
Maximum-scoring path sets on
pangenome graphs of
constant treewidth

Broňa Brejová1*, Travis Gagie2, Eva Herencsárová1 and
Tomáš Vinař3

1Department of Computer Science, Faculty of Mathematics, Physics and Informatics, Comenius
University in Bratislava, Bratislava, Slovakia, 2Faculty of Computer Science, Dalhousie University, Halifax,
NS, Canada, 3Department of Applied Informatics, Faculty of Mathematics, Physics and Informatics,
Comenius University in Bratislava, Bratislava, Slovakia

We generalize a problem of finding maximum-scoring segment sets, previously
studied by Csűrös (IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 2004, 1, 139–150), from sequences to graphs. Namely, given a
vertex-weighted graph G and a non-negative startup penalty c, we can find a set
of vertex-disjoint paths in Gwith maximum total score when each path’s score is
its vertices’ total weight minus c. We call this new problem maximum-scoring
path sets (MSPS). We present an algorithm that has a linear-time complexity for
graphs with a constant treewidth. Generalization from sequences to graphs
allows the algorithm to be used on pangenome graphs representing several
related genomes and can be seen as a common abstraction for several biological
problems on pangenomes, including searching for CpG islands, ChIP-seq data
analysis, analysis of region enrichment for functional elements, or simple
chaining problems.

KEYWORDS

treewidth, dynamic programming, weighted paths, pangenomics, elastic
degenerate strings

1 Introduction

We study the maximum-scoring path set (MSPS) problem where the input is a directed
or undirected graph with weighted vertices and a non-negative startup penalty c. The goal is
to find a set of vertex-disjoint paths with maximum total score, where the score of each path
is the sum of its vertex weights minus the cost c. This problem is a generalization of the
maximum segment sum problem, where the input is a sequence of weights and penalty c,
and we are looking for a set of disjoints segments with the maximum total score where again
the score of each segment is the sum of weights minus the penalty. This simpler problem on
sequences was studied extensively by Csűrös (2004), who provided a simple linear-time
algorithm and connections to various statistical models of biological sequence
segmentation. Csűrös (2004) as well as other authors (Bengtsson and Chen, 2007;
Gawrychowski and Nicholson, 2015) also studied a variant of this problem where
instead of startup cost c we are looking for the solution with a fixed number k of segments.

In this work we show that the problem can be solved in linear time not only for
sequences, which are simple path graphs, but also on graphs with the treewidth bounded by
a constant. Graphs with a constant treewidth are an important generalization of trees. Many
problems can be solved by more efficient algorithms on constant treewidth graphs than on
general graphs (Arnborg et al., 1991; Bodlaender, 1997). By extending the linear-time

OPEN ACCESS

EDITED BY

Cinzia Pizzi,
University of Padua, Italy

REVIEWED BY

Gianluca Della Vedova,
University of Milano-Bicocca, Italy
Manuel Caceres,
Aalto University, Finland

*CORRESPONDENCE

Broňa Brejová,
brejova@dcs.fmph.uniba.sk

RECEIVED 24 February 2024
ACCEPTED 03 June 2024
PUBLISHED 01 July 2024

CITATION

Brejová B, Gagie T, Herencsárová E and Vinař T
(2024), Maximum-scoring path sets on
pangenome graphs of constant treewidth.
Front. Bioinform. 4:1391086.
doi: 10.3389/fbinf.2024.1391086

COPYRIGHT

©2024 Brejová, Gagie, Herencsárová and Vinař.
This is an open-access article distributed under
the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Bioinformatics frontiersin.org01

TYPE Original Research
PUBLISHED 01 July 2024
DOI 10.3389/fbinf.2024.1391086

https://www.frontiersin.org/articles/10.3389/fbinf.2024.1391086/full
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1391086/full
https://www.frontiersin.org/articles/10.3389/fbinf.2024.1391086/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2024.1391086&domain=pdf&date_stamp=2024-07-01
mailto:brejova@dcs.fmph.uniba.sk
mailto:brejova@dcs.fmph.uniba.sk
https://doi.org/10.3389/fbinf.2024.1391086
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2024.1391086

algorithm from sequences to graphs, it can be now applied to
pangenome graphs representing sets of related sequences. We
describe biological motivation of the problem in more detail in
Section 2. Graphs of bounded treewidth were previously studied in
bioinformatics, for example, for phylogenetic networks
(Scornavacca and Weller, 2022) and RNA structures (Marchand
et al., 2022), but as far as we know, they were not previously
considered in the context of pangenomics. Gómez and
Wakabayashi (2020) solved some related problems but their
proofs are inaccessible to many bioinformaticians, as they rely on
Courcelle’s theorem that every graph property definable in monadic
second order logic can be decided in linear time on graphs with
bounded treewidth. Among the problems they studied, the one
closest to our goal is the MaxWNtPc problem, which seeks to cover
all vertices of an undirected graph with weighted edges by non-
trivial vertex-disjoint paths with the maximum total weight. It is not
obvious how to reduce MSPS to this problem, and also the authors
consider only undirected graphs.

2 Motivation

Many computational or high-throughput wet-lab analyses of
genomes identify chromosome locations that have some biological
function or property. We may then want to search for dense clusters
of such significant locations. The simplest examples are based on
sequence content (Csűrös, 2004; Deaton and Bird, 2011), such as
looking for GC-rich regions (regions with a high density of bases C
and G) or CpG islands (regions with a high density of C followed by
G). Such areas are often associated with functional elements such as
genes or regulatory regions (Li et al., 2002; Deaton and Bird, 2011).
A more complex example is search for clusters of nearby binding
sites of transcription factors (Wu et al., 2022); potential binding sites
can be identified computationally based on occurrence of known
sequence motifs or experimentally by techniques such as chromatin
immunoprecipitation followed by sequencing (ChIP-seq). We can
also identify positions of sequence differences among related species
or individuals within a single species. Then we can look for regions
with a high density of such mutations, which can arise, for example,
from horizontal sequence transfer (Croucher et al., 2015).
Conversely, regions with unusually low number of such
mutations are conserved in evolution by purifying selection and
may represent important functional elements (Stojanovic
et al., 1999).

All of these examples involve identifying individual positions of
a genomic sequence with some biological property and then looking
for clusters of such positions located close together. Such clustering
problems can be formulated in many ways (Kulldorff, 1999; Li et al.,
2002; Coppe et al., 2006; Ferrari et al., 2011; Croucher et al., 2015; He
et al., 2019), but we will concentrate on the segmentation approach
of Csűrös (2004), where we assign a positive score to each identified
position of interest and a negative score to all other positions of the
genome and then find non-overlapping high-scoring segments in
the resulting sequence of scores. Startup penalty c charged for each
segment in the solution controls the number of the resulting
segments. A small value of c yields many short segments, while
at higher values some nearby segments may be joined together and
weaker segments may be omitted. Csűrös (2004) shows that several

statistical approaches to defining clusters of positions can be
expressed by an appropriate choice of position scores and penalty c.

In this work, we extend the segmentation approach from
sequences to sequence graphs (Computational Pan-Genomics
Consortium, 2018). In a sequence graph, vertices represent
sequence fragments and edges possible adjacencies of these
fragments. Chromosomes then form paths or walks in these
graphs. To find a segmentation, we assign scores to individual
vertices, when necessary splitting a vertex into a path so that
each vertex of the path represents a single nucleotide. Instead of
non-overlapping segments of the input sequence we seek vertex-
disjoint paths in the graph.

The notion of a sequence graph has been used in many studies
that generalize genomic analyses from a single sequence to an
ensemble of sequences, including structures such as splicing
graphs (Heber et al., 2002), A-Bruijn graphs (Pevzner et al.,
2004), Enredo graphs (Paten et al., 2008), cactus graphs (Paten
et al., 2011), colored de Bruijn graphs (Iqbal et al., 2012), variation
graphs (Garrison et al., 2018), and reference pangenome graphs (Li
et al., 2020). The field of pangenomics aims to shift computational
analyses from using a single reference genome for each species to
using a collection of genomes of different individuals representing
genetic diversity of the species (a pangenome). This approach was
shown to reduce biases caused by a single reference (Garrison et al.,
2018), but requires us to adapt existing algorithms developed for a
single sequence to work on sequence sets or pangenome graphs.
Here we contribute to this effort by studying the sequence
segmentation problem in the graph context.

Several existing pangenomic methods are related to our goal.
Grytten et al. (2019) analyze ChIP-seq data in the context of a
pangenome graph. First they identify positions with significantly
increased read coverage and then use simple heuristics to connect
them into longer paths with high density of such positions
representing likely areas where the studied molecule binds DNA.
This heuristic process could be replaced by our segmentation
approach. Chang et al. (2020) study the problem of mapping
reads to a pangenome graph by first identifying short seed
matches between the read and the sequences represented by the
graph. Then they look for clusters of nearby seed matches which
could correspond to regions where the read actually aligns. They
define clusters as connected components in an auxiliary graph where
two seeds are connected by an edge if their distance in the
pangenome is below a certain threshold. An alternative would be
to assign suitable positive scores to seed positions and negative
scores elsewhere and look for high-scoring segments using our
approach. Several authors have studied a related but more
complex co-linear chaining problem (Mäkinen et al., 2019; Li
et al., 2020; Chandra and Jain, 2023; Ma et al., 2023; Rizzo et al.,
2023; Rajput et al., 2024), where we look for a walk containing many
seeds, but these seeds should occur in the same order along the walk
and in the input read. Algorithms for the chaining problem seek to
find a single best walk, perhaps with additional suboptimal walks
returned as well, but no care is taken to find the globally optimal
combination of disjoint walks or paths.

Our algorithm works efficiently only on graphs with a small
treewidth with special cases, such as directed series-parallel graphs,
admitting particularly simple variants of the algorithm. There are
many different ways of defining and building pangenome graphs,

Frontiers in Bioinformatics frontiersin.org02

Brejová et al. 10.3389/fbinf.2024.1391086

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1391086

some of them yielding graphs of small treewidth. One popular
representation is an elastic degenerate string (EDS) (Iliopoulos
et al., 2021). As we show in Section 3.3, an EDS can be
converted to a directed series-parallel graph.

Another class of pangenome graphs considered in the
literature are general directed acyclic graphs (DAGs). While
some algorithms run quickly on arbitrary DAGs (Grytten
et al., 2019), others run quickly only on graphs which have a
small path cover, which is in this case defined as the smallest
number of potentially overlapping paths that cover each vertex at
least once (Mäkinen et al., 2019; Chandra and Jain, 2023; Ma
et al., 2023; Rizzo et al., 2023). Note that this measure is non-
increasing upon addition of new edges, whereas treewidth is non-
decreasing. A more relevant measure is the arc-width, introduced
by Tomescu et al. (2015), which is defined as the smallest number
of paths needed to cover all arcs of a directed graph. A
pangenome DAG constructed from k distinct sequences can
be covered by k paths, one for each sequence, and thus it will
have the arc-width at most k. As we discuss in Section 4, a DAG
with arc-width k has treewidth (and pathwidth) at most k, and
thus acyclic pangenomes assembled from a small number of
genomes are suitable inputs to our algorithm. Nonetheless, it
should be noted that pangenome graphs containing cycles are
also used (Li et al., 2020), and these can be handled by our
algorithm only if their treewidth is small. In a preliminary version
of this work, we studied DAGs of small pathwidth (Herencsárová
and Brejová, 2023), which is a more restricted class than the
graphs of small treewidth considered here.

3 Maximum-scoring path sets on
series-parallel graphs

In this section, we first formally define our problem, review the
known algorithm for the problem on sequences and show a simple
new algorithm for computing it on directed acyclic series-parallel
graphs. This algorithm is practical, as series-parallel graphs include
graph classes used in pangenomics (see Section 3.3), but the
algorithm also serves as a simple special case for the more
complex algorithm for graphs of bounded treewidth described in
the following sections.

3.1 Problem definition

Suppose we are given a directed graphG on vertices v1, . . ., vn, where
each vertex vi has weight w(vi) (either positive, negative, or 0), and a
constant c≥ 0. The scorew(π) of path π consisting of verticesu1, . . ., uℓ is
defined as w(π) � −c +∑ℓ

j�1w(uj). Constant c is thus a penalty for
starting a path. Our goal is to find the maximum-scoring path set
(MSPS), which is a set of vertex-disjoint (simple) paths {π1, . . ., πℓ} with
maximum total score ∑iw(πi). Note that in most of this paper we
consider graph G to be directed, although one can also define the MSPS
problem on undirected graphs.

The MSPS problem can be trivially proved to be NP-hard on
general graphs by a reduction from the Hamiltonian path problem.
Namely, a graph has aHamiltonian path if and only if there is a solution
to the MSPS problem with score at least n − c on the same graph with

vertex weights all equal to 1 and penalty c such that 0 < c < n. This
motivates our approach of studying the problem on special graph
classes in order to obtain polynomial-time algorithms.

3.2 Relationship of the MSPS to maximum-
scoring segment sets

As mentioned above, the MSPS is a direct generalization of the
problem studied by Csűrös (2004) of finding maximum-scoring
segment sets in a sequence of scores to graphs. In particular, when
we consider graph G to be a simple path of vertices v1, . . ., vn, the
MSPS task is to select segments of this path (or disjoint subpaths)
that maximize the overall score. In this case, the task can be solved by
a simple dynamic programming algorithm, which was introduced in
Lemma 2 by Csűrös (2004).

Namely, consider subproblemsM[i, j] for all 1 ≤ i ≤ n and j ∈ {0,
1} defined as the solution score of the MSPS problem on the
subgraph defined by vertices v1, . . ., vi with the additional
constraint that:

• vertex vi is used in one of the paths in the chosen path set if
j = 1, and

• vertex vi is not used in any of the chosen paths if j = 0.

Clearly, the score of the solution of the MSPS problem is simply
max{M[n, 0], M[n, 1]}.

By definition,M[1, 0] = 0 andM[1, 1] = w(v1) − c. For all 1 < i ≤
n, the subproblems M[i, j] can be computed as:

M i, 0[] � max M i − 1, 0[],M i − 1, 1[]{ }
M i, 1[] � max M i − 1, 0[] + w vi() − c,M i − 1, 1[] + w vi(){ }.

Note that when computingM[i, 0], we consider the case of starting a
new path at vi only when vi−1 was not used in a path. We can do this
because if one path ends at vi−1 and another starts at vi, we can
instead replace them with a single path and increase the score by c ≥
0. This recurrence leads to an O(n)-time algorithm for solving the
MSPS for path graphs.

3.3 Series-parallel graphs

To illustrate how to extend this algorithm to more general
graphs, we now consider series-parallel graphs. These graphs
take their name from their resemblance to electrical circuits,
which can be connected in series or in parallel. In particular, we
will consider two-terminal series-parallel (TTSP) directed
multigraphs (Valdes et al., 1982). A single edge (s, t) with s ≠
t is a TTSP graph, and its endpoints s and t are called its
terminals. Given two series-parallel graphs G1 and G2 whose
terminals are s1 and t1 and s2 and t2, respectively, we can
combine them into a larger series-parallel graph G3 either by
merging t1 and s2 and taking s1 and t2 as G3’s terminals
(connecting G1 and G2 in series) or by merging s1 and s2 into
s3 and t1 and t2 into t3 and taking s3 and t3 as G3’s terminals
(connecting G1 and G2 in parallel). Note that multiple edges
between a pair of vertices may originate from parallel
composition, but multiplicity of an edge makes no difference

Frontiers in Bioinformatics frontiersin.org03

Brejová et al. 10.3389/fbinf.2024.1391086

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1391086

for our problem. Also note that TTSP directed graphs are acyclic,
with all paths going in the direction from terminal s to terminal t.

TTSP graphs arise quite naturally in computational
pangenomics. In particular, one commonly used pangenome
representation is elastic-degenerate strings (EDSs), which are
strings containing elastic-degenerate symbols. An elastic
degenerate symbol is defined as a set of strings, potentially of
different lengths. An EDS represents a set of strings; each string
from this set is obtained by choosing one of the strings from each
elastic degenerate symbol and concatenating them. We can easily
convert an EDS into a graph in which each element of each elastic
degenerate symbol is a separate path with one vertex per symbol (see
Figure 1). These paths join at both ends in auxiliary vertices
representing empty strings which are shared between successive
pairs of symbols. The graphs obtained from EDSs by this
transformation are a special case of the TTSP directed graphs.
One can also further generalize EDSs by allowing nesting, where
each string inside a degenerate symbol could be either a simple string
or a set of strings written in the form of a generalized EDS. Such
generalized EDSs were already considered by researchers in this area
(N. Pisanti, personal communication) and can be captured by TTSP
directed graphs.

TTSP graphs can be represented by a binary decomposition tree
(Valdes et al., 1982) with G at the root, the edges in G at the leaves,
and a subgraph H of G at each internal node such that H is obtained
by connecting the subgraphs H1 and H2 at its children by a series or
parallel operation. We will call the subgraphs represented by nodes

of the tree modules. An example of a TTSP directed graph and its
tree decomposition is shown in Figure 2. Also note that the tree is
not necessarily unique. TTSP graphs can be recognized in linear
time and the decomposition tree can also be computed in linear time
(Valdes et al., 1982), but in case of a graph built from an EDS or its
generalization we can obtain the decomposition tree in a
straightforward way while constructing the graph.

3.4 MSPS on series-parallel DAGs

Now, we consider the MSPS problem on TTSP directed graphs.
We assume that graph G has already been decomposed into a tree of
modules as outlined in the previous section. We will again employ
dynamic programming. For each module H, we will compute four
subproblems specifying if source s and sink t are used in the solution.
Namely, let M[H, us, ut] be the solution score of the MSPS problem
for moduleH, where us is a binary value indicating if s is used and ut
is a binary variable indicating if t is used.

The computation proceeds from smaller modules towards the
whole graph. Trivial modules consist of a single edge from s to t and
their values are computed trivially (for M[H, 1, 1] it is optimal to
connect s and t to a single path):

M H, 0, 0[] � 0
M H, 1, 0[] � w s() − c
M H, 0, 1[] � w t() − c
M H, 1, 1[] � w s() + w t() − c

If moduleH is a series composition of modulesH1 andH2 joined
to module H by identifying source s2 with target t1 then

M H, us, ut[] � max
M H1, us, 0[] +M H2, 0, ut[],
M H1, us, 1[] +M H2, 1, ut[] − w t1() − c().{

The first row corresponds to the case when t1 is not used in the
solution. The second row corresponds to the case when it is used. Its
weight and the path penalty were already accounted for in both
subproblems, so they are subtracted to avoid double counting. Note
that the case when a path starts or ends at t1 is accounted for by the
second row of the formula as both subproblemsM[H1, us, 1] andM
[H2, 1, ut] include the possibility of a solution in which t1 is a path of
length 0. Of course, it is possible that the optimal solution of the
corresponding subproblem will connect t1 to a longer path, but then

FIGURE 1
An example of a multiple sequence alignment with three sequences (A), its representation as an EDS (B) and the corresponding TTSP graph (C). The
figure also shows an alternative representation of this alignment as a generalized EDS (D), in which the first degenerate symbol has a nested degenerate
symbol inside and the corresponding graph (E).

FIGURE 2
An example of TTSP directed graph and its decomposition tree.
Internal nodes of the decomposition are labelled by character S or P
denoting series and parallel composition, respectively and by a set that
can be used as a bag in a tree decomposition (see Definition 1).

Frontiers in Bioinformatics frontiersin.org04

Brejová et al. 10.3389/fbinf.2024.1391086

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1391086

such a longer path is also better than a path of length 0 as a part of
the solution for M[H, us, ut].

Similarly, if module H is a parallel composition of modules H1

and H2 joined to module H by identifying sources s1 and s2 to s and
targets t1 and t2 to t, we can compute the corresponding
subproblems as follows. First, if both s and t are unused in H,
they must be unused in both H1 and H2:

M H, 0, 0[] � M H1, 0, 0[] +M H2, 0, 0[].
Second, if only vertex s is used, we will use the same version of the
subproblem from one submodule, allowing a path to potentially
continue from s in this module, but from the other submodule we
take a solution which does not use s at all.

M H, 1, 0[] � max
M H1, 1, 0[] +M H2, 0, 0[],
M H1, 0, 0[] +M H2, 1, 0[].{

Computation of M[H, 0, 1], where only t is used, is symmetrical.
Finally, when both s and t are used in a path, we apply the same
reasoning at both ends, thus considering four options.

M H, 1, 1[] � max

M H1, 1, 1[] +M H2, 0, 0[],
M H1, 0, 0[] +M H2, 1, 1[],
M H1, 1, 0[] +M H2, 0, 1[],
M H1, 0, 1[] +M H2, 1, 0[].

⎧⎪⎪⎪⎨⎪⎪⎪⎩
The above recurrences straightforwardly lead to a linear-time
algorithm for computing the MSPS on series-parallel
directed graphs.

3.5 MSPS on series-parallel undirected and
cyclic graphs

TTSP graphs are also studied in an undirected version, where the
base case is an undirected edge connecting s and t, while the series
and parallel composition operations remain the same. Although
pangenomic graphs are more naturally represented as directed
graphs, we note that our algorithm can be extended to the
undirected TTSP graphs. It needs to consider more cases,
because a terminal vertex (s or t) can be used inside a module
either as an endpoint of a path or as a point in the middle of a path,
and this restricts possible combinations with partial solutions in the
other module (see Figure 3). In addition, if both s and t are endpoints
of a path, we need to consider whether these are in fact ends of the
same path or two separate paths. This helps us to avoid creating a
cycle when attaching two modules in parallel. Although more

complex, the algorithm for undirected case is fundamentally
similar to the simple algorithm for TTSP directed graphs
described above. Both algorithms use a modular decomposition
of the graph and consider all combinations of necessary features of a
partial solution in each module. As only a constant number of
combinations is considered for each module, the running time
remains linear. This leads us naturally to consider a more general
graph decomposition, which we introduce in the following section.
Our results there do not depend on graphs being directed or acyclic
so, in particular, they apply to undirected series-parallel graphs.

4 Treewidth of a graph

The basic algorithm on paths from Section 3.2 can be
generalized to directed trees. The case of a rooted directed tree
with all edges directed consistently either from the root towards
leaves or in the opposite direction can be solved quite easily in a
bottom-upmanner. However, trees themselves are not very useful as
a pangenome representation. We therefore now extend the
algorithm to a generalization of trees, namely, the graphs of a
bounded treewidth, introduced by Robertson and Seymour
(1986). In this section, we describe the treewidth parameter and
its connections to pangenome graphs. In the next section, we
provide the linear-time algorithm for MSPS on directed or
undirected graphs of constant treewidth.

Definition 1. A tree decomposition of a graph G = (V, E) is a tree
(X , I) where I is the set of tree edges and X is the set of tree vertices;
each tree vertex Xi ∈ X is a subset of V. The decomposition has to
satisfy the following conditions:

1. each vertex v ∈ V belongs to at least one Xi ∈ X ,
2. for each edge e ∈ E, both its endpoints belong together to at least

one Xi ∈ X ,
3. if vertex v ∈ V belongs to both Xi and Xj, then v also belongs to

each Xk on the unique path between Xi and Xj in the tree (X , I).

To avoid confusion between vertices of G and vertices of the
decomposition tree, we will call tree verticesXi ∈ X bags. The width
of a tree decomposition (X , I) is maxXi∈X |Xi| − 1 and the treewidth
of a graph G is the minimum width over all tree decompositions of
G. An example of a graph and its tree decomposition is shown in
Figure 4. A path decomposition is a special case of a tree
decomposition where tree (X , I) is a single path of bags. The

FIGURE 3
An example of a TTSP undirected graph and a single path forming
a potential solution shown as thicker edges. Both the source s and
target t are internal vertices of the path. FIGURE 4

A graph and its tree decomposition of width 3.

Frontiers in Bioinformatics frontiersin.org05

Brejová et al. 10.3389/fbinf.2024.1391086

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1391086

pathwidth of a graph is then the minimum width over all path
decompositions.

Many NP-hard problems can be solved efficiently on graphs
with constant treewidth (Arnborg et al., 1991; Bodlaender, 1997), if a
tree decomposition of a small width is provided as a part of the
input. The problem of determining a treewidth of a graph is NP-
hard (Arnborg et al., 1987), but for a constant k, it is possible to find
a tree decomposition of width at most k (if it exists) in linear time
(Bodlaender, 1996).

It is easy to see that a tree (or a forest) has treewidth 1, because
we can create a decomposition in which each bag contains endpoints
of a single edge. Series-parallel graphs have treewidth at most 2
(Brandstädt et al., 1999), and their tree decomposition closely
mirrors the decomposition into modules described in Section 3.3.
Namely, we create a bag for each node of the decomposition tree. For
leaves, the bag will contain endpoints of a single edge. For internal
nodes, the bag will contain the sources and sinks of both
submodules, and thus will have size 2 for parallel composition
and 3 for serial composition (see Figure 2).

Tomescu et al. (2015) introduce the notion of arc-width which is
the smallest number of (possibly overlapping) paths needed to cover
all edges of a directed graph. For simplicity, we will assume that the
paths cover also all vertices of the graph, which is automatically true
in all graphs without isolated vertices. The arc-width of a DAG can
be computed in polynomial time (Tomescu et al., 2015). If the arc-
width is constant, it can be even found in time linear in the size of the
graph by subdividing each edge by a new vertex and using recent
parameterized algorithms for minimum path cover (Cáceres et al.,
2022). Note that if we have a pangenome in the form of a DAG
constructed from a multiple sequence alignment of k sequences, it
will typically have arc-width at most k, because each sequence in the
alignment corresponds to some path in the graph and each edge of
the graph belongs to one of these paths. If the sequences in the
pangenome have a lot of shared parts, the arc-width may be even
lower than k. It is reasonable to assume that the paths corresponding
to individual sequences will be stored when constructing the
pangenome graph. This leads us to the following decomposition
algorithm for such graphs.

Lemma 1. Any DAG G with arc-width k has both pathwidth and
treewidth at most k and the corresponding path decomposition can
be computed in O(nk) time provided the k paths covering all edges
are given.

Proof. Let v1, . . ., vn be the vertices of G in a topological order,
which is an order such that for each edge (vi, vj) we have i < j. A
topological order can be computed in time linear in the size of the
graph, and as our graph has at most nk edges, the running time is
O(nk). Each of the k input paths is a subsequence of this
topological order.

For each vertex vi we create a bag Xi that contains vi and for each
input path π it also contains the last vertex among v1, . . .vi−1 that
belongs to π (if any). To form the path, we connect bags in the order
X1, X2, . . ., Xn. The size of each bag is at most k + 1, and we will prove
that they satisfy all conditions from Definition 1. Clearly, the bags
cover all vertices of G. Each edge (vj, vi) is covered by some path, and
therefore vj will be in bag Xi due to vj being the last vertex on this
particular path before vi. Finally, consider bags containing some
vertex vi. The first of them is Xi. Vertex viwill be in Xj for j ≥ i as long

as at least one path passing through vi does not contain any of the
vertices vi+1, . . ., vj−1. This is true up to some Xk, and thus bags
containing vi form a subpath starting at Xi and ending at Xk, which
implies the third condition of Definition 1.

Bags can be formed by a simple sweep along all paths
simultaneously, at vertex vi advancing a pointer on all paths
containing it. This can be done trivially in O(nk) time, where k is
the number of paths.

5 MSPS on graphs of constant
treewidth

In this section, we show our algorithm that computes MSPS on a
graph of constant treewidth k, provided it is given a tree
decomposition of width k on input. As is often the case for
algorithms on graphs with constant treewidth, the running time
will be linear in n, but superexponential in k. We will consider
primarily directed graphs but we note throughout the text how it can
be adapted to undirected graphs. Note that we do not require
directed graphs to be acyclic. For simplicity, we will assume that
the graph does not contain self-loops or parallel edges, as these are
not needed to obtain an optimal solution of the MSPS problem.

5.1 Preliminary observations and
preprocessing

First we will do several preprocessing steps to convert the input
graph and its tree decomposition to a form more convenient for our
algorithm, and we will solve a slightly modified version of the
problem on this preprocessed graph, but the result can be
converted to the optimal solution of the original problem on the
original graph. Namely, we will consider a variant of the MSPS
problem where the solution may contain a mix of paths and cycles
(each path or cycle uses each vertex at most once). This is equivalent
to the original problem, as each cycle can be changed into a path by
omitting any one of its edges without changing the score. Further, we
will allow only non-trivial paths (or cycles) with at least one edge in
the solution. This disallows solutions where a vertex of weight at
least c is considered as a separate path of length 0. However, we can
modify the original graph by creating an auxiliary vertex v′ with
weight 0 for each original vertex v with weight at least c and

FIGURE 5
The graph and its tree decomposition from Figure 4 after
preprocessing, assuming that b was the only vertex with weight
greater than penalty c. Note that bag {a, b, c, d} originally had three
children, and thus it was duplicated during preprocessing to
obtain a binary tree. Terminals are underlined in each bag.

Frontiers in Bioinformatics frontiersin.org06

Brejová et al. 10.3389/fbinf.2024.1391086

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1391086

connecting the pair (v, v′) by an edge. This change does not change
the treewidth of the graph, and the tree decomposition can be
extended by a new leaf bag {v, v′} connected to one of the bags
containing v (see Figure 5). A solution containing edge (v, v′) in the
preprocessed graph will be converted to contain v alone in the final
answer (this is possible as there is no outgoing edge from v′ and thus
a path must end there).

After these changes, we can characterize a potential solution of
the problem purely as a set of edges such that each vertex is incident
to at most one incoming and at most one outgoing edge (or, for
undirected graphs, at most two edges in total). The score of a
solution is the sum of weights of vertices that are incident to at least
one edge minus penalty c for each connected component in the
subgraph formed by these edges.

Consider a tree decomposition rooted in an arbitrary bag.
Without loss of generality we can assume that the tree of the
decomposition is binary, that is, each bag has at most two
children. If bag X has more than two children, we can make
additional copies of the bag, connect them to a binary tree, and
place the children of the original X to the leaves of this new tree
structure, which will replace X. In addition, we will add auxiliary
leaves containing empty bags so that each nonempty bag of the
decomposition has exactly two children (see Figure 5). These
changes will not asymptotically increase the number of bags,
because the number of new empty bags will be at most twice the
number of the original bags and the number of bags added to
replace high-degree nodes is less than the number of the original
bags (for a bag with k children we add k − 2 new bags). The two
children of any internal node of the tree will be arbitrarily labeled
as left and right.

Finally, the definition of a tree decomposition guarantees that
for each edge there is at least one bag where both its endpoints co-
occur, but there could be multiple such bags. For the purpose of our
algorithm, we will assign each edge to exactly one of those bags. Each
bag thus can be considered as a set of vertices and edges between
those vertices.

Consider a bag X with bag Y as its parent in the tree
decomposition. The vertices in X ∩ Y will be called terminals of
X, in analogy with terminals of the parallel-series graphs. By the
third property of tree decomposition, non-terminal vertices of X
occur only in the subtree rooted at X, while terminals are the vertices
which may be connected to the rest of the graph. In the root, we can
consider an empty set of terminals (as if the parent of the root was
another auxiliary empty bag).

5.2 Algorithm overview

We will process the bags of the decomposition bottom-up and
for each bag X compute quantityM[X, C], where C is a configuration
determining the behaviour of the solution paths at the terminals of
X. Value M[X, C] is the best solution considering only edges in the
bags of the subtree rooted at X and obeying constraints in
configuration C.

A configuration for bag X with the set of terminals T is
specified as follows. Each terminal v has at most two incident
edges in the solution; we will therefore consider two slots for
edges per terminal. In directed graphs, one slot is for an incoming

edge and one for an outgoing edge. The slot for an edge consists of
the following:

(a) Information whether the slot is used or not (for example, in
the slot for incoming edge of vwe specify whether the solution
contains an edge ending in v).

(b) If the slot is used, let us follow (possibly backwards) the path
or cycle from v along this edge and let u be the first vertex
from set T wemeet. We store this vertex u or an indicator that
such a vertex does not exist. We will say that this slot
points to u.

Each slot thus has |T| + 2 possible values: all terminals and two
special indicators for an empty slot and the last vertex from T. There
are 2|T| slots, leading to an upper bound of (|T| + 2)2|T| on the
number of configurations. Two example configurations are shown
in Figure 6.

The algorithm starts in the leaves of the tree, which have empty
auxiliary bags, and thus they have a single empty configuration C,
and M[X, C] = 0. The algorithm then proceeds towards the root. In
the root, we have again only a single configuration, and the valueM
[X, C] for this configuration will be the optimal score for the
whole graph.

Consider now bag X with the set of terminals T, which forms an
internal node of the decomposition tree with children X1 and X2. To
compute values M[X, C], we will iterate over a bigger set of more
detailed configurations, which we call extended configurations. An
extended configuration has two slots for every vertex of X (not only
the terminals) and for each slot it specifies one of 3|X| + 4
possibilities as follows:

(a) Information whether the edge occupying the slot belongs to
the left subtree of the decomposition, the right subtree, bag X
or slot is unused (4 options in total).

(b) If the slot is used, let us follow the path from the current vertex
along this edge and let u be the first vertex from X we meet.
We store this vertex u or an indicator that such a vertex does
not exist (in total, |X| + 1 possible values if one the first three
options is used above). We will say that this slot points to u via
left subtree, via right subtree or via X, depending on the
indicator in part (a).

The number of extended configurations is upper-bounded by
(3|X| + 4)2|X|. However, some extended configurations are not
valid and thus do not need to be considered by the algorithm; we
describe the subroutine is_valid for determining if an
extended configuration is valid in the next subsection. In
undirected graphs, some extended configurations are
equivalent as the two slots for each vertex are symmetrical.

For each extended configuration E we will compute the
optimal score M′[X, E] over solutions within the current
subtree that obey constraints given by E. There is only one
configuration Ci in each child Xi which is consistent with E,
and this Ci can be easily computed using subroutine child_

conf below. We can therefore add up pre-computed scores M
[Xi, Ci] for both children of X. However, we need to further add or
subtract vertex weights and penalties to account for the overall
solution. Namely, we add the weights of all vertices which are

Frontiers in Bioinformatics frontiersin.org07

Brejová et al. 10.3389/fbinf.2024.1391086

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1391086

adjacent to at least one edge in bag X but are not adjacent to any
edge in the subtrees rooted at X1 and X2. These vertices can be
easily determined from the extended configuration E. To avoid
double counting, we subtract the weights of vertices which were
used in both subtrees. Finally, we compute how many penalties
we need to add or subtract by checking how many paths from
subtrees are now connected to bigger components and how many
new paths or cycles are added. This is done using subroutine
penalties below.

Each M[X, C] is the maximum of M′[X, E] over extended
configurations E which are consistent with C. For each E we can
easily compute its unique consistent C using subroutine
reduce_conf below. If a configuration C is not consistent
with any valid extended configuration E, we will consider its score
M[X, C] to be −∞. TableM′ does not need to be stored explicitly,
but each computed value ofM′ can be directly used to update the
corresponding entry of M. For tracing back the actual paths, we
would store for each configuration C also the best consistent
extended configuration E from which its score was copied. This
extended configuration can be used to infer configurations of the
children (using subroutine child_conf) as well as edges of X
used in the solution (these are stored in individual slots of E as
pointers to another vertex via the current bag X).

5.3 Additional details

In this section, we describe the four subroutines introduced in
the algorithm overview.

Subroutine is_valid: Given an extended configuration E
of bag X, we want to check whether this configuration is valid,
meaning that it does not impose contradictory constraints on the
solution and correctly uses edges of X. Namely, for all vertices of
X we will check the following. If one of the slots of some vertex v ∈
X points to vertex u via subtree Xi, then also u has to point to v via
the same subtree and both u and vmust belong to this subtree. To
prove that this must be the case in a valid configuration, consider
the path from u to v (the case when the path is directed from v to u
is symmetrical). If this path consists of a single edge, the claim
clearly holds. Otherwise there are some intervening vertices on

the path. These vertices do not belong to X, because v is defined as
the first vertex from X on the path. All these vertices must be from
the subtree rooted at Xi, because the edge leaving u is from this
subtree and this subtree is connected to the rest of the
decomposition tree only through bag X. This implies that the
edge entering v is also from this subtree, which is what we needed
to prove.

Similarly, u and v can also point to each other via an edge
from X, and such an edge has to exist in bag X. Since we also allow
cycles, vertex v can point to vertex u twice, and u must then also
point to v twice. For directed graphs these reciprocal pointers
must have a correct orientation; for undirected graphs we
consider the two slots as equivalent and we must check if they
can be correctly paired. Note that even some valid extended
configurations will have the score of −∞, because the set of vertex
connections specified in the configuration may be unachievable
using the edges of the graph.

Subroutine reduce_conf: The goal of this step is to take an
extended configuration E of bag X and compute its corresponding
configuration C. We will take all terminals and their edge slots and
reduce their stored values from four options to the less detailed two
options used in a configurations. If the slot is used, E also points to
the next vertex from X on the path. In C, we need to point to the first
vertex from a potentially smaller set T of terminals, which is found
by following these pointers in E until we arrive at a terminal. Note
that to follow the pointers, we have to determine in each vertex,
which of its two slots points back to the vertex we came from and
which points forward.

Subroutine child_conf: The goal of this step is to take an
extended configuration E of bag X and to compute the configuration
Ci of its child Xi consistent with E. Let Ti be the set of all terminals of
Xi. Note that Ti ⊆ X. Configuration E specifies for each slot whether
this slot is occupied by an edge in subtree Xi, which is the binary
option needed inCi. If the slot is thus occupied, the pointer will point
to the first vertex of X on the path, which is in this case also the first
vertex of Ti, and so we store it in Ci.

Subroutine penalties: We are given an extended
configuration E of bag X, and we want to compute how many
penalties c should be added or subtracted. Some connected
components in the solution specified by M′[X, E] do not contain

FIGURE 6
An example of two partial solutions (1) and (2) and their corresponding configurations and extended configurations when processing bag X= {c, d, g}
in the tree decomposition from Figure 5. The relevant part of the decomposition tree is shown here. Assuming that each edge is placed to the highest bag
containing both of its endpoints, the subtree rooted in X contains all edges shown in the graph on the left, except for edge (c, d), which is considered in the
root bag. Bag X contains edges (c, g), (d, g). For each configuration and extended configuration we show the values stored in incoming and
outgoing slots.

Frontiers in Bioinformatics frontiersin.org08

Brejová et al. 10.3389/fbinf.2024.1391086

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1391086

any vertices from X. These are completely contained in one of the
subtrees of X and are accounted for there. We can easily count the
remaining components by following the pointers connecting
successive vertices of X on the paths or cycles. We then subtract
value c from the score for each found component. Next, we take the
configurations C1 and C2 consistent with E and corresponding to the
two children X1 and X2 of bag X. Following the pointers stored in
each Ci, we can again count the number of components that use at
least one of the terminals of bag Xi within the partial solution for the
respective subtree. We add back penalty c for each such component,
as it was considered when examining E either as a separate
component or as a part of a bigger component containing also
paths from the other subtree and/or edges of bag X.

5.4 Time and space complexity

We are given a graph with n vertices and its tree
decomposition of width w. We will assume that the
decomposition has O(n) bags, which is always possible to
achieve (Arnborg et al., 1991). Note that the number of edges
of a graph with treewidth w is at most wn (Arnborg et al., 1991).
Graph preprocessing can be done in O(wn) time and the number
of bags will remain O(n). To allow checking if vertices and edges
belong to particular bags and to convert from a graph-wide vertex
number to a vertex number used within a bag, we can build
appropriate hash tables during graph preprocessing. Let f (b) be
an upper bound on the number of the extended configurations for
a bag with b vertices. We proved above that f (b) ≤ (3b + 4)2b. The
algorithm iterates through these extended configurations and for
each makes a constant number of calls to the subroutines
described in the previous section. These subroutines do mostly
trivial operations on configurations, and each runs in O(b) time.
This includes subroutine penalties which needs to find
connected components in a graph with O(b) vertices
and edges formed by slot pointers. Thus given a graph with
n vertices and its tree decomposition with treewidth w and O(n)
bags, the running time of the algorithm is O(w · f (w + 1) · n),
which is O(n) if w is a constant. For space, let g (t) be an upper
bound on the number of configurations for a bag with b vertices
and t terminals; we proved that g(t) ≤ (t + 2)2t. For each
configuration, we store its score and the optimal extended
configuration in space of size O(b). As both b and t are upper-
bounded by w + 1, the overall space for a decomposition with
treewidth w and O(n) bags is O(w · g (w + 1) · n), which is also
O(n) for constant w. Note that a careful implementation could
avoid iterating through many invalid configurations and extended
configurations, thus significantly reducing the superexponential
upper bounds f(w + 1) and g(w + 1).

6 Conclusion

In this paper, we have introduced the maximum-scoring path
sets problem (MSPS) which generalizes previously established
maximum-scoring segment sets problem from sequences to
graphs. The maximum-scoring segment sets problem has been
shown to encompass many practical problems in analysis of

biological sequences (Csűrös, 2004), and our new MSPS problem
directly generalizes these applications to pangenome graphs.

We have also provided a general algorithm for solving MSPS
with time complexity linear in the size of the graph but
superexponential in the treewidth parameter of the graph. The
algorithm is applicable to both directed and undirected graphs,
including graphs with cycles, as long as the treewidth is small. We
note that some established representations of pangenome graphs
(including elastic degenerate strings and directed acyclic graphs with
a constant arc-width) indeed have a small treewidth parameter
which makes the application of our algorithm practical in
these cases.

There are multiple avenues for future work in this area. First, at
present there is no single universally accepted method for
transforming a set of sequences or a multiple alignment to a
pangenome graph. Indeed, the same set of sequences can be
potentially represented by many different graphs with quite
different properties. The running time of downstream analysis
algorithms is influenced by some of these properties, including
the treewidth considered in our work as well as other parameters
considered previously (Tomescu et al., 2015; Mäkinen et al., 2019;
Chang et al., 2020; Chandra and Jain, 2023). To this end, it would be
interesting to conduct a practical comparison of treewidth and other
relevant parameters in pangenome graphs constructed by currently
available software tools from real biological sequences and study
whether modifications in construction algorithms lead to more
favorable values of such parameters.

Even if a pangenome graph as a whole does not have a small
treewidth but only a few bags are large, with some modifications
our algorithm may still be applicable. Parts of the computation
corresponding to the large bags may be either replaced by
heuristics reducing the set of configurations considered, or
replaced by methods such as integer linear programming.
With such approaches it should be possible to develop a
practical software tool applicable to many instances of the real
pangenome graphs.

Our generalization of the maximum-scoring segments sets
replaced segments with paths, which seems to be a natural
extension, as in acyclic pangenomes the original genome
sequences indeed correspond to paths. However, in a
pangenome with cycles, a sequence with repeated substrings can
be represented by a walk with some vertices repeating multiple
times. It might be therefore desirable to consider versions of the
problem allowing such walks, but the problem needs to be
formulated with care to avoid unwanted optima in which a
cycle with a positive score is repeated infinitely many times. In
diploid organisms, a typical chromosome is present in two similar
copies, which motivates further extension of looking for two
separate sets of disjoint paths or walks, one per haploid
genome. An appropriate scoring of such solution sets to avoid
trivial outcomes is also a challenge.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Frontiers in Bioinformatics frontiersin.org09

Brejová et al. 10.3389/fbinf.2024.1391086

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1391086

Author contributions

BB: Conceptualization, Formal Analysis, Methodology, Project
administration, Supervision, Writing–original draft, Writing–review
and editing. TG: Conceptualization, Formal Analysis, Writing–original
draft, Writing–review and editing. EH: Formal Analysis, Investigation,
Writing–original draft. TV: Conceptualization, Formal Analysis,
Writing–original draft, Writing–review and editing.

Funding

The authors declare that financial support was received for the
research, authorship, and/or publication of this article. BB and TV
funded by Slovak Research Agency VEGA 1/0538/22, Slovak
Research and Development Agency APVV-22-0144. TG funded
by NIH/NHGRI grant R01HG011392 to Ben Langmead and by
NSERC Discovery Grant RGPIN-07185-2020. This research was
also supported by grants from the European Union’s Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No. 872539 (PANGAIA) and
No. 956229 (ALPACA).

Acknowledgments

The authors would like to thank the referees for many useful
comments and Rastislav Královič for suggesting studying series-
parallel graphs.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Arnborg, S., Corneil, D. G., and Proskurowski, A. (1987). Complexity of finding
embeddings in a k-tree. SIAM J. Algebraic Discrete Methods 8, 277–284. doi:10.1137/
0608024

Arnborg, S., Lagergren, J., and Seese, D. (1991). Easy problems for tree-decomposable
graphs. J. Algorithms 12, 308–340. doi:10.1016/0196-6774(91)90006-k

Bengtsson, F., and Chen, J. (2007). Computing maximum-scoring segments optimally.
Luleå, Sweden: Luleå tekniska universitet.

Bodlaender, H. L. (1996). A linear time algorithm for finding tree-decompositions of
small treewidth. SIAM J. Comput. 25, 1305–1317. doi:10.1137/s0097539793251219

Bodlaender, H. L. (1997). “Treewidth: algorithmic techniques and results,” in
International symposium on mathematical foundations of computer science
(Springer), 19–36.

Brandstädt, A., Le, V. B., and Spinrad, J. P. (1999). Graph classes: a survey.
Philadelphia, PA, United States: SIAM.

Cáceres, M., Cairo, M., Mumey, B., Rizzi, R., and Tomescu, A. I. (2022). “Sparsifying,
shrinking and splicing for minimum path cover in parameterized linear time,” in
Proceedings of the 2022 annual ACM-SIAM symposium on discrete algorithms (SODA)
(Philadelphia, PA, United States: SIAM), 359–376.

Chandra, G., and Jain, C. (2023). “Sequence to graph alignment using gap-sensitive
co-linear chaining,” in International conference on research in computational molecular
biology (RECOMB2023) (Springer), 58–73.

Chang, X., Eizenga, J., Novak, A. M., Sirén, J., and Paten, B. (2020). Distance indexing
and seed clustering in sequence graphs. Bioinformatics 36, i146–i153. doi:10.1093/
bioinformatics/btaa446

Computational Pan-Genomics Consortium (2018). Computational pan-genomics:
status, promises and challenges. Briefings Bioinforma. 19, 118–135. doi:10.1093/bib/
bbw089

Coppe, A., Danieli, G. A., and Bortoluzzi, S. (2006). REEF: searching REgionally Enriched
Features in genomes. BMC Bioinforma. 7, 453–457. doi:10.1186/1471-2105-7-453

Croucher, N. J., Page, A. J., Connor, T. R., Delaney, A. J., Keane, J. A., Bentley, S. D.,
et al. (2015). Rapid phylogenetic analysis of large samples of recombinant bacterial
whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15. doi:10.1093/nar/
gku1196

Csűrös, M. (2004). Maximum-scoring segment sets. IEEE/ACM Trans. Comput. Biol.
Bioinforma. 1, 139–150. doi:10.1109/tcbb.2004.43

Deaton, A. M., and Bird, A. (2011). CpG islands and the regulation of transcription.
Genes & Dev. 25, 1010–1022. doi:10.1101/gad.2037511

Ferrari, F., Solari, A., Battaglia, C., and Bicciato, S. (2011). PREDA: an R-package to
identify regional variations in genomic data. Bioinformatics 27, 2446–2447. doi:10.1093/
bioinformatics/btr404

Garrison, E., Sirén, J., Novak, A. M., Hickey, G., Eizenga, J. M., Dawson, E. T., et al.
(2018). Variation graph toolkit improves read mapping by representing genetic
variation in the reference. Nat. Biotechnol. 36, 875–879. doi:10.1038/nbt.4227

Gawrychowski, P., and Nicholson, P. K. (2015). “Encodings of range maximum-sum
segment queries and applications,” in Combinatorial pattern matching (CPM)
(Springer), 196–206.

Gómez, R., and Wakabayashi, Y. (2020). Nontrivial path covers of graphs: existence,
minimization and maximization. J. Comb. Optim. 39, 437–456. doi:10.1007/s10878-
019-00488-w

Grytten, I., Rand, K. D., Nederbragt, A. J., Storvik, G. O., Glad, I. K., and
Sandve, G. K. (2019). Graph peak caller: calling ChIP-seq peaks on graph-based
reference genomes. PLoS Comput. Biol. 15, e1006731. doi:10.1371/journal.pcbi.
1006731

He, Z., Xu, B., Buxbaum, J., and Ionita-Laza, I. (2019). A genome-wide scan statistic
framework for whole-genome sequence data analysis. Nat. Commun. 10, 3018. doi:10.
1038/s41467-019-11023-0

Heber, S., Alekseyev, M., Sze, S.-H., Tang, H., and Pevzner, P. A. (2002). Splicing
graphs and EST assembly problem. Bioinformatics 18 (Suppl. 1), S181–S188. doi:10.
1093/bioinformatics/18.suppl_1.s181

Herencsárová, E., and Brejová, B. (2023). Identifying clusters in graph representations
of genomes. Proc. 23rd Conf. Inf. Technol. – Appl. Theory (ITAT 2023) 3498, 232–241.

Iliopoulos, C. S., Kundu, R., and Pissis, S. P. (2021). Efficient pattern matching in
elastic-degenerate strings. Inf. Comput. 279, 104616. doi:10.1016/j.ic.2020.104616

Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., and McVean, G. (2012). De novo
assembly and genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44,
226–232. doi:10.1038/ng.1028

Kulldorff, M. (1999). “Spatial scan statistics: models, calculations, and applications,”
in Scan statistics and applications (Springer), 303–322.

Li, H., Feng, X., and Chu, C. (2020). The design and construction of reference
pangenome graphs with minigraph. Genome Biol. 21, 265. doi:10.1186/s13059-020-
02168-z

Li, W., Bernaola-Galván, P., Haghighi, F., and Grosse, I. (2002). Applications of
recursive segmentation to the analysis of DNA sequences. Comput. Chem. 26, 491–510.
doi:10.1016/s0097-8485(02)00010-4

Ma, J., Cáceres, M., Salmela, L., Mäkinen, V., and Tomescu, A. I. (2023). Chaining for
accurate alignment of erroneous long reads to acyclic variation graphs. Bioinformatics
39, btad460. doi:10.1093/bioinformatics/btad460

Mäkinen, V., Tomescu, A. I., Kuosmanen, A., Paavilainen, T., Gagie, T., and Chikhi,
R. (2019). Sparse dynamic programming on DAGs with small width. ACM Trans.
Algorithms (TALG) 15, 1–21. doi:10.1145/3301312

Frontiers in Bioinformatics frontiersin.org10

Brejová et al. 10.3389/fbinf.2024.1391086

https://doi.org/10.1137/0608024
https://doi.org/10.1137/0608024
https://doi.org/10.1016/0196-6774(91)90006-k
https://doi.org/10.1137/s0097539793251219
https://doi.org/10.1093/bioinformatics/btaa446
https://doi.org/10.1093/bioinformatics/btaa446
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1186/1471-2105-7-453
https://doi.org/10.1093/nar/gku1196
https://doi.org/10.1093/nar/gku1196
https://doi.org/10.1109/tcbb.2004.43
https://doi.org/10.1101/gad.2037511
https://doi.org/10.1093/bioinformatics/btr404
https://doi.org/10.1093/bioinformatics/btr404
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1007/s10878-019-00488-w
https://doi.org/10.1007/s10878-019-00488-w
https://doi.org/10.1371/journal.pcbi.1006731
https://doi.org/10.1371/journal.pcbi.1006731
https://doi.org/10.1038/s41467-019-11023-0
https://doi.org/10.1038/s41467-019-11023-0
https://doi.org/10.1093/bioinformatics/18.suppl_1.s181
https://doi.org/10.1093/bioinformatics/18.suppl_1.s181
https://doi.org/10.1016/j.ic.2020.104616
https://doi.org/10.1038/ng.1028
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1016/s0097-8485(02)00010-4
https://doi.org/10.1093/bioinformatics/btad460
https://doi.org/10.1145/3301312
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1391086

Marchand, B., Ponty, Y., and Bulteau, L. (2022). Tree diet: reducing the treewidth to
unlock FPT algorithms in RNA bioinformatics. Algorithms Mol. Biol. 17 (8), 8. doi:10.
1186/s13015-022-00213-z

Paten, B., Diekhans, M., Earl, D., John, J. S., Ma, J., Suh, B., et al. (2011). Cactus graphs
for genome comparisons. J. Comput. Biol. 18, 469–481. doi:10.1089/cmb.2010.0252

Paten, B., Herrero, J., Beal, K., Fitzgerald, S., and Birney, E. (2008). Enredo and Pecan:
genome-wide mammalian consistency-based multiple alignment with paralogs.
Genome Res. 18, 1814–1828. doi:10.1101/gr.076554.108

Pevzner, P. A., Tang, H., and Tesler, G. (2004). De novo repeat classification and
fragment assembly. Genome Res. 14, 1786–1796. doi:10.1101/gr.2395204

Rajput, J., Chandra, G., and Jain, C. (2024). Co-linear chaining on pangenome graphs.
Algorithms Mol. Biol. 19, 4–16. doi:10.1186/s13015-024-00250-w

Rizzo, N., Cáceres, M., and Mäkinen, V. (2023). “Chaining of maximal exact matches
in graphs,” in International symposium on string processing and information retrieval
(Springer), 353–366.

Robertson, N., and Seymour, P. D. (1986). Graph minors. II. Algorithmic aspects of
tree-width. J. Algorithms 7, 309–322. doi:10.1016/0196-6774(86)90023-4

Scornavacca, C., andWeller,M. (2022). Treewidth-based algorithms for the small parsimony
problem on networks. Algorithms Mol. Biol. 17, 15. doi:10.1186/s13015-022-00216-w

Stojanovic, N., Florea, L., Riemer, C., Gumucio, D., Slightom, J., Goodman,M., et al. (1999).
Comparison of five methods for finding conserved sequences in multiple alignments of gene
regulatory regions. Nucleic Acids Res. 27, 3899–3910. doi:10.1093/nar/27.19.3899

Tomescu, A. I., Gagie, T., Popa, A., Rizzi, R., Kuosmanen, A., and Mäkinen, V. (2015).
Explaining aweightedDAGwith few paths for solving genome-guidedmulti-assembly. IEEE/
ACM Trans. Comput. Biol. Bioinforma. 12, 1345–1354. doi:10.1109/tcbb.2015.2418753

Valdes, J., Tarjan, R. E., and Lawler, E. L. (1982). The recognition of series parallel
digraphs. SIAM J. Comput. 11, 298–313. doi:10.1137/0211023

Wu, X., Liu, S., and Liang, G. (2022). Detecting clusters of transcription factors based
on a nonhomogeneous Poisson process model. BMC Bioinforma. 23, 535. doi:10.1186/
s12859-022-05090-2

Frontiers in Bioinformatics frontiersin.org11

Brejová et al. 10.3389/fbinf.2024.1391086

https://doi.org/10.1186/s13015-022-00213-z
https://doi.org/10.1186/s13015-022-00213-z
https://doi.org/10.1089/cmb.2010.0252
https://doi.org/10.1101/gr.076554.108
https://doi.org/10.1101/gr.2395204
https://doi.org/10.1186/s13015-024-00250-w
https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1186/s13015-022-00216-w
https://doi.org/10.1093/nar/27.19.3899
https://doi.org/10.1109/tcbb.2015.2418753
https://doi.org/10.1137/0211023
https://doi.org/10.1186/s12859-022-05090-2
https://doi.org/10.1186/s12859-022-05090-2
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2024.1391086

	Maximum-scoring path sets on pangenome graphs of constant treewidth
	1 Introduction
	2 Motivation
	3 Maximum-scoring path sets on series-parallel graphs
	3.1 Problem definition
	3.2 Relationship of the MSPS to maximum-scoring segment sets
	3.3 Series-parallel graphs
	3.4 MSPS on series-parallel DAGs
	3.5 MSPS on series-parallel undirected and cyclic graphs

	4 Treewidth of a graph
	5 MSPS on graphs of constant treewidth
	5.1 Preliminary observations and preprocessing
	5.2 Algorithm overview
	5.3 Additional details
	5.4 Time and space complexity

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

