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Background: Complex disorders, such as Alzheimer’s disease (AD), result from
the combined influence of multiple biological and environmental factors. The
integration of high-throughput data from multiple omics platforms can provide
system overviews, improving our understanding of complex biological processes
underlying human disease. In this study, integrated data from four omics
platforms were used to characterise biological signatures of AD.

Method: The study cohort consists of 455 participants (Control:148, Cases:307)
from the Religious Orders Study and Memory and Aging Project (ROSMAP).
Genotype (SNP), methylation (CpG), RNA and proteomics data were collected,
quality-controlled and pre-processed (SNP = 130; CpG = 83; RNA = 91;
Proteomics = 119). Using a diagnosis of Mild Cognitive Impairment (MCI)/AD
combined as the target phenotype, we first used Partial Least Squares Regression
as an unsupervised classification framework to assess the prediction capabilities
for each omics dataset individually. We then used a variation of the sparse
generalized canonical correlation analysis (sGCCA) to assess predictions of the
combined datasets and identify multi-omics signatures characterising each
group of participants.

Results: Analysing datasets individually we found methylation data provided the
best predictions with an accuracy of 0.63 (95%CI = [0.54–0.71]), followed by RNA,
0.61 (95%CI = [0.52–0.69]), SNP, 0.59 (95%CI = [0.51–0.68]) and proteomics,
0.58 (95%CI = [0.51–0.67]). After integration of the four datasets, predictions
were dramatically improved with a resulting accuracy of 0.95 (95%
CI = [0.89–0.98]).

Conclusion: The integration of data from multiple platforms is a powerful
approach to explore biological systems and better characterise the biological
signatures of AD. The results suggest that integrative methods can identify
biomarker panels with improved predictive performance compared to
individual platforms alone. Further validation in independent cohorts is
required to validate and refine the results presented in this study.
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Introduction

Alzheimer’s disease (AD) is a complex neurodegenerative
disorder, clinically characterized by progressive cognitive
decline, memory loss, and impairment in daily functioning. It
is the most common cause of dementia worldwide, affecting
millions of individuals and posing a significant burden on
healthcare systems and society (Brookmeyer et al., 2007;
Nichols et al., 2022). The aetiology of AD is multifactorial,
involving a combination of genetic, environmental, and
epigenetic factors (Breijyeh and Karaman, 2020). Currently,
AD diagnosis involves a combination of medical history,
physical examinations, neuropsychological tests, and
cerebrospinal fluid analysis in some cases. Imaging serves as a
supportive tool and helps rule out other causes of cognitive
impairment. However, a comprehensive evaluation by a
professional is essential for an accurate diagnosis (Rodrigue,
2013; DeTure and Dickson, 2019; Porsteinsson et al., 2021).
Given these diagnostic challenges, understanding the
underlying biological processes and identifying reliable
biomarkers for early detection and accurate diagnosis are
crucial for developing effective therapeutic strategies and
interventions.

In recent years, the continuous advancements in high-
throughput technologies have provided unprecedented
opportunities to explore complex disorders at the molecular
level. These technological improvements have not only
increased the diversity of omics platforms available but also
their resolution. While the analysis of single omics platform
provides a unique perspective, capturing specific molecular
changes associated with a trait of interest, this approach also
limits our understanding of the complete molecular landscape
underlying complex pathogenesis.

To address this limitation, there has been a growing interest
in the integration of data across multiple omics platforms
(i.e., “multi-omics”), to comprehensively explore the
interactions and alterations occurring at multiple biological
levels. Multi-omics integrations aim to capture a broader view
of biological systems and therefore holds great promise in
unravelling the complex molecular interplay across biological
domains (Ivanisevic and Sewduth, 2023). This knowledge is
essential to enhance our understanding of the underlying
mechanisms driving complex disorders such as AD and
facilitate the development of personalised and targeted therapies.

In this study, we present an integrated analysis of four omics
platforms, including single nucleotide polymorphism (SNP),
methylation (CpG), transcriptomic (RNA), and proteomics data,
to characterise the biological signatures of AD. Leveraging a well-
characterised cohort from the Religious Orders Study and Memory
and Aging Project (ROSMAP) (Bennett et al., 2012Bennett et al.,
2012), consisting of individuals categorized as no cognitive
impairment (NCI), mild cognitive impairment (MCI), and AD
patients, we employed integrative approaches to predict the
disease status based on each omics dataset individually.
Subsequently, we utilized a variation of the generalized canonical
correlation analysis (sGCCA) (Kettenring, 1971; Tenenhaus et al.,
2014)to integrate the four datasets and identify multi-omics
signatures specifically associated with AD participants.

Materials and methods

Participants and clinical characterisation

Data used in the preparation of this article were obtained from the
Religious Orders Study and Memory and Aging Project (ROSMAP)
(Bennett et al., 2012). The synapse portal (https://adknowledgeportal.
synapse.org/) offers comprehensive list of data, we used four different
datasets from this resource, including: proteomics (https://doi.org/10.
7303/syn10468856), epigenetics (DNA methylation array, https://doi.
org/10.7303/syn3157275), genomic variants (SNP Array, https://doi.
org/10.7303/syn3157325) and gene expression (RNAseq from bulk
brain, https://doi.org/10.7303/syn3388564). These four datasets were
selected as they provided the largest number of overlapping samples
(N = 455). Participants were divided into two groups, based on their
clinical characterisation at death, generating a case/control binary
outcome. Specifically, participants were considered “cases” when the
most likely clinical diagnosis at the time of death was AD orMCI (Mild
Cognitive Impairment) and “control” when diagnosed as NCI (No
Cognitive Impairment). The participants’ data include phenotypic
information relevant to AD, such as the Braak stage, which classifies
AD progression based on neurofibrillary tangle pathology throughout
the brain (Braak and Braak, 1991; Braak et al., 2006) and the
Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD) score, a standardized method for assessing the severity of
neuritic plaques (Fillenbaum et al., 2008). Detailed demographics are
summarised in Table 1.

Data preparation and feature reduction

The analyses were restricted to samples present in all four
datasets investigated. Each dataset was therefore limited to these
samples and was further prepared as follows.

RNAseq
Samples were extracted using Qiagen’s miRNeasy mini kit and

the RNase free DNase Set. They were quantified by Nanodrop and
quality was evaluated by Agilent Bioanalyzer. The initial dataset
consisted of 642 samples and 55,889 transcripts, stored as raw FPKM
(Fragments Per Kilobase of transcript per Million mapped reads)
values. After removing non-overlapping samples, we discarded
lowly expressed transcripts based on the threshold of geometric
mean of (FPKM + 0.1) < 1. FPKM values were then transformed to
log2 scale. To further reduce the number of features, we built an
elastic net regression model using the case/control phenotype as
target variable. The initial data was separated into two subsets
(training set = 70% [N = 318], test set = 30% [N = 137]) and the
model’s training was performed using 10-fold cross-validation and
averaged the obtained classification error rate across 50 repetitions
to identify the optimal parameters (lambda). The trained model was
then used to identify and remove transcripts not contributing to the
phenotype’s prediction (zero coefficient). The final data consisted of
455 samples and 91 transcripts.

Proteomics
Proteomics assay was performed using frozen tissue from

dorsolateral prefrontal cortex (DLPFC) on a nano ACQUITY
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UPLC coupled to TSQ Vantage MS instrument. Samples were
prepared using standard protocol described in the original
publications (Petyuk et al., 2010; Andreev et al., 2012). The
initial dataset contained 1,191 samples and 121 proteins. Control
probes and samples were removed, resulting in a final set consisting
of 455 samples and 119 proteins.

SNP
Two batches of genotype data are available in ROS and MAP

studies. The first batch was generated using the Affymetrix
GeneChip 6.0 (Affymetrix, Inc., Santa Clara, CA,
United States) and contained 1,709 individuals. The second
batch used the Illumina HumanOmniExpress (Illumina, Inc.,
San Diego, CA, United States) on 382 samples. Both batches
underwent the same quality control (QC) analysis, as described in
(De Jager et al., 2012). After non-overlapping samples were
removed the two sets were merged and the quality controlled.
The QC assessment included exclusion of samples with genotype
success rate <95%, discordance between inferred and reported
gender, and excess inter/intra heterozygosity. SNP-level quality
control assessment included exclusion of SNPs with Hardy-
Weighberg equilibrium (p < 0.001), MAF <0.01, genotype call
rate <0.95, misshap test < 1 × 10−9. Population outliers were
identified and removed using Eigenstrat (Price et al., 2006) with
default parameters.

To further reduce the number of SNP, we employed logistic
regression models using the case/control status as a binary outcome.
Models’ covariates included education (years), the presence/absence
of the APOE ε4 allele (binary) and the first 3 principal components
of a principal component analysis (PCA), to control for potential
population structure. Results from the logistic regressions were
adjusted for multiple testing using the Benjamin-Hochberg
method. SNP with p-values below 0.05 were considered
significant and selected for the downstream analyses. The final
data included 455 samples and 145 SNPs.

Methylation
The initial data contained 741 samples (prefrontal

cortex) and 420,132 cpgs, collected using the Illumina
HumanMethylation450 BeadChip. Data generation method was
described in (De Jager et al., 2014). To reduce the number of
features prior to integration, the same method as for the RNAseq
data was used. The dataset was split into two subsets (training set =
70% [N = 318], test set = 30% [N = 137]) and used to train an elastic
net regression model. Training phase used 10-fold cross-validation
and averaged the obtained classification error rate across
50 repetitions to identify the optimal parameters (lambda). The
trained model was used to identify and remove probes not
contributing to the phenotype’s prediction (zero coefficient). The
final data consisted of 455 samples and 91 CpGs.

TABLE 1 Population demographics.

Control (N = 148) Case (N = 307) p-value

Sex

Female 85 (57.4%) 202 (65.8%) 0.0971

Male 63 (42.6%) 105 (34.2%)

Age (years)

Mean (SD) 82.9 (4.79) 85.4 (4.28) <0.001
Median [Min, Max] 84.2 [67.4, 89.7] 86.7 [70.3, 90.0]

Education (years)

Mean (SD) 16.4 (3.39) 16.4 (3.47) 0.973

Median [Min, Max] 16.0 [10.0, 25.0] 16.0 [5.00, 28.0]

APOE ε4

Absent 126 (85.1%) 217 (70.7%) <0.001
Present 22 (14.9%) 90 (29.3%)

Braak stage

I 6 (4.1%) 1 (0.3%) <0.001
II 25 (16.9%) 11 (3.6%)

III 17 (11.5%) 24 (7.8%)

IV 54 (36.5%) 85 (27.7%)

V 41 (27.7%) 97 (31.6%)

VI 5 (3.4%) 83 (27.0%)

CERAD

positive 60 (40.5%) 220 (71.7%) <0.001
negative 88 (59.5%) 87 (28.3%)

p values determined by t-test for continuous variable or Chi square for categorical variables. N number, HC, healthy control; MCI, mild cognitive impairment; AD, Alzheimer’s disease, APOE

ε4 apolipoprotein ε4 allele, CERAD, Consortium to Establish a Registry for Alzheimer’s Disease.
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General analytical pipeline

To facilitate comparisons, the same analytical pipeline was used
to assess the predictive capabilities of each individual omics dataset
and the integrated dataset. First, participants were randomly divided
in two groups (training set = 70% [N = 318], test set = 30% [N =
137]). An initial model was then built and tuned using the training
data only. Two different models were used depending on the type of
the dataset (single omics or integrated), as detailed in the following
section. In the context of this study, the tuning phases allowed the
identification of the optimal number of components as well as the
optimal number of features to select in each of these components.
These parameters were considered optimal when they provided the
smallest Balanced Error Rate (BER). Tuning phases were performed
using a 10-fold, 50 repeats procedure, to limit the impact of the
randomly allocated folds at each repetition. The models were then
trained on the training data only. Finally, the trained models were
used to perform predictions on the test set (unseen data) and
performance metrics were calculated from the resulting
confusion matrices.

Predictions from individual platforms

To perform predictions on individual omics datasets, we used
sparse partial least square discriminant analysis (sPLS-DA) (Lê Cao
et al., 2011), as implemented in the mixOmics R package (Rohart
et al., 2017). sPLS-DA is an extension of the traditional PLS
approach, combining variable selection and classification in a
one-step procedure. We used this method as a classification
framework to predict case/control status of samples. The
predictions generated from individual datasets were only used for
comparison purposes with the multi-omics model.

Prediction from integrated data

To perform predictions on the integrated datasets, we used the
DIABLO framework. The implementation of the method is further
detailed in (Singh et al., 2019). Briefly, DIABLO provides a classification
framework based on sparse generalized canonical correlation analysis
(sGCCA) (Tenenhaus et al., 2014), a multivariate dimension reduction
technique that uses singular value decomposition to identify correlated
variables amongst several datasets. More specifically, the method seeks
linear combinations of variables (latent components) from each dataset,
that are maximally correlated. This method offers the possibility to
specify a design matrix, describing how the datasets should be
connected (i.e.,: correlation between datasets). In this study, we used
a design matrix of 0.1 to maximise the discovery of novel signatures
between the datasets.

Results

The study cohort consisted of 455 individuals (148 controls,
307 cases); detailed demographic characteristics were reported in
Table 1. Gender was relatively well-balanced between the two groups,
with a slightly larger proportion of females classified as cases (65.8%)

compared to the control group (57.4%). As expected, the participants in
the case group were significantly older (85.4 ± 4.28 years) than those
classified as controls (82.8 ± 4.79 years, p = 2.02e−5), exhibited more
advanced Braak stages (p = 4.9e−4) (Braak and Braak, 1991) and had a
higher probability of neuritic plaques accumulation, as reflected by their
higher CERAD score (p = 2.44e−10) (Fillenbaum et al., 2008). In addition,
there were more carriers of at least one copy of the APOE ε4 allele in
cases compared to the control group (p = 8.94e−4).

The integrated dataset provided better
predictions than the individual platforms

Comparing predictive capabilities (i.e.,: ability to correctly
classify samples) between models built from individual datasets,
we found that the SNP data provided the best balanced accuracy
(73%), followed by the RNA data (70%). Predictions made from the
methylation dataset alone, yielded a balanced accuracy of 68% and
the model built with the proteomics data resulted in a 55% balanced
accuracy. Overall, the integrated model provided the best predictive
capabilities, showing better performance across all the metrics
evaluated and resulting in a balanced accuracy of 90%, Table 2.
Despite the higher prevalence of cases in the sample set (68%), the
integrated model demonstrated a high sensitivity of 0.96, indicating
its proficiency in correctly identifying cases. Specificity was
measured at 0.83, supporting the model’s ability to correctly
distinguish controls.

Top individual contributors of discrimination

The tuning phase of the multi-omics model allowed the
identification of the optimal number of features to predict the case
group. This corresponded to the set of features producing the best
discrimination performance between cases and controls. The optimal
feature panel of the integrated model consisted of 62 features,
distributed as follows: 5 SNPs, 20 RNA transcripts, 20 CpGs and
17 peptides. The selected features’ contributions, as reflected by their
loading weights, are shown in Figure 1 and further detailed in
Supplementary Table S1. The most important features identified to
separate cases and controls were the Tau (12e8) [MAPT] peptide,
ENSG00000111181 [SLC6A12] transcript, cg25942596 CpG probe, the
rs2903011 variant, the cg06965373 methylation probe, Tau [PHF1]
peptide, ENSG00000260456 transcript and the rs1928955 SNP.

Correlated features across the
different datasets

Looking at cross-correlations between omics datasets, we found
that the strongest correlations occurred between the Tau (12e8)
peptide and three RNA transcripts, ENSG00000111181 [SLC6A12]
(r = 0.69), ENSG00000107623 [GDF10] (r = −0.58) and
ENSG00000173588 [CCDC41] (r = −0.57). Counting the number
of correlated features in each dataset, we found that the proteomics
and RNA datasets were the most highly correlated datasets with
66 and 52 correlated features (absolute Pearson correlation≥0.5),
respectively. At the feature level, the three most correlated variables
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were the ELMO1 peptide, ENSG00000166863 [TAC3] RNA
transcript and the Tau (12e8) peptide, with a total of 14, 10 and
9 correlations (abs(r)≥0.5), respectively. The heatmap presented in
Figure 2 depicts the relationships between variables, within and
across the four omics datasets.

Discussion

Continuous technological improvements along with the
development of large initiatives such as the ROS and MAP
cohorts have dramatically increased the availability of multi-

TABLE 2 Model performance.

Performance metric SNP RNA Proteomics CpGs Multi-omics

Sensitivity 0.76 0.69 0.58 0.73 0.96

Specificity 0.7 0.7 0.52 0.64 0.83

Precision 0.85 0.83 0.72 0.81 0.94

Recall 0.76 0.69 0.58 0.73 0.96

F1 0.8 0.75 0.64 0.77 0.95

Accurary 0.59 0.61 0.58 0.63 0.95

Balanced Accuracy 0.73 0.7 0.55 0.68 0.9

The table above shows the performance of the single-omics models (SNP, RNA, proteomics, CpGs) and the multi-omics models. The performance metrics of each model were calculated from

the corresponding confusion matrices.

FIGURE 1
Loading plots showing the features’ weight for the first 2 latent components of multi-omics model. The weights indicate the contribution of each
feature to the corresponding latent component, reflecting their importance in the discriminatory process of separating case and control samples. The
color of the bars indicates whether a feature is over-represented or expressed in a specific phenotype (case or control).
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omics data. In this study we used a well-establish framework,
DIABLO (Singh et al., 2019), to integrate multiple omics datasets
and identify molecular signatures specific to AD cases and
healthy control.

This framework uses a multivariate dimension reduction
technique (Singular Value Decomposition) to maximise the
correlated information between omics datasets. As such, it can be
used to fulfill two functions: 1) as a discovery framework, to identify
relevant biomarkers associated with a specific phenotype and 2) as a
predictive framework. Therefore, this type of integrative approach
can help achieve a more comprehensive understanding of molecular

changes contributing to disease development as well as guide the
development of predictive models. In the case of AD, clinical
diagnosis is commonly derived from formal neuropsychiatric
assessments to evaluate cognition, and a definite diagnosis can
only be made post-mortem, with an autopsy revealing the
presence of tau tangles and amyloid plaques. Therefore, non-
invasive predictive models offer the promise of vastly improving
disease detection by providing earlier intervention opportunities.

The results in this study demonstrated that we could extract
multi-omics signatures to separate cases (MCI/AD) from controls
(NCI). The signatures included features across the four types of

FIGURE 2
Correlation heatmap. The values shown approximate the Pearson correlation coefficients, calculated as the sum of the correlations between the
original variables and each latent component in the sPLS-DA model. These values indicate how features relate to each other, reflecting their potential
interactions. To facilitate the visualization of intra- and inter-omics correlations, the heatmap is divided into four panels, both vertically and horizontally,
representing the four types of omics data integrated in the model. Only features with at least one correlation with an absolute coefficient above
0.5 are displayed. The bar plot at the top shows the number of these correlations for each feature, indicating their level of connectivity with other features.
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omics data investigated, highlighting the tight inter-relationships
and possible interactions existing between the biological layers.
Amongst the major contributors in predictions, we could retrieve
biomarkers known to be involved in key neurodevelopmental
processes such as Tau related peptides, transcripts related to
solute carrier (SLC6A12) and Growth and Differentiation Factor
10 (GDF10). The SLC6A12 gene, for example, is a neurotransmitter
transporter which has recently been screened as a hub gene, showing
high expression in AD patients (Zou et al., 2023) studies have shown
GDF10 had an important role in supporting neuronal survival (Li
et al., 2010) and reducing neuroinflammation (Li et al., 2015).

While supporting evidence exist for some of the main features
identified, a number of key contributors identified correspond to
biomarkers with unknown functions. Interestingly, most of these
uncharacterised features were identified from the integrated dataset
but were not detected when looking at individual omics, suggesting a
synergistic role across the biological layers. Their limited effect, in
isolation, could also explain the lack of annotation associated with
these features.

The framework used in this study can allow for both
discovery and classification/prediction; however, it is
important to note that a compromise needs to be achieved
between these two tasks. As further elaborated in Singh et al.
(2019), the weightings defined in the design matrix plays an
important role in the model’s abilities and functions. In the
context of this study, we opted for a design with small weights
(0.1), in order to maximise classification accuracy. This design
resulted in models with highly predictive signatures but with a
limited ability to extract the correlation structure from the
datasets. A design matrix with larger weight values could
facilitate further exploration of the interactions and
relationships among the datasets, providing a more global
perspective of the system and help reveal the complex
mechanisms at play.

While the presented study provides valuable insights is essential
to acknowledge its limitations. Each omic dataset was individually
pre-processed and subject to a preliminary feature selection, in order
to maintain a reasonable computational runtime for the integrated
model. Although this approach effectively prevented the
introduction of non-informative features in the model, it may,
however, introduce biases and potentially limit the discovery of
multi-omics signatures, especially those with a purely
synergetic role.

Moreover, the model considered only features from the four
datasets presented and did not account for the potential effects of
other covariates. Incorporating additional metadata, for example,
‘age,’ which is a major risk factor for AD (Guerreiro and Bras,
2015; Hou et al., 2019), or imaging data could significantly
enhance the model’s predictive power. Incorporating imaging
data could be particularly beneficial, as it can provide valuable
insights into structural and functional brain changes associated
with AD and is a central tool for accurate diagnosis (Johnson
et al., 2012; van Oostveen and de Lange, 2021). Future research
could explore the incorporation of extra covariates by creating a
synthetic dataset as an additional omics layer within the
framework. While this endeavour was beyond the scope of the
current study, it represents a promising avenue for further
investigation. Finally, the relationships between the different

biological layers could be further refined. The connectivity and
directionality of the underlying biological networks are extremely
complex and dynamic. While the use of an arbitrary design
matrix to model these interactions can provide useful insights,
as demonstrated in this study, novel solutions are needed to
better consider the relationships between the integrated
biological data.

The study demonstrates the effectiveness of integrating
multiple data sources to identify robust biomarker panels and
facilitate the molecular diagnostic of a complex disease such as
AD. Moreover, the results presented in this study provide
valuable insights on key biological pathways in AD
pathogenesis, which could help identifying potential
therapeutic targets. Further validations in independent cohorts
are necessary to confirm the robustness and generalisability of the
identified signatures. The implications of this research extend
beyond AD, as the integration of multi-omics data can be applied
to other complex disorders, contributing to the advancement of
precision medicine and personalised approaches to disease
management.

Conclusion

The availability of high-dimensional multi-omics data has
offered unprecedented resources for predictive studies. Although
there are still significant contributions to be made before omics-
based diagnoses becomes utilised in a clinical practice, this work
demonstrates the effectiveness of integrating multiple omics for
predictive purposes, compared to relying on a single source of data.
The highly predictive molecular signatures identified can help
improve our understanding of the key molecular mechanisms
driving disease development.
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