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A major challenge in sequencing-based spatial transcriptomics (ST) is resolution
limitations. Tissue sections are divided into hundreds of thousands of spots,
where each spot invariably contains a mixture of cell types. Methods have been
developed to deconvolute the mixed transcriptional signal into its constituents.
Although ST is becoming essential for drug discovery, especially in
cardiometabolic diseases, to date, no deconvolution benchmark has been
performed on these types of tissues and diseases. However, the three
methods, Cell2location, RCTD, and spatialDWLS, have previously been shown
to perform well in brain tissue and simulated data. Here, we compare these
methods to assess the best performance when using human data from
cardiovascular disease (CVD) and chronic kidney disease (CKD) from patients
in different pathological states, evaluated using expert annotation. In this study,
we found that all three methods performed comparably well in deconvoluting
verifiable cell types, including smooth muscle cells and macrophages in vascular
samples and podocytes in kidney samples. RCTD shows the best performance
accuracy scores in CVD samples, while Cell2location, on average, achieved the
highest performance across all test experiments. Although all three methods had
similar accuracies, Cell2location needed less reference data to converge at the
expense of higher computational intensity. Finally, we also report that RCTD has
the fastest computational time and the simplest workflow, requiring fewer
computational dependencies. In conclusion, we find that each method has
particular advantages, and the optimal choice depends on the use case.
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1 Introduction

The rise and continuous innovation of molecular technologies
used within bio-medical research have opened up novel ways of
studying diseases and pathogenesis at the cellular level. One such
technology is single-cell RNA sequencing (scRNA-seq), which, over
the past decade, has become a central tool for studying cellular
heterogeneity at the tissue level, thereby gaining crucial mechanistic
insights into diseases (Aldridge and Teichmann, 2020). Such
insights form the basis for, e.g., early-phase drug target
identification. A more recent technology in the biological
research toolbox is spatial transcriptomics (ST). ST, in
combination with scRNA-seq, can elucidate how gene expression
and specific cell types localize spatially in tissues (Moses and
Pachter, 2022). Understanding cellular migration is key in
inflammation, which is a common disease trait.

A central limitation of multiple ST technologies, including 10×
Visium (10x Genomics), is that the resolution is not at the single-cell
level, and even for high-resolution methods, the spatial unit or ‘pixel’
is not guaranteed to align with each individual cell. The
transcriptomic profile will, therefore, stem from a mixture of up
to approximately 10 cells and often more than one cell type
(Figure 1). This challenge has inspired a surge in bioinformatics
methods, aiming to split up the location-specific transcriptomic
profile into its constituents and assign cell types based on the
reference data, i.e., signal deconvolution. Several deconvolution
methods for ST data have been published (Li et al., 2022; Yan
and Sun, 2023). In many cases, these methods are only validated on
healthy brain samples from mice, where cell type populations may
be more spatially segregated and well-defined (Dong and Yuan,
2021; Cable et al., 2022; Kleshchevnikov et al., 2022). Here, we seek
to validate methods using cardio-renal disease data, which
encompass a spectrum of related disorders of the heart, blood
circulation, and kidneys in relation to cardiovascular disease
(CVD), which is a complex chronic disease accounting for
approximately four million deaths every year in Europe alone,
corresponding to 45% of all deaths (Townsend et al., 2016). ST
has the potential to play a major role in unraveling the underlying
mechanisms, but currently, the described challenges with the
resolution level are a major hindrance. Currently, ST plays an
important role in target validation and identification. This often
requires an accurate connection of the gene to the cell type where
spatial deconvolution is central. Furthermore, deconvolution allows
statistical approaches across multiple tissue sections to distinguish
artifacts from robust effects in an automated fashion.

In this study, we set out to evaluate three current state-of-the-art
deconvolution methods in the ST signal. We applied the
deconvolution methods to Visium ST data from arterial and
kidney samples from healthy and pathological states using three
different methods, namely, RCTD (Cable et al., 2022), Cell2location
(Kleshchevnikov et al., 2022), and spatialDWLS (Dong and Yuan,
2021), all of which have previously been shown to achieve high
accuracy in benchmarks (Li et al., 2022; Yan and Sun, 2023). A
challenge here is the lack of gold standards and clinically relevant
chronic tissue data. To address this, we performed a systematic
evaluation using novel data obtained by manual annotations and
subsequently validated the in silico labels with an expert
histopathologist.

2 Materials

2.1 Arterial plaque and kidney samples

Three publicly available datasets (Wirka et al., 2019; Pan et al., 2020;
andAlsaigh et al., 2022) weremerged to create an atherosclerosis single-
cell RNA (scRNA) atlas. The datasets comprised arterial samples from
patients undergoing carotid endarterectomy and heart transplant
coronary arteries. The merged atlas consisted of 60,676 cells with
nine annotated cell types (Supplementary Figure S1). It was
observed that both RCTD and DWLS experienced memory issues
using the full data set when running locally. RCTD has a default setting
to downsample reference data on a per-cell-type basis, although the
choice of sample size is not validated in depth. To accommodate these
issues and improve computational time, an analysis was run to
investigate the repeatability of deconvolution results with smaller
reference sizes (See results Figure 3). Going forward, random sub-
sampling was performed to obtain 3,000 cells per cell type.

A total of 10 spatial transcriptomics (ST) samples were
generated from formalin-fixed and paraffin-embedded (FFPE)
samples of coronary arteries isolated from explanted hearts using
the 10× Visium protocol (10X Genomics, 2022; 10X Genomics,
2023). Among the 10 ST samples, five were pathological with clear
signs of atherosclerosis, two had early signs of plaque formation, and
three were healthy without plaque (Figure 2). For each of the
10 samples, near-adjacent tissue sections (from 1 to 4) from the
same coronary artery sample were placed in barcoded capture areas
and processed. The CVD samples ranged from 568 to 1,746 spots,
and the three CKD samples covered up to 3,966 of the 5,000 total
available spots for each capture area.

2.2 Visium protocol

Tissue sections were placed on Visium slides (1–4 serial sections
per sample), stained with hematoxylin and eosin (H&E), and imaged

FIGURE 1
Visium slide showing examples of the barcoded 55-um spots,
where each spot represents a mixture of cells, typically
between 5–10 cells.
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using a VS200 slide scanner (Olympus Life Sciences), prior to de-
staining and overnight hybridization with the Visium human
version 1 probe set. The following day, the probes that were
hybridized to mRNA in the tissue sections were eluted and
ligated to spatially coded oligonucleotides on the Visium slide.
Based on these, a cDNA library was created for each sample. The
libraries were sequenced on a NovaSeq 6000 (Illumina) sequencing
platform, according to the manufacturer’s instructions, using a

NovaSeq 6000 S2 Reagent Kit v1.5 (Illumina). Subsequently,
reads were aligned with their corresponding probe sequences,
mapped to the Visium spot where each probe was originally
captured, and finally aligned with the original H&E stained
image of the tissue section using the software application
SpaceRanger version 1.3.0 (10X Genomics, 2022).

2.3 Evaluating reference for CVD data

For the evaluation step, a partial ground truth cell type reference
was obtained from an experienced histologist with tissue-specific
expertise. The ground truth cell type assessment consists of
approximately 50 spots per sample, for which it was possible to
unambiguously determine a dominant cell type from the available
high-resolution bright-field microscopy images. Across 10 samples,
496 spots were labeled as one of the three cell types: smooth muscle
cell (SMC), macrophage (Mø/MP), or endothelial cell (EC). These
novel data formed the basis of the systematic evaluation and are as
close to a golden standard as possible, given the current state of
technology.

2.4 Evaluating reference for CKD data

For CKD samples, a scRNA reference (Supplementary Figure
S1) was obtained from the publicly available Kidney Precision
Medicine Project (KPMP) data repository (Hansen et al., 2022).
Similar to the atherosclerosis atlas, random subsampling was
performed on a per-cell-type basis to reduce the data set size.

FIGURE 2
Ten coronary artery FFPE samples (top two rows) and three kidney FFPE samples (bottom row) analyzed with the 10× Visium protocol.

FIGURE 3
Single spatial sample underwent deconvolution three times at
each sample size (30, 100, 300, 1,000, and 3,000 cells/cell type) using
independent subsets. Each point is the correlation (Pearson) between
predicted cell-type proportions of two separate deconvolutions
using independent, random sub-samplings, at the given number of
cell per cell type. Cell2location achieves noticeably consistent results
at as little as 30 instances of each cell type. LOESS regression with
0.95 confidence interval has been applied for each method.
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3 Methods

We have systematically evaluated using three different models,
as described below.

3.1 Robust cell type decomposition

This model utilizes Poisson distribution to model counts (Cable
et al., 2022), as depicted below in Equation 1:

Yi,j

∣∣∣∣λi,j ~ Poisson Niλi,j( ) (1)

Equation 1.
Given λi,j, the random variable Yi,j follows a Poisson

distribution with the scaling factor Ni and rate parameter λi,j,
where the rate parameter is modeled around the product of the
underlying cell-type counts and the estimated expression signatures
obtained from labeled single-cell data.

log λi,j( ) � αi + log ∑K
k�1

xi,k Sk,j⎛⎝ ⎞⎠ + γj + ϵi,j (2)

Equation 2.
In Equation 2, αi represents fixed spot-specific effects. Sk,j is the

signature gene matrix, which, in this case, is the mean gene
expression profile per cell type. The parameter γj represents
gene-specific random effects arising from varying gene sensitivity
between sequencing technologies. This effect is estimated before
other parameters by combining the ST data into a bulkmeasurement
and comparing this to the scRNA expression. ϵi,j accounts for other
random effects or sources of variation, including overdispersion.

3.2 Cell2location

This is a Bayesianmodel for deconvoluting ST data into cell-type
absolute abundances (Kleshchevnikov et al., 2022). Cell2location
requires two hyper-parameters to be set by the user: the expected
number of cells per spot and a regularization parameter. The first
was found by inspecting histology images and counting the nuclei
for a representative selection of spots and was set to 8 for CVD
samples. The regularization parameter represents the degree to
which individual spot sensitivity deviates from the mean within
the specific experiment, such that a high value signals consistent
detection sensitivity. This parameter was kept at the relatively low
default value of 20 to account for the varying quality of batches
which come from an early exploratory cohort of ST samples.

Cell2location models the observed counts using a negative
binomial distribution, as in Equation 3. The rate parameter is
again defined as a function of the signature matrix learned from
the single-cell reference data and the hidden cell-type counts. Spot-
and gene-specific rates are estimated, and parameters are introduced
to account for variation in technological sensitivity, shifts due to
contaminations, and spot-specific sensitivity.

Yi,j ~ NB μi,j, αj( ) (3)

Equation 3.

μi,j � mj ·∑
k

xi,kSk,j + sj⎛⎝ ⎞⎠ · γi (4)

Equation 4.
Here, μ is the rate parameter and α accounts for over-dispersion

(Eq. 3). The parameter mj accounts for technological variation in the
sensitivity to specific genes. The parameter sj describes an absolute
shift in RNA-capturing potential gene-specific contaminations.
Finally, the scaling parameter γi is included to account for
differences in general sensitivity in specific spots (Eq. 4).

3.3 Spatial dampened weighted
least squares

SpatialDWLS (Dong and Yuan, 2021) is a weighted least squares
approach for deconvoluting cell-type proportions of ST spots based
on the method DWLS (Tsoucas et al., 2019), previously published
for cell-type deconvolution in bulk RNA-seq data.

Similar to other methods, the observed counts are modeled as a
product of the estimated expression signatures and the hidden cell-
type counts of interest.

Ŝx̂ � Y (5)

Equation 5.
The weighted least squares error minimization problem is

defined as follows:

min
~x,~x> 0

∑n
i�1
wi Yi −∑k

j�1
Ŝij~xj

⎛⎝ ⎞⎠2

(6)

Equation 6.
The weights, w, are defined as a function of the dependent

variable, the estimated cell-type numbers x, and are, therefore,
determined through iteration, with the first iteration being
unweighted ordinary least squares (OLS). This proceeds until the
solution converges. The authors introduce a dampening constant to
avoid extreme values of weights. This constant is determined by
cross-validation of the signature genes to minimize variance.

3.4 Influence of reference sample size on
repeatability

The sample CVD2 was used for the analyses in combination
with different subset sizes of the Atherosclerosis Atlas. Five
different subset sizes, with three different replicates of each
size, were generated. Random samples were taken without
replacement for each of sizes 30, 100, 400, 1,000, and
3,000 cells per cell type. If a cell type had fewer observations
available than the chosen sample size, all observations were kept
instead. This was relevant for B cells with a total of 2,607 cells,
SMC subtypes with a total of 1,016 cells, and mast cells with a
total of 764 cells in the atlas. For each of the random subsets,
deconvolution of the CVD2 sample was run, and the results were
compared using Spearman’s correlation coefficient as a measure
of similarity of the resulting cell-type proportions.
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3.5 Computational time assessment

For the three methods, the computational time durations of the
training steps and deconvoluting steps were recorded individually.
For recording the computational time in R, the package tictoc
(V.1.1) was used (Izrailev, 2023). In Python, the built-in timing
functionality of the Cell2location package was used to record the
time at each step. The computer used for all computation time
recordings was a Windows 10 pc, with a 2.70 GHz, Intel i7-10850H
CPU and 16 GB of RAM. For GPU computation, the NVIDIA
Quadro P620, 2GB/512 CUDA core, graphics unit was used.

3.6 Evaluation using histologist-provided
annotation

The predictive accuracy of each method is estimated by
comparing the deconvoluted proportions of select spots with
annotations provided by a histologist. The available cell-type
annotations are limited to major anatomically and visually
distinct cell populations, which include smooth muscle cells
(SMCs), endothelial cells (ECs) that line the vessel lumen, and
in plaque sample aggregated macrophages (MPs). For comparing
the histologist-assessed spots (n = 496), a dominant cell type had to
be determined from the proportions obtained in each
deconvolution. Each spot was classified as the cell type with the
highest predicted proportion, and the smooth muscle cell subtypes
were grouped. The accuracy (ACC) was calculated per method
corresponding to the proportion of true predictions out of all the
predictions included.

For CKD samples, precision and recall were determined, and
AUROC was calculated using the pROC package (Robin et al.,
2011) based on the histologist’s annotation of podocyte-
containing glomeruli. For a given spot to be classified as
containing at least one podocyte, a threshold of 15 percent
predicted content was used.

4 Results

4.1 Deconvolution accuracy with variable
reference scRNA-seq subsets

The effect of reducing the reference size on the results of
deconvolution was investigated by subsetting the scRNA data. To
assess the confidence with which each method performs
deconvolution at a given reference size, a number of replicate
analyses were run. In each group of three subsets, the three
possible pairwise Pearson correlations were calculated. It was
observed that the correlation rose from around 0.8 for
spatialDWLS, 0.9 for RCTD, and 0.95 for Cell2location, for
subsets of 30 cells/cell type, up to at least 0.95 for all three
methods at a subset of 3,000 cells/cell type (Figure 3).
Correlation was similarly calculated on a per-cell-type basis. Mast
cells, SMC subtypes, and NK-/T-cell estimates generally displayed
the lowest correlation within each group, indicating some
uncertainty of the results when the reference sample size was too
small. All cell types, except mast cells and SMC subtypes for

spatialDWLS, achieved coefficients above 0.90 at the largest
sample size. The macrophage/monocyte group was consistently
the highest correlating cell type between the replicate runs for all
three methods (Supplementary Figure S2).

4.2 Evaluating method accuracy for major
cell types

All three methods performed poorly on the observed endothelial
cells (ECs). Only DWLS predicted any of the assessed spots as EC-
dominant, but none were in agreement with the ground truth
(Table 1). The resulting accuracy scores indicate a similar
performance for all three methods. RCTD achieved a slightly
higher score than the other two methods at 0.734, compared to
0.702 and 0.708 for Cell2location and DWLS, respectively,
corresponding to 13–15 additional true predictions. The standard
deviation of the accuracy calculated across the 10 samples is too high
to distinguish themethodsmeaningfully. Most endothelial cells were
predicted as smooth muscle cells across all methods. Additionally,
all three methods predicted a few smooth muscle cell spots as
fibroblast-dominant, and between 17 and 29, macrophage spots
were predicted as smooth muscle cells. Lastly, Cell2location assigned
eight macrophages as NK/T-cells.

4.3 Cell-type-dependent inter-method
agreement assessment

Root-mean-square relative difference (RMSRD), a metric for
determining the pairwise difference between two methods on a per-
cell-type basis, was calculated for each pair of methods. A smaller
value signifies a smaller mean difference between the twomethods in
relation to the mean proportion of the cell type. A generally greater
disagreement is observed for subtype SMCs, NK/T, mast, and B cells,
particularly when compared to DWLS (Figure 4;
Supplementary Table S1).

For kidney samples, the cell types subject to major variability
between methods include thin descending limb (Thin_DL) cells,
parietal epithelial cells (PECs), connecting tubule (CT) cells, and
ascending thick/thin limb (ATL_TAL) cells. Conversely, the rare
cell type podocyte (POD) had a high agreement between the
methods, as did endothelial cells (ECs), distal convoluted tubule
(DCT) cells, and proximal tubule (PT) cells. The previous
pattern of a higher agreement between Cell2location and
RCTD does not seem to be repeated for these samples
(Supplementary Figure S3).

The high agreement between the methods on the podocyte
population is of particular interest as it is the most sparse cell
type in the reference data (n = 244). In comparison, PECs are also
rare (n = 631) but are subject to a much higher method-
based variation.

4.4 Differences in computational time

For each of the three methods, computational times were
recorded for a number of samples of varying spot-counts and for
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the different reference subset sizes used. The time spent was
recorded individually for any data preparation and then for the
deconvolution itself. The data preparation step was defined as all
actions that do not need repeating after the ST sample is
deconvoluted but can be applied directly to the next sample. All
three models were found to have a strong linear fit between time
spent and the number of spots for deconvolution or the number of
cells for preparation (Supplementary Figure S4).

RCTD and spatialDWLS had similar deconvolution times in the
2–15 min range for ST samples, with up to 3,000 spots. RCTD
completed preparations faster, rarely needing more than 5 min.
Cell2location was much slower, spending up to 65 min on
estimating the expression profiles in a 32,000-cell scRNA subset.
When deconvolution was carried out using Cell2location, the timing
ranged from 35 min to 2.5 h per sample.

4.5 Evaluating kidney samples

Given the limited kidney ST samples, it was not possible to
perform all identical experiments as for CVD. However, a few
experiments were performed to assess the performance of
deconvolution. Across three kidney samples, 110 spots were
labeled as podocyte-containing glomeruli by expert histologist
evaluation of microscopy images, as shown in Supplementary

Table S2. Under the assumption that this evaluation provides a
complete ground truth of podocyte locations, the performance
metrics were calculated across all spots, as represented in
Table 2. A 10% estimated proportion threshold has been used to
classify a spot with a podocyte designation. Cell2location seemed to
have a higher precision value compared to RCTD and DWLS, while
all three methods have similar AUROC values.

5 Discussion and conclusion

The aim of this study was to systematically implement and
evaluate a selection of deconvolution methods for internally
produced ST data within Novo Nordisk A/S. With a specific
focus on human cardio-renal samples in various disease stages,
for which limited data have been published, we consulted existing
benchmarks to narrow down the large number of published
deconvolution methods, like B Li et al., Yan et al., and
Sangaram et al. (2023). All three benchmarked studies
highlighted the methods Cell2location, RCTD, and spatialDWLS
as the most accurate and top ranked out of all the deconvolution
methods evaluated. These results additionally have been highlighted
by 10× Genomics guides for use with Visium data (https://www.
10xgenomics.com/analysis-guides/benchmarking-methods-to-integrate-
spatial-and-single-cell-transcriptomics-data). Computational pipelines
were created for the three methods RCTD, Cell2location,
and DWLS. Based on scRNA-seq atlas, the expression profiles
for annotated cell types were estimated, following the
recommended guidelines for each method. These profiles were
then used with their respective methods to deconvolute 10 ST
samples of arteries and three ST samples of kidney tissue at various
stages of the disease.

In practice, the number of cells necessary to establish a
representative cell type profile will vary depending on the

TABLE 1 Accuracy for eachmethodwas calculated as the rate of success for predictingmajor cell types in spots with expert-supplied ground truth. Standard
deviation (SD) values across the 10 samples are shown in parentheses.

Cell2location RCTD DWLS

True type Predicted type Predicted type Predicted type

EC MP SMC EC MP SMC EC MP SMC

EC 0 12 94 0 11 96 0 7 99

MP 0 49 17 0 54 20 0 45 29

SMC 0 3 299 0 3 310 2 4 306

ACC 0.702 (SD ± 0.119) 0.734 (SD ± 0.075) 0.708 (SD ± 0.065)

FIGURE 4
RMSRD between the methods for each cell-type group. The
smaller values in C2L vs. RCTD signify more similar predictions by
these methods.

TABLE 2 Precision and recall values based on podocyte predictions for each
method, as well as AUROC value for the podocyte prediction classification
threshold using pROC.

Precision Recall AUROC

Cell2location 0.6 0.74 0.98

RCTD 0.36 0.83 0.98

DWLS 0.38 0.86 0.96
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heterogeneity of the cell type in question, as well as the quality of the
labeling within the reference data. If a cell type is highly
homogeneous in the context of the tissue studied and the
instances of this cell type within the reference are accurately
labeled, one might expect that a very small number of cells
would be sufficient to estimate the expression profile. Conversely,
if the cell type is highly heterogeneous, e.g., with multiple unlabeled
sub-populations, a larger sample size of representative cells would be
preferable to capture as much variance as possible. Despite this, all
three models reduce the reference data to a single expression profile
for each cell-type label, and so, for highly diverse cell types, minority
sub-populations might be drowned out by the averaging of signals.
This is an argument for careful cell-type labeling prior to
deconvolution and for dividing cell-type labels into subgroups,
especially for diverse groups. In addition, this illustrates the
challenge of approaching a cell type definition as a static
expression profile as, clearly, this will be context-dependent.
Thereby, one well-defined cell type may exhibit a multitude of
expression profiles.

The variations in cell type estimates from replicate runs were
evaluated to validate the choice of subsampling. Most estimates
were seen to converge with high uniformity between repeat runs as
the subsampling neared 1,000–3,000 cells per cell type.
Nonetheless, Cell2location achieved higher consistency at lower
reference data sizes than both RCTD and DWLS, where DWLS
struggled with the repeatability of specific cell types even at
high counts.

It should be noted that since publicly available single-cell atlases
were used, we would expect the data to be widely representative for
the given tissue. Nonetheless, it might prove beneficial to use
reference data generated from the same tissue samples, as used
for the ST protocol. Therefore, it is also valuable to investigate in
future how much single-cell or nucleus data is necessary to be
generated to establish a sufficient reference.

Cell2location and RCTD are both probabilistic methods that
rely on discrete probability distributions to model read counts.
Cell2location additionally uses a Bayesian probabilistic
programming approach. This resulted in remarkably longer
computation times observed despite GPU acceleration, but it also
provided a probabilistic result in the form of a distribution for every
estimated cell-type proportion, allowing the extraction of cell-type
abundances at a chosen confidence level. A benchmark was
established to compare the predictive accuracy. Results indicated
that all methods performed well in predicting cell-type distributions,
at least as far as common cell types were concerned. ECs of the vessel
lumen were a problem for all three methods, but it is important to
note that the Visium spots are much wider than the endothelial
monolayer. A dominant EC signal can, therefore, not be expected in
these spots.

Thus, the three methods for deconvolution were successfully
applied to internally generated cardio-renal disease data, using the
10× Visium protocol. Ten coronary artery spatial transcriptomics
samples were deconvoluted, and all major cell types, including
smooth muscle cells, fibroblasts, and macrophages, were observed
to localize in the expected anatomical regions of the arterial vessel.
An agreement between the methods was found to be high
for macrophages, a major cell type of interest in
cardiovascular disease.

With ground truth labels supplied by an experienced
histology expert, additional method accuracies were evaluated.
All three methods achieved similar accuracy, with RCTD
outperforming the others by a small margin. Cell2location was
found to require the least amount of reference data for the
supervised step to achieve a consistent output, requiring as
little as 100 reference cells per cell type for convergent results.
Following this analysis, the same workflow was applied to three
spatial transcriptomics samples at varying stages of CKD.
However, due to a smaller number of ST samples available,
similar inferences could not be made. This could be
considered a limitation to the study, given the samples
available in the CKD. However, we tried to make a sanity
assessment in a quantitative manner with the limited CKD
samples available. We could observe a similar method
agreement, and podocytes were identified as a cell type of
interest for further analysis. Due to its well-segregated
localization in glomeruli only, all three methods offered
decent precision metrics of convergence between the model
and the histopathologist’s expert assessment. Taken together,
we think that all three methods are capable of deconvoluting
verifiable cell types based on the assessments performed in this
brief systematic assessment exercise. It will be interesting to see
how these performances will eventually hold or evolve with
emerging single-cell disease atlases and spatial atlases in
cardio-renal areas from public and private consortium
initiatives that can also eventually pave a way for disease
understanding, drug target discovery, and validation. Our
current scope of study is also limited to only cardio-renal
datasets; hence, the generalizability to other cardiometabolic
organs impacted in chronic cardiometabolic diseases needs to
be explored. In the current study, we are only evaluating a single
spatial technology; however, in future, we aim to address these
limitations across tissues or organs and validate them in more
specific high-resolution platforms, e.g., Xenium ST or Visium
HD, when available to improve our in silico drug target
identification and the validation process. We also encourage
the community to perform similar assessment initiatives for
chronic human tissues with disease stages where limited data
are available when such large observational cohorts are available
at the atlas level since this will guide the scientific community not
only about the tool’s performance but also where some such
spatial technologies are limited, and eventually, future high-
resolution ST technologies will pave the way.

Although it has long been possible to identify cell types of
interest by morphology or by targeting a few well-known marker
genes or proteins, the newer, untargeted ST technologies may be
able to provide much higher granularity in the cell type and
subtype identification. The ability to produce data with near
whole-transcriptome coverage and single-cell resolution
through deconvolution is a very powerful method that
provides a more unbiased and systematic way of studying
tissue organization at different disease states and identifying
cell types of interest. In summary, we found RCTD to be useful in
terms of accuracy, computational speed, and ease of
implementation. Cell2location may be highlighted for its
ability to achieve robust results with limited reference data,
which is an important consideration during the experimental
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design phase. Additionally, Cell2location allows for more
extensive probabilistic modeling due to its Bayesian
framework. Therefore, Cell2location may be recommended
for more extensive workflows and in-depth modeling where
computational time is not a concern.
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SUPPLEMENTARY FIGURE S1
Single cell RNA reference data UMAPwith cell type labels. Top aremajor CVD
cell types, bottom are major cell types within CKD atlas. CKD abbreviations
as follows: PT, Proximal Tubular; EC, Endothelial Cell; TAL, Thick Ascending
Limb; ATL, Ascending Thin Limb; IC, Intercalated Cell; CNT, Connecting
Tubule; DTL, Descending Thin Limb; DCT, Distal Convoluted Tubule; PEC,
Parietal Epithelial Cell; POD, Podocyte; PC, Principal Cell.

SUPPLEMENTARY FIGURE S2
For each method deconvolution of sample CVD2 was repeated with multiple
different reference sizes. Correlation between independent deconvolutions
was calculated to determine degree of variation in prediction as a function
of reference data size. Cell2location is observed to bemore consistent across
cell types.

SUPPLEMENTARY FIGURE S3
The RMSRD between each pair of methods, with a lower value indication
more similar results for the specific cell type.

SUPPLEMENTARY FIGURE S4
Benchmarking the deconvolution time requirements across methods. For
the reference preparation step the x-axis indicates number of cells in single
cell reference dataset. For deconvolution, x-axis indicates number of spots
subject to deconvolution.

SUPPLEMENTARY TABLE S1
RMSRD is calculated per sample and the mean and sd is presented instead of
the overall value for clarification supporting Figure 4 around inter-method
agreement assessment in CVD samples.

SUPPLEMENTARY TABLE S2
True and false predictions by each method were determined allowing for
precision, recall and AUROC metrics to be calculated.

SUPPLEMENTARY TABLE S3
Represents the markers used for deconvolution by all 3 methods in CVD
dataset. For RCTD and spatialDWLS the top 10marker genes per cell type are
shown as determined by the supervised step of the methods. RCTD and
spatialDWLS have similar log-fold-change based approaches to marker
selection. For Cell2location the genes with the highest estimated expression
per cell type are shown. Cell2location estimates expression of all genes for
each cell type but does not directly consider differential expression at the
supervised step.
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