmap
(version 1.0.12) (Kolde, 2019).
In order to associate the identified LRIs in the cell-free In order to visualize the expression patterns of the ligands

transcriptome with source and target cell types, we used the scRNA- ~ SERPINC1 and GPC3 across tumor tissues, the online portal
seq results where each identified LRI was assigned to a source and ~ GEPIA2 (http://gepia2.cancer-pku.cn/) was employed. After
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retrieving the expression values, they were used for visualization
with the packages ggplot2 and ggpubr.

Unless expressly specified, all the software tools were used with
default settings.

3 Results and discussion

3.1 Extensive LRI detection in liver cancer
cell-free transcriptome

To evaluate the possibility of detecting ligand-receptor
interactions (LRIs) in the cell-free transcriptome in blood, we
utilized the BulkSignalR package and tested it using 295 liquid
biopsy blood samples from healthy donors, liver cancer, esophageal
cancer, stomach adenocarcinoma, colorectal cancer and lung
adenocarcinoma sourced from the publicly available datasets of
Chen et al. (2022) and Zhu et al. (2021). We detected statistically
significant LRIs in both datasets, with numbers ranging from 67 to
455 (Supplementary Figure S1A; Supplementary File S1A). Notably,
we found in both cell-free liver cancer datasets a markedly higher
number of total and unique LRIs compared to other cell-free RNA
samples from other types of cancer (Supplementary Figure SIA;
Figure 1A), underscoring the pronounced increase in tissue signal
presence in blood during liver cancerogenesis. Most of the LRIs
identified in cell-free RNA liver cancer data were reproducible in
both datasets (Figure 1B), reducing the likelihood of them being
attributed to random noise. This unique feature of liver cancer
results can be explained by the pronounced contribution of the liver
to the cell-free transcriptome (Larson et al., 2021) which means
that any pathological changes within the liver are prominently
reflected in blood samples (Morlion et al., 2023; Safrastyan et al.,
2023; Vong et al., 2021). Earlier studies have highlighted detectable
alterations in the cell-free transcriptome during liver diseases,
with particular shifts in cell-type signals (Vorperian et al,
2022). Hence, this finding indicates that liver cancer is
a promising use case for studying LRI changes during
carcinogenesis.

3.2 Increase in the number of hepatocyte
interactions in liver cancer blood samples

One of the main advantages of LRIs is the ability to infer
cell-cell interactions and cellular networks. We decided to infer
changes in cell-cell interactions of liver cancer patients and healthy
donors from the blood samples by leveraging a single-cell RNA-
sequencing (scRNA-seq) dataset of liver cancer patient tissue
samples (Lu et al., 2022). Our analysis of LRIs in the scRNA-
seq data yielded 1,120 LRIs which were associated with 11 source
and target cell types found in the liver (Supplementary Figure S1B;
Supplementary File S1). Additionally, considering previous bulk
RNA-sequencing findings which highlighted lowly expressed LRIs
not captured by scRNA-seq data analysis (Villemin et al., 2023), we
also identified LRIs in bulk RNA-sequencing data of liver cancer
tissue samples to achieve a more comprehensive collection of LRIs.
(Supplementary Figure S1B; Supplementary File S1) (Jiang et al.,
2019; Zeng et al, 2020). Consistent with a prior observation
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(Villemin et al., 2023), a greater number of LRIs were detected in
scRNA-seq data, with bulk RNA-sequencing contributing a modest
number of unique LRIs (Supplementary Figure S1B).

We then visualized the top ten most abundant cell-cell
interactions found in the scRNA-seq results for each cell-
free RNA dataset. In both Chen etal. and Zhu etal. cell-
free RNA liver cancer datasets, our analysis of the ten most
abundant cell-cell interactions (Figure 2; Supplementary Figure S2;
Supplementary File S2) showed strong hepatocyte signaling, both
as a source and a target (Figure 2B; Supplementary Figure S2F). In
contrast, hepatocyte signaling was less pronounced and ligands
originating from hepatocytes were absent in healthy donor
(Figure 2A; Supplementary Figure S2E) and other cancer blood
samples (Supplementary Figures S2A-D). This aligns with prior
studies describing an increase in hepatocyte signaling in the blood
of liver cancer patients (Morlion et al., 2023; Vong et al., 2021).

Another noteworthy observation was the detection of an
abundant hepatocyte autocrine interaction in the liquid biopsy
liver cancer in contrast to healthy control datasets (Figure 2B;
Supplementary Figure S2F). This finding confirms observations by
previous studies indicating that the increase in autocrine hepatocyte
signaling is a strong signal for liver carcinogenesis that can also be
detected in the cell-free transcriptome (Ghoshdastider et al., 2021;
Lu et al., 2022; Tummala et al., 2017).

3.3 In-depth analysis of highly robust liver
cancer LRIs

In order to more deeply understand the biological relevance
of liver cancer-specific LRIs, our goal was to distill highly robust
LRI signals. To achieve that, we created a panel of liver cancer-
specific and reproducible LRIs, from the list of LRIs shared between
Chen etal. and Zhu etal. cell-free liver cancer datasets. In this
panel, we excluded all LRIs found in other cell-free datasets to
maximize the specificity towards liver cancer signals (Figure 3A).
Next, to ensure that only LRIs remained which were previously
reported to be present in liver cancer tissue, we filtered out the
LRIs not found in either single-cell or bulk liver cancer RNA-seq
datasets (Figure 3A). The final list consisted of 30 LRIs involving
22 ligands and 16 receptors (Figure 3B; Supplementary File S3).
Notably, many of the identified ligands and receptors were previously
associated with liver cancer. Among the candidates that were
found, SERPINCI1, GPC3 and the receptor ERBB3 were particularly
noteworthy. SERPINCI has a pronounced specificity to the liver and
gallbladder (Xu et al.,, 2021) and its expression increases further in
hepatocellular carcinoma (HCC) (Xu etal.,2021) and decreases during
cholangiocarcinoma (ICC) (Supplementary Figure S3A) (Li et al,
2019; Wang et al., 2006) which also indicates its potential as a
marker to differentiate liver cancer subtypes. GPC3 is an oncofetal
marker for the liver whereas in the healthy adult liver little GPC3
expression has been detected (Morford et al, 2007; Zhou et al,
2018). Yet, upon cancerogenesis, the ligand is highly expressed in
HCC (Supplementary Figure S3B) (Morford et al., 2007; Zhou et al.,
2018). GPC3 promotes cancerogenesis via activation of the Wnt/p-
catenin signaling pathway and, hence, presents itself as a potential
therapeutic target (Kolluri and Ho, 2019; Shih et al., 2020). Finally,
another noteworthy receptor from the list is ERBB3 (HERT3) which is
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FIGURE 1
Similarities and differences of identified ligand-receptor interactions (LRIs) between cell-free RNA datasets. (A) LRI intersections in the cell-free RNA

datasets from Chen et al. Only the ten largest intersections are shown. (B) LRI intersection between cell-free liver cancer (LC) datasets of Chen et al.
and Zhu et al. HD, healthy donor; STAD, stomach adenocarcinoma; LUAD, lung adenocarcinoma; CRC, colorectal cancer; ESCA, esophageal cancer.
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FIGURE 2
Cellular interactions in cell-free RNA datasets of Chen et al. (A) Healthy donor (HD) and (B) liver cancer (LC) datasets. Visualized are the ten most

abundant cell-cell interactions found in each dataset. Hepatocyte autocrine interactions are highlighted with a dashed line. Percentages represent the
proportion of each cell-cell interaction for each source and target cell types. The direction of the arrows corresponds to the interaction starting from
the ligand on the source cell type (bottom half) to the receptor on the target cell type (top half). The full list of detected cell-cell interactions per
condition corresponding to the ligand-receptor interactions described in Supplementary File S1 is available in Supplementary File S2.
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(Zhu et al.,
2021)
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Curation of a panel of reproducible liver cancer specific ligand-receptor interactions (LRIs). (A) Schematic overview of the pipeline. Briefly, from the
common LRIs between cell-free LC datasets of Chen et al. and Zhu et al. we excluded LRIs found in cell-free healthy donor (HD), esophageal cancer
(ESCA), stomach adenocarcinoma (STAD), lung adenocarcinoma (LUAD) and colorectal cancer (CRC) datasets. Subsequently, LRIs not found in either
liver cancer single-cell of bulk RNA-seq datasets were excluded as well. (B) Visualization of the identified panel of 30 LRIs and the largest regulated
downstream pathway. The average expression for each ligand and receptor part of the 30 LRI panel per cell type in the LC scRNA-seq dataset was
calculated by averaging the exponentiated log-normalized counts, which were then transformed back to the natural logarithmic scale. The LRIs with O

average expression across all cell types were identified in the bulk RNA-seq but not scRNA-seq data.

upregulated in chronic hepatitis B (CHB) but not hepatitis C induced
HCC (Butaetal., 2016) corresponding to the liquid biopsy liver cancer
sample composition we employed (>60% CHB) (Chen et al., 2022).
Similarly, most of the downstream pathways regulated by the
detected LRIs (Figure 3B) have previously documented relevance
to liver pathologies (Ehata and Miyazono, 2022; Gao et al., 2021;
Lietal, 2021; Mehta et al., 2015; Wang et al.,, 2021; Whittaker et al.,
2010). For example, the detection of a pathway involved in the
metabolism of vitamins and cofactors aligns well with the prominent
role the liver plays in these processes, the dysregulation of which is
also commonly observed during liver pathologies (Fang et al., 2019;
Licataetal,, 2021; Paganoni et al., 2021; Raza et al., 2021; Roberts and
Sarkar, 2008). Similarly, the observation of downstream pathways
relating to WNT and protein kinase B (AKT) signaling is in line with
the observation of ectopic activation of WNT signaling being one
of the main hallmarks of HCC (Khalaf et al., 2018; Kolluri and Ho,
2019; Perugorria et al., 2019; Wang et al., 2019) and AKT acting as
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a key regulator of HCC progression (Khalaf et al., 2018; Nicholson
and Anderson, 2002; Tian et al., 2023).

In addition, we endeavored to further contextualize the
identified LRIs by using the CITE platform which assigns Relative
Crosstalk (RC) scores to LRIs based on the expression patterns of the
LRIs in the tumor microenvironment (Ghoshdastider et al., 2021).
Of'the 30 LRIs identified by us, 11 had RC scores assigned by CITE in
HCC (Supplementary Figure S4), with the vast majority having low
RC scores in the normal cell compartment which suggests a higher
association of these LRIs with cancer. The majority of the LRIs also
had a high RC score in the stromal compartment, which includes
autocrine LRIs between stromal cells and paracrine LRIs between
stromal and cancer compartments, in line with previous findings
(Ghoshdastider et al., 2021). Here, the INHA-ACVR2B LRI stands
out given its high cancer compartment autocrine RC score which
is in line with a prior observation of ACVR2B interactions being
very prevalent in cancer-cancer communication across different
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tumor types (Ghoshdastider et al., 2021) and lends further support
to our observation of a potential hepatocyte autocrine signaling.
Together, these findings suggest that the cell-free RNA signals in
the blood of liver cancer patients can be utilized to indirectly gain
insights into changes in ligand-receptor interactions during liver
carcinogenesis.

4 Conclusion

Our findings reveal the ability to detect LRIs in the blood of
healthy donors and patients across five solid tumor types, with
a marked presence in liver cancer patients, underscoring the
dominant signaling of the liver during pathological transformations.
The reproducibility of these LRIs was affirmed by cross-referencing
two liver cancer patient datasets, establishing the authenticity
and robustness of our methodology. Additionally, an analysis
of a liver cancer single-cell RNA-seq dataset spotlighted a
surge in hepatocyte interactions, especially hepatocyte autocrine
interactions, aligning with previous observations of elevated
hepatocyte signaling in liver cancer patient blood (Morlion et al.,
2023; Safrastyan et al., 2023; Vong et al., 2021).

A curated panel of 30 LRIs specific to liver cancer was
formulated, several of which have known associations with LC,
including noteworthy ligands like SERPINCI, GPC3, and receptors
such as ERBB3. Our further analysis of the expression patterns of 11
select LRIs within the liver cancer tumor microenvironment through
the CITE platform, showed that the majority of the LRIs exhibited
amplified activity within liver cancer tissues relative to healthy
liver with a pronounced shift towards stromal cell interactions,
reinforcing the role of the stromal compartment in cancerogenesis.
One LRI, INHA-ACVR2B, presented a strong association with
liver cancer autocrine interactions, suggesting avenues for targeted
therapeutic interventions.

It should also be noted that this proof-of-concept study
will require further validation via the incorporation of larger
and more diverse datasets. In particular, technical variability
and lack of reproducibility are a recognized issue of cell-free
RNA studies (Cabus et al., 2022), which can potentially adversely
affect the results. Here, we have aimed to mitigate these issues by
reproducing our major findings in two independent liver cancer
cell-free RNA datasets, which significantly reduces the risk of
detecting erroneous LRI enrichment. Nevertheless, further studies
are required - including the inclusion of additional scRNA-seq
datasets - in order to fully elucidate and verify the nature of the
identified LRIs and CClIs in blood cell-free RNA data.

In conclusion, our study showcases the possibility of extracting
significant LRI signals from liver cancer cell-free transcriptomic
blood samples. It also accentuates the merits of liquid biopsy for liver
cancer studies by constructing cellular networks that offer a broader
understanding of the target tissue.
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