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Introduction

High-throughput sequencing and hardware-accelerated computing have both
developed tremendously within the last decade. In genomics, progress is fueled by new
technologies that allow the sequencing of increasingly longer reads with continuously
improving accuracy at steadily decreasing costs. Shifts in parallel computing arise from the
observation that specific computations can be efficiently parallelized on certain hardware.
Developments in the field then gained momentum when deep learning became
omnipresent, which is one application that can be very efficiently parallelized on
general-purpose Graphics Processing Units (GPUs).

This article discusses the impact these sequencing and hardware-accelerated computing
developments have on genomic data analysis. Based on the presented observations, we
provide our view on how different ongoing efforts and lines of research will come together
and transform computational genomics research.

An overview of this opinion piece is depicted in Figure 1. We commence by
providing a background of high-throughput sequencing and current state and
endeavors in genome research. Subsequently, we briefly introduce parallel
computing. We then postulate that there are four core genome sequencing data
analyses: basecalling, read mapping, variant identification, and assembly.
Furthermore, we elucidate the extent of their integration and the utilization of
hardware-based acceleration in software suites predominantly offered by sequencing
providers. Finally, we observe that currently, and across fields, a shift towards improved
genomic representations, typically referred to as pangenomes, is ongoing. A pangenome
represents a set of genomes or genomic sequences and is thus devised for a specific
purpose. This renders approaches much more application-field specific than current
general-purpose core analyses. In the Discussion, we provide our view on a forthcoming
shift from representing genome data towards linking genetic data with molecular and
phenotypic information, i.e., towards Systems Genetics.
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Genome sequencing developments
and increase of genomic reference data

High-throughput sequencing, typically referred to as next-
generation sequencing, has been around for more than
two decades. Second-generation sequencing technology,
dominated by Illumina, uses a sequencing-by-synthesis
approach, restricting the length of reads obtained to typically
100–200 bases. Third-generation sequencing technologies have
been around for the last decade, but have undergone considerable
technological improvements within the last five years, resulting
in gradually improved base accuracy and increased read lengths.
The two different, major technologies are single-molecule real-
time (SMRT) sequencing represented by Pacific Biosciences
(PacBio) and nanopore sequencing, represented by Oxford
Nanopore Technologies (ONT). Both technologies can
generate reads with lengths up to megabases and base
accuracies varying between protocols but up to more than
99%, e.g., for the PacBio high-fidelity (HiFi) protocol
(Logsdon et al., 2020). These recent technological
improvements made long-read sequencing a proclaimed
method of the year 2022 (Marx, 2023).

Technological advancements and reduction in sequencing costs
have resulted in up to a doubling of sequencing data within major

sequence read archives (Arita et al., 2021) in the last five years (Katz
et al., 2022), exceeding 50 petabytes (Yuan et al., 2024). Third-
generation sequencing is increasingly applied, with currently more
than 760,000 raw read files at the European Nucleotide Archive
attributed to PacBio and Oxford Nanopore, respectively, of which
about 700,000 PacBio and nearly all ONT files were submitted since
2019 (retrieved via https://www.ebi.ac.uk/ena/browser/advanced-
search on 07/02/2024; search terms ‘instrument_platform =
"ILLUMINA/PACBIO_SMRT/OXFORD_NANOPORE” AND
first_created>2019-01-01’). In the same five-year period, about
21.3 million submitted read files were attributed to Illumina
sequencing; thus, long-read sequencing files amounted to ~7% of
submissions.

Developments have also facilitated the initiation of
increasingly expansive genome sequencing projects in terms of
scale and scope. Examples are the Earth BioGenome Project
(Lewin et al., 2022), the Darwin Tree of Life Project (Darwin
Tree of Life Project Consortium, 2022), the Vertebrate Genomes
Project (VGP) (Rhie et al., 2021), as well as a large number of
human genome projects, among them the UK Biobank
(Halldorsson et al., 2022) and AllOfUs (All of Us Research
Program Investigators et al., 2019; Ramirez et al., 2022). The
number of sequenced genomes also increased in plant research
(Sun et al., 2022) and Microbiology (Anani et al., 2020).

FIGURE 1
Overview of the topics of this opinion article and their relationships. The main points are highlighted in color. Blue color: Hardware-accelerated
genomic core analyses are technicallymature and readily availablewithin sequencing software. Red color:Due to developments in long-read sequencing
and assembly, sequence-level, graph-based pangenomics is gaining importance. Yellow color: Developments in pangenomics will often go along with
field-specific applications in the context of Systems Genetics.
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Parallel and GPU-accelerated
computing speeds up computation by
orders of magnitude

Parallel computing refers to utilizing multiple computing units
to address a specific problem, wherein computations are executed
concurrently, significantly improving computational speed. Suitable
hardware resources are required on which the parallel calculations
can be performed. Modern multi-core central processing units
(CPUs) are capable of running many execution threads
simultaneously. A special form of parallelization can be achieved
by using graphics processing units (GPUs), initially designed for
rapid parallel execution of mathematical calculations in computer
graphics applications. With a vast quantity of processing units,
GPUs surpass even the largest CPUs in terms of parallelization.
GPUs have since been repurposed across various domains to
accelerate tasks in which the same operation is applied to
different subsets of data. Manufacturers have subsequently
developed specialized GPUs and application programming
interfaces to promote the development of GPU-accelerated
applications. This gave rise to general-purpose computing on
GPUs, the most well-known example of which is deep learning.

Acceleration by yet another order of magnitude can be achieved
by concurrent computation on multiple machines. An example of
such distributed computing is parallel processing on compute
clusters using scientific workflow management systems such as
snakemake (Köster and Rahmann, 2012) or nextflow (Di
Tommaso et al., 2017), which also facilitate deployment in the
cloud. Distributed computing for individual core genome
analyses is a topic of interest with various tools available (Zou
et al., 2021).

Hardware-accelerated primary and
secondary sequencing data analysis is
technically mature and readily available

Genome sequencing data processing can be divided into
primary, secondary, and tertiary analyses. Primary analysis can
be considered the generation of sequence data from the
sequencing devices’ raw measurements, typically in conjunction
with PHRED scores that estimate individual base accuracy. This
so-called base calling is typically performed during sequencing.
Secondary analyses are read mapping, i.e., providing for each
read the reference sequence position to which it matches, and
variant calling, i.e., identifying differences from a specific
reference sequence. Finally, genome assembly, i.e., reconstructing
fully haplotype-phased genomes from sequencing data, will likely
become an integral genomic secondary analysis of long-read data.
We examined these core analyses, as well as their implementation
status regarding hardware acceleration in the software solutions
provided by the major sequencing companies Illumina,
PacBio, and ONT.

Illumina’s DRAGEN is commercial software that can be used
directly on specific Illumina machines (NovaSeq X Series, NextSeq
1000/2000), on servers on-premise, or in the cloud. It utilizes the
sequencer’s onboard Field Programmable Gate Arrays (FPGAs) to
accelerate primary analysis, i.e., the generation of FASTQ files from

the binary base call (BCL) files. Concerning secondary analysis,
DRAGEN provides the Genome Analysis Toolkit (GATK)
(McKenna et al., 2010) for variant calling, which comes with a
proprietary hardware acceleration that speeds up analyses
significantly (Betschart et al., 2022). Besides secondary analyses,
an extensive range of common tertiary analyses can be performed
with DRAGEN, incurring additional licensing costs.

PacBio’s SMRT Link software includes the SMRT analysis
module for secondary analysis, which provides various types of
analyses of HiFi sequencing data. The variant calling workflow uses
deep learning-based DeepVariant for small variant detection (Poplin
et al., 2018), which can be run with GPU acceleration (Yun
et al., 2021).

ONT’s MinKNOW software controls the sequencing device and
offers GPU-accelerated base calling. For the secondary analysis,
ONT provides the EPI2ME platform, a collection of open-source
workflows that can be run free of charge.

Besides easy-to-use graphical software provided by all three
major sequencing providers, major industry players, including
NVIDIA, have recognized the genomic analysis market’s
potential and have introduced frameworks like Parabricks that
leverage GPUs to improve processing speed (Clara Parabricks
4.0.0, 2024). The acceleration of established genomic alignment
and variant calling pipelines by factors of 10–100 exemplifies the
impact of these technological and algorithmic developments
(O’Connell et al., 2023). A notable aspect of this framework is its
full accessibility to academics, with charges applied solely for
commercial usage.

Deep learning is the key enabling technology for long-read base
calling, with ONT using PyTorch (Paszke et al., 2019) and PacBio
using TensorFlow (Developers, 2024). Accordingly, the respective
latest sequencing devices are equipped with on-board GPUs. Specific
deep learning achievements are improved PacBio HiFi read
generation with DeepConsensus (Baid et al., 2023) and ONT
models that allow detection of various base modification types
(Ahsan et al., 2024) currently with basecaller Dorado.

Pangenome approaches are
increasingly applied across all
research fields

The concept of pangenomes emerged in the area of microbial
genomics (Tettelin et al., 2005) and has specific relevance in clinical
microbiology (Anani et al., 2020). The pangenome was defined as
the set of genes that occur within a bacterial phylogenetic clade,
distinguishing between a core genome of shared genes, and an
accessory genome of remaining genes. Besides gene-level
approaches, k-mer-based approaches are used in microbiology,
representing the pangenome as a presence-absence matrix of
unique k-mers within contributing genomes.

Recently, pangenomics has been extended to plants (Li et al.,
2022), animals (Golicz et al., 2020), and humans (Liao et al., 2023).
Eukaryotic genomes are typically assessed on sequence- and not
gene-level, since they contain more non-coding sequences and a
larger core genome. Thus, the representation of sequence-level
diversity is the primary scope of pangenomics in eukaryotes. The
major benefit of sequence-level pangenomic approaches is the
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improvement of variant calling since variants can be identified more
thoroughly with respect to a preferably diverse and comprehensive
set of reference sequences.

To form a multi-genome reference, so-called pangenome graphs
(Eizenga et al., 2020) are created—typically from high-quality
assembled genomes. In these graphs, nodes represent subsequences
and edges the adjacency of the sequences within an observed genome.
Since graphs represent multiple genomes, the genetic variation within a
population is captured better than with existing linear genome
references (Ballouz et al., 2019; Liao et al., 2023).

Human genetics stands out as the driving force that propelled
computational genomics toward harnessing the potential of long
reads for high-quality assembly and subsequent pangenomic
representations. This journey began with the achievement of a
telomere-to-telomere assembly, encompassing all previously
uncharted regions of the human genome (Miga et al., 2020; Nurk
et al., 2022; Rhie et al., 2023) via diploid human assembly (Ebert
et al., 2021; Porubsky et al., 2021) in conjunction with assembly
algorithmic developments (e.g., Hifiasm (Cheng et al., 2021) and
Verkko (Rautiainen et al., 2023)), achieving a first draft human
pangenome in 2023 (Liao et al., 2023).

Discussion

In the forthcoming decade, de novo assembly from long-read
sequencing data stands to ascend as the coveted gold standard in
many applications. Further, high-quality assembly in conjunction with
pangenome representations will, for the first time, provide a complete
picture of genomes and genomic variation that is not reference-biased.
Such improved genomic resolution will provide opportunities to
discover genotype-phenotype relationships that so far have been
overlooked. This applies universally across genomes of viruses,
microbes, plants, animals, and humans, all of which are currently
the focus of extensive, discipline-specific genome projects. These
ambitious projects, in return, catalyze the development of high-
performance, hardware-accelerated implementations of largely open-
source core analysis tools and corresponding graphical software for easy
use with sequencing devices. In contrast, analyses that require the
precise resolution afforded by long-read data, notably structural variant
calling and assembly, necessitate further research and development in
computational genomics. Given that these are at an earlier research
stage, hardware acceleration options beyond CPUutilization have yet to
be fully explored.

With the availability of longer assembled sequences up to entire
genomes, pangenomic approaches will gain importance.

Pangenomes, however, will often have application-specific
requirements. Although pangenomic representations of genomes
from high-quality assemblies are, in theory, superior to single
reference-based variant lists, computational tools are still needed
to construct, process, and annotate such representations for specific
applications. We believe that this is a major focus of computational
genomics research in the next decade and that field- and application-
specific characteristics will play an important role, possibly resulting
in a multitude of pangenome-centered tools. Specifically, we think
that developments in pangenome representations will go along and
often align with the development and application of methods that
link sequence representations with phenotypes. This interplay of
pangenome approaches with methods from statistical genetics and
machine learning will help unlock the potential of Systems Genetics,
eventually providing a holistic understanding of biological systems
from the genomic viewpoint.
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