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Understanding the interactions between SARS-CoV-2 and the human immune
system is paramount to the characterization of novel variants as the virus co-
evolves with the human host. In this study, we employed state-of-the-art
molecular docking tools to conduct large-scale virtual screens, predicting the
binding affinities between 64 human cytokines against 17 nucleocapsid proteins
from six betacoronaviruses. Our comprehensive in silico analyses reveal specific
changes in cytokine-nucleocapsid protein interactions, shedding light on
potential modulators of the host immune response during infection. These
findings offer valuable insights into the molecular mechanisms underlying viral
pathogenesis and may guide the future development of targeted interventions.
This manuscript serves as insight into the comparison of deep learning based
AlphaFold2-Multimer and the semi-physicochemical based HADDOCK for
protein-protein docking. We show the two methods are complementary in
their predictive capabilities. We also introduce a novel algorithm for rapidly
assessing the binding interface of protein-protein docks using graph edit
distance: graph-based interface residue assessment function (GIRAF). The
high-performance computational framework presented here will not only aid
in accelerating the discovery of effective interventions against emerging viral
threats, but extend to other applications of high throughput protein-
protein screens.
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Introduction

SARS-CoV-2 evolution over the course of the pandemic has led to sustained,
continued waves of infections. The variants of concern have shown a high degree of
mutation relative to the prevailing strain at the time of their emergence. Most research has
focused on the impact of mutations on the spike proteins’ ability to enter cells and evade
antibodies, whether the antibodies are therapeutics or induced from vaccination or
induced from prior infection (Wall et al., 2021; Willett et al., 2022). The main reason for
the focus on spike is driven by the fact that the most selective pressure on the virus is
applied to the spike and the mutations have consequences for the therapeutics that are
available. Outside of spike, the nucleocapsid (N) gene of SARS-CoV-2 has had lineage
defining mutations in each of the variants of concern (Emma, 2021). A robust platform
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FIGURE 1
Predicted binding site of CXCL12β across selected coronaviruses. The proteins are shown in cartoon style with the N protein colored as rainbow
(blue is the amino/N-terminus on the left and red is the carboxyl/C-terminus on the right in each cell) and the CXCL12β cytokine is colored in gray.
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for studying the effects of nucleocapsid mutations on viral RNA
delivery and expression has identified mutations in the
nucleocapsid gene of Alpha and Delta variants that may
contribute to higher transmissibility (Syed et al., 2021).

Another critical function of SARS-CoV-2 N is to bind and
sequester a subset of 11 cytokines in order to disrupt immune
signaling (Domingo López-Muñoz et al., 2022). Elevated
cytokine levels are part of the pathogenesis of severe COVID-
19 (Fajgenbaum, 2020). The elevated cytokine levels, a hallmark
of cytokine storm, are driven by an inability to resolve infection
rapidly and to moderate a proinflammatory immune response
(Fajgenbaum, 2020; Merad et al., 2022). The set of cytokines that
SARS-CoV-2 binds is shared with another distantly related
human betacoronavirus, HCoV-OC43, though HCoV-OC43
also binds to an additional six cytokines with high affinity
(Domingo López-Muñoz et al., 2022; Domingo López-Muñoz
et al., 2023). Binding to at least one cytokine, CXCL12β, was
determined experimentally for human betacoronaviruses SARS-
CoV and MERS-CoV in addition to SARS-CoV-2 and HCoV-
OC43. Binding of CXCL12β was shown to inhibit chemotaxis of
macrophages in a transwell culture study. Other viruses also
employ extracellular proteins that bind to specific subsets of

cytokines with high affinity, most notably the SECRET-domain
containing proteins of the poxviruses (Alejo et al., 2006; Xue
et al., 2011). The presence or absence of certain SECRET-domain
containing proteins has important consequences on the
pathogenicity of the poxvirus.

An in silico docking screen of the panel of 11 cytokines tested
experimentally against SARS-CoV-2 original reference strain and
key variants of concern was developed in the current study. The
in silico screen was set up on a high-performance computing
system. AlphaFold2-Multimer (Evans et al., 2022) and
HADDOCK (van Zundert et al., 2016) were utilized in parallel
to predict cytokine binding sites on N, as GDockScore (McFee
and Kim, 2023) and PRODIGY (Vangone and MJJ Bonvin, 2015)
were used to further assess the properties of the predicted
cytokine binding. The goals were to identify the cytokine
binding sites of the experimental cytokine hits and determine
if their binding has been impacted by continuing evolution in the
human host over the course of the pandemic. N proteins from
human betacoronaviruses and close relatives of SARS-CoV-
2 were included in the in silico screen as well to test the
conservation of cytokine binding in the broader
betacoronavirus family. Finally, we wanted to test the ability

FIGURE 2
Predicted interface between the SARS-CoV-2 WA-1 N protein and CXCL12β. The proteins are shown in cartoon style with the N protein colored as
periwinkle in the HADDOCK-predicted complex and dark magenta in the AlphaFold2 Multimer-predicted complexes (with polar interacting residues
shown as yellow sticks). The CXCL12β protein is shown in cartoon style in gray (with polar interacting residues shown as orange sticks). Residues in the
GAG binding site on CXCL12β are shown in purple (with polar interacting residues shown as magenta sticks).

TABLE 1 Correlations between AlphaFold2-Multimer and HADDOCK docking predictions across various bindingmetrics. Significant correlations are shown
in bold.

p-values/R2 HADDOCK AlphaFold2 multimer

van der Waals
energy

PRODIGY
ΔG

FoldX
ΔG

van der Waals
energy

PRODIGY
ΔG

FoldX
ΔG

HADDOCK van der Waals
Energy

0.9867 0.0830 0.0037 0.0122 0.0384

PRODIGY ΔG <0.0001 0.6095 0.8560 0.8935 0.0366

FoldX ΔG 0.0210 <0.0001 0.0515 0.0419 0.0582

AlphaFold2 Multimer van der Waals
Energy

0.6349 <0.0001 0.0713 0.5741 0.1605

PRODIGY ΔG 0.3852 <0.0001 0.1045 <0.0001 0.0161

FoldX ΔG 0.1206 0.1267 0.0548 0.0010 0.3178

Bold indicates significant p-values (alpha < 0.05) and their corresponding correlations.
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of the in silico tools to identify interactions with cytokines using
the full 64 cytokine panel utilized experimentally. The full
cytokine panel docking screen could be utilized in order to

track how evolution of N impacts this function continuing
forward in the pandemic as well test other viral proteins for
the ability to sequester cytokines.

FIGURE 3
Scatterplots of cytokine binding affinity for all cytokines with a statistically-significant correlation to genetic distance. Shown is the relationship
between the Fitch distance from the SARS-CoV-2WA1 N variant vs. HADDOCK and AlphaFold2 predicted binding affinity metrics. Each point represents a
SARS-CoV-2 variant, with themost distant points representing Omicron subvariants. Cytokines referenced in López-Muñoz et al. (2022) are denoted by †
and ‡ for WA-1/OC43 and OC43 only hits, respectively.
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Results

We predicted 17 N protein structures across six
betacoronaviruses (SARS-CoV, SARS-CoV-2, MERS-CoV,
HCoV-OC43, RaTG13 and BANAL-20-52), all of which
generally matched the expected topology of the N protein
(Peng et al., 2020). For example, the predicted structure of the
SARS-CoV-2 N WA1 strain had two structured domains that
recapitulated two crystallized domains (PDB 6M3M for the
N-terminal RNA binding domain, total RMSD 0.851Å and
6WZO for the dimerization domain, total RMSD 1.178Å) as
well as three flexible domains with low AlphaFold2 confidence
(pTM) that corresponded with the three intrinsically disordered
domains. AlphaFold2 was also used to generate the structure of
the 64 cytokines. The generated N and cytokine structures were
used as inputs for HADDOCK, located here: https://github.com/
tuplexyz/SARS-CoV-2_N-Cytokine_Docking/tree/main/
haddock/inputs.

Computing benchmarks

Running on the MIT SuperCloud high-performance
computing (HPC) environment (Reuther et al., 2018),
significant throughput was achieved for the numerous
computational docking tasks.

AlphaFold2 performance
AlphaFold2-Multimer jobs took 493 ± 21 min of walltime per

multimer run on nodes containing an Nvidia Volta V100 GPU,
which contain 5,120 CUDA cores and 640 tensor cores. To complete
the 1,088 AlphaFold2-Multimer experiments, 36 nodes were used,
completing the entire set of experiments in approximately 12 days. A
later subset was run on Ampere A100 GPUs to investigate if the
newer generation GPU would increase speedups; the mean runtime
decreased to 378min ±80 min (noting that the variability of duration
increased). The A100 GPUs have more CUDA cores but fewer
tensor cores, 6,912 and 432 respectively.

HADDOCK Performance
HADDOCK jobs took 707 ± 40min of walltime on Intel Xeon Phi

7,210 cluster nodes, which contain 64 physical cores. On Intel Xeon
Platinum 8,260 nodes, which contain 48 physical cores, HADDOCK
took 133 ± 92 min of walltime. The speedup on the Xeon Platinum
nodes was likely due to the much newer CPU architecture and higher
maximum clockspeed of the Xeon Platinum (3.9 GHz) compared to the
Xeon Phi (1.5 GHz).WhileHADDOCKperformed as quickly as 74 min
on the Xeon Platinumnodes, it had a wide range of runtimes, depending
on the cytokine and number of surface residues selected against which to
dock. Cytokines withmultiple chains (IL-12p70, IL-23, IL-27, and IL-35)
took approximately three times as long. The 1,088 HADDOCK docking
experiments were run on 64 of the Xeon Platinum 8,260 nodes,
completing the entire set of experiments in approximately 36 h.

Nucleocapsid cytokine binding sites

HADDOCK and AlphaFold2-Multimer were used to identify
potential binding sites of the cytokines with the nucleocapsid
proteins (Figure 1). CXCL12β was chosen for initial representative
structure modeling because it has been experimentally shown to bind to
HCoV-OC43 and SARS-CoV-2 WA1 nucleocapsid in bio-layer
interferometry assays (Domingo López-Muñoz et al., 2022; Domingo
López-Muñoz et al., 2023). SARS-CoV, MERS-CoV, HCoV-OC43 and
SARS-CoV-2 nucleocapsid were additionally shown to inhibit
CXCL12β dependent migration of macrophages in a transwell assay
(Domingo López-Muñoz et al., 2022; Domingo López-Muñoz et al.,
2023). For the six betacoronaviruses (using SARS-CoV-2 WA1 as the
representative strain of SARS-CoV-2), HADDOCK docked CXCL12β
to locations around the dimerization interface, with contributing
contacts from other domains of the protein. AlphaFold2-Multimer
complexed the cytokine consistently at the dimerization interface,
including interacting residues in the beta sheets of both the
nucleocapsid dimerization interface and CXCL12β.

A closer look at the HADDOCK and AlphaFold2-Multimer
docking of CXCL12β showed that HADDOCK did not include
any beta sheet residues from the dimerization interface, but

FIGURE 4
Phylogenetic tree generatedwith RAxML depicting the genetic distance of the 17 coronavirus N proteins used in this study (Colors represent the log-
transformed branch length: ln (branch length) × − 1.).
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included polar contacts with residues on either side of the interface
loop (S310, G335 and A336) (Figure 2). Other interacting residues
were located in the structured N-terminal RNA binding domain and
the flexible C-terminal region. The AlphaFold2-Multimer complex
included two polar contacts of residues directly involved in
dimerization (R319 and I320), as well as resides in the flexible
C-terminal region. Two residues on CXCL12β involved in
glycosaminoglycan (GAG) binding (H25 and R47) were involved
in the HADDOCK predicted polar contacts, whereas the GAG-
binding residues showed hydrogen bonding but no polar contacts
in the AlphaFold2-Multimer predicted complex (Panitz et al., 2016;
Crijns et al., 2020). The SARS-CoV-2 WA1 nucleocapsid CXCL12β
interaction was previously shown to be competitive with heparin
sulfate and chondroitin sulfate (Domingo López-Muñoz et al., 2022).

Cytokine strength

Across the 64 cytokines that were tested, binding affinities were
highly correlated between the AlphaFold2-Multimer predictions
and HADDOCK. However, the ranges of the scores may vary
significantly. For example, the range of the HADDOCK van der
Waals energies is [-109.82, −38.45] compared to [-56.76, −10.46] for
the AlphaFold2-Multimer predictions (measured by FoldX).
See Table 1.

Genetic distance

Correlating the cytokine binding affinity metrics with Fitch
distance of each SARS-CoV-2 variants’ N protein from the
SARS-CoV-2 WA1 N protein, there were significant positive
correlations for some of the 64 cytokines, including some which
were hits in experimental SARS-CoV-2 and/or HCoV-OC43 screens
(Domingo López-Muñoz et al., 2022; Domingo López-Muñoz et al.,
2023). Namely, CCL28, CXCL10, CXCL11, CXCL13 and
CXCL14 from the HADDOCK predictions show that the binding
Gibbs energy predicted by PRODIGY weakened as the genetic
distance of the N protein increases from SARS-CoV-2 WA1
(Figure 3 H. a). No significant trends were observed for the
predicted AlphaFold2 Gibbs energy by PRODIGY of the cytokines
from the experimental screens (Figure 3 AF. a). When correlating the
Fitch distance to predicted Gibbs energy by FoldX, only CXCL12α
showed a significant correlation of the experimental hits. For this
cytokine, both HADDOCK and AlphaFold2 predictions yield a
negative correlation with genetic distance, indicating a stronger
association with CXCL12α over the course of pandemic (Figure 3
H.b and AF. b). The correlation between Fitch distance van derWaals
energywas significant for only CCL28 of the experimental hits, again a
positive correlation predicted byHADDOCK indicating less favorable
binding (Figure 3 H.C and AF. c). Several cytokines not identified in
either experimental screen had significant positive correlations with

FIGURE 5
Bar charts depicting the graph edit distance for CXCL12β using GIRAF. (A) AlphaFold2 GED from SARS-CoV-2 WA1 N. Note, there were no interface
residues less than 3Å for SARS-CoV-2-B.1.1.7. (B) HADDOCK GED from SARS-CoV-2 WA1 N. (C) GED between AlphaFold2 and HADDOCK SARS-CoV-
2 WA1 N. (D) Number of interface residues under 3Å.
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Fitch distance. However, cytokines that were non-binders in the
screen and had increased Gibbs energy or van der Waals energy
would still be expected to be non-binders. Nine cytokines that were
negative in both screens had a significant negative correlation in one
of the three metrics of binding strength: CXCL8, CCL27, IFNλ1,
TNFα, CCL2, CCL3, IL-6, IL6Rα and IL-18BP. Experimental
validation could verify if any of these cytokines are inhibited
variants of SARS-CoV-2 N even though SARS-CoV-2 WA1 N did
not inhibit them.

A phylogenetic tree using only N protein sequences was
generated using RAxML (Figure 4). The expected phylogenetic
topology was observed of a tree generated using both reference
coronaviruses like HCoV-OC43, SARS-CoV, and MERS-CoV along
with SARS-CoV-2 variants. SARS-CoV-2 variants were grouped in a
monophyletic clade for this analysis.

Breadth of CXCL12β binding

Graph Edit Distance (GED) provided a view into how the
N-protein receptor (i.e., the binding pocket) to CXCL12β
changed between different N-proteins. A novel algorithm was
developed in order to determine GED of the bind site, named
graph-based interface residue assessment function (GIRAF). Both
AlphaFold2 and HADDOCK structures concurred with relatively
low GED of SARS-CoV-2-B.1.1 and SARS-CoV-2-B.1.617.2-DeltaA
(Figure 5A, B, respectively). AlphaFold2 had high GED for MERS-
CoV and SARS-CoV-2-BQ.1, suggesting far evolutionary distance in
the binding pocket compared to the SARS-COV2-
WA1 baseline (Figure 5A).

There was marked disagreement between AlphaFold2 and
HADDOCK for SARS-CoV-2-BQ.1 (Figure 5C). This was partly
due to the discrepancy in the number of interfacing residues on the
AlphaFold2 structure compared to the HADDOCK structure
(Figure 5D). AlphaFold2 and HADDOCK reported a similar
number of interfacing residues on other N proteins; both
agreed the number of interfacing residues on SARS-CoV-2-XBB
and SARS-CoV-2-P.1 as relatively low. AlphaFold2 reported six
residues on SARS-CoV-2-WA1 compared to HADDOCK’s
eight residues.

Discussion

In silico structural prediction and molecular docking tools were
utilized in order to interrogate the potential evolutionary change of the
interaction between SARS-CoV-2 nucleocapsid proteins and 64 human
cytokines. Other betacoronaviruses were also included in the analysis, as
several human betacoronaviruses had previously been shown to have a
similar cytokine inhibitory phenotype. Additionally, HCoV-OC43 was
shown to bind 17 human cytokines, including all 11 cytokines that SARS-
CoV-2 bound despite being distantly related (Domingo López-Muñoz
et al., 2022; Domingo López-Muñoz et al., 2023). We identified the
nucleocapsid dimerization domain as an important site of multiple
cytokine interactions, with AlphaFold2 consistently identifying the
dimerization loop specifically as the interaction site. We also
identified five cytokines from the experimental screens (CCL28,
CXCL10, CXCL11, CXCL13, CXCL14) that had significantly reduced

binding to N as SARS-CoV-2 evolved by at least one in silicometric, and
only one cytokine from the experimental screens that had increased
binding (CXCL12α). CXCL12αwas identified in theHCoV-OC43 screen
but not the SARS-CoV-2 screen; all of the hits from the SARS-CoV-
2 screen with a significant difference in predicted binding energy were
reduced. Finally, we identified nine cytokines that were negative in both
experimental screens but had increased interactions with N variants.
These cytokines could be potential new targets of inhibition by N.

We expected that interactions with N and cytokines would generally
get stronger as SARS-CoV-2 co-evolved with humans, similar to
mutations in spike increasing affinity for ACE2 (Markov et al., 2023).
Contrary to our hypothesis, we found that the many statistically
significant changes were weakening of the cytokine interaction as
mutations accumulated. Multiple variants of the Omicron group were
included in the analysis and were the most distant from the reference
WA1 strain. The decreasing capacity for inhibition of cytokine signaling
could be at least partially responsible for the decreased severity of disease
observedwithOmicron.Of the four cytokine thatHADDOCKpredicted
would bind with decreased affinity, CXCL10 stands out as it is a strong
predictor of disease severity (Chen et al., 2020; Yang et al., 2020; Wang
et al., 2021). Decreased disregulation of CXCL10 by Omicron N could
contribute to any related phenotypic change towards lower severity.

In addition to interrogating how the binding might change over the
course of the pandemic for the cytokines that were experimentally
shown to bind to SARS-CoV-2 WA1 N, we also identified a series of
cytokines that may be inhibited by Omicron that were not inhibited by
the original strain of SARS-CoV-2. These include predicted increased
binding of CXCL8, CCL27, IFNλ1, and TNFα by AlphaFold2 and
CCL2, CCL3, IL-6, IL6Rα and IL-18BP by HADDOCK. Though the
predicted affinity and/or van der Waals associated is lower for the
variants compared to the reference strain, it is not certain that these

TABLE 2 Coronavirus strains and NCBI accession numbers.

Virus Strain Accession

BatCoV BANAL-20-52 MZ937000.1

MERS-CoV England1 NC_038294.1

HcoV OC43 NC_006213.1

BatCoV RaTG13 MN996532.2

SARS-CoV BJ01 AY278488.2

SARS-CoV-2 B.1.1 MT233522.1

SARS-CoV-2 B.1.1.529 OL919777.1

SARS-CoV-2 B.1.1.7 OP879258.1

SARS-CoV-2 B.1.351 MW571126.1

SARS-CoV-2 B.1.617.2 MW931310.1

SARS-CoV-2 BA.1.1 OP969456

SARS-CoV-2 BA.2 OP968961.1

SARS-CoV-2 BA.4 ON324341.1

SARS-CoV-2 BQ.1 OP839317.1

SARS-CoV-2 P.1 MW520923.1

SARS-CoV-2 XBB OP847716.1
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cytokines would be inhibited because it is unclear if the lower affinities
translate to physiological binding and the predicted binding sites may
not be conducive to inhibition of cytokine function.

The predicted SARS-CoV-2 N binding to cytokine shares several
features with the better characterized SECRET-cytokine binding. The
binding to N typically involves a beta sheet to beta sheet interaction.
One of the two main beta sheets involved in cytokine binding is the
dimerization interface of SARS-CoV-2 N. The beta sheet interaction
frequently involves the oligomerization interface of the cytokine. The
binding both the GAG-binding domain oligomerization interface
stabilized by a flexible arm describe the interaction motif of the
SECRET proteins, at least one interaction of which has been
crystallized (PDB: 3ONA) (Xue et al., 2011).

Computational approaches to modeling binding are an attractive
solution for variant tracking and biosurveillance in order to deal with
the huge influx of sequences. Utilization of structural and docking
predictions could be used to test the functional interactions as new
variant sequences are identified. Previous computational studies have
provided accurate early insights into viral mutations and their affects
on human health (Piplani et al., 2021; Ford et al., 2022; VanBlargan
et al., 2022; Ford et al., 2023; Sugano et al., 2023).

In this work, we have not only showcased the utility of in silico-
based protein modeling, but also the importance of scalability

through high-performance computing. HPC-enabled frameworks,
as used here, allow for tremendous throughput improvement,
reducing costly and slow lab-based workloads.

This approach will be important for proactively determining when a
pathogen has acquired newphenotypes, such as increased transmissibility,
pathogenicity, or zoonotic potential. In the long term, robust
computational assays for several functions would need to be developed
in order to track those higher-order viral features such as transmissibility.

Methods

Overall approach

The docking experiment set in this study contained 64 human
cytokines (Supplementary Table S1) and the nucleocapsid (N)
protein from 17 different coronaviruses, 12 of which were from
SARS-CoV-2 variants (Table 2). The experiment generation
consisted of all possible combinations of the cytokines and N
proteins for a total of 1,088 cytokine-N protein complexes.

Each experiment was submitted through both AlphaFold2-
Multimer and HADDOCK docking systems. These tools
generated numerous PDB files of predicted protein complex
conformations. From these outputs, the best representative
complex PDB structure was selected through various filtering
techniques (described below) and then compared across the full
experiment set. See Figure 6.

AlphaFold2 protein complex prediction

AlphaFold2 (version 2.3.2) was compiled into a Singularity container
and queried against a reference database constructed on 2023-04-
12 according to the author’s instructions (Jumper et al., 2021). The
database was compressed into a SquashFS file and bound directly to the

FIGURE 6
Experiment generationworkflowfor the 1,088cytokine-Ncomplexes.

FIGURE 7
Example total score calculation for SARS-CoV-2-WA1 bound to
CXCL12β. AlphaFold2 confidence was calculated by ipTM + pTM (see
text for details). The AlphaFold2 rank 0 had a slightly higher confidence
than the rank 1, however the rank one structure had a significantly
higher GDock score which led to a higher total score. In this case, the
rank one structure was selected as the best structure.
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Singularity container. The specification for the AlphaFold2 Singularity
container can be found at: https://github.com/mit-ll/AlphaFold.

AlphaFold2 was run in multimer mode and used default settings
to construct five randomly seeded models with five predictions each,
for a total of 25 models (PDBs) per complex. Amber relaxation was
used on all resulting 25 models. AlphaFold2 was run on both
standalone and high performance computing platforms.

For the standalone system, we used an NVIDIA DGX A100
80GB server. The system was equipped with dual AMD Rome
7,742 CPUs, 2TB RAM, and 8 NVIDIA A100-SXM 80GB GPUs.

The MIT Lincoln Laboratory TX-GAIA and MIT SuperCloud
(Reuther et al., 2018) systems were the environments used for the
HPC-enabled AlphaFold2 pipeline prototyping and performance
benchmarking. The compute nodes each consisted of a Intel Xeon
Gold 6248 2.5 GHz CPU with 40 cores, 377GB RAM, and Intel
Omni-Path with 2 NVIDIA Tesla V100 GPUs.

Signal peptides were identified and removed from cytokine
sequences using SignalP6.0 web portal1 before structure
prediction with AlphaFold2 (Teufel et al., 2022).

AlphaFold2 confidence

AlphaFold2 confidence was given as the interface predicted
template model score plus predicted template model score (ipTM
+ pTM). The ipTMwas weighted by 80% and the pTMwas weighted
by 20%, as described by the authors (Evans et al., 2022). The total
AlphaFold2 confidence (ipTM + pTM) ranged from [0, 1], where
one was the highest confidence.

GDock score

GDockScore, a graph-based deep learningmodel to assess the docking
of two proteins, was included to evaluate AlphaFold2models (McFee and
Kim, 2023). The model was pre-trained by the original authors on
docking outputs generated from Protein Data Bank, RosettaDock,
HADDOCK decoys, and the ZDOCK Protein Docking Benchmark-to
include a wide variety of protein complexes and ensure generalization.
GDockScore achieved state-of-the-art on the CAPRI Score Set, a
challenging dataset for developing docking scoring functions (Lensink
andWodak, 2014).GDockScore ranged from 0 to 1, where a score of
0 coincided to an unfeasible complex and a score of one coincided
with high probability that the protein complex is comparable to a
high quality CAPRI complex. The authors showed a GDockScore
of under 0.2 approximates to a complex that was unlikely to exist
(i.e., bad protein-protein dock) and a GDockScore range from
0.2 to one coincided with an increasing predicted quality.

Best AlphaFold2 structure selection

AlphaFold2 ranked the 25 structures by confidence (AF2 conf.).
We added the raw AF2 conf. to the GDock score (i.e., total score) for

all 25 structures and selected the highest score for each multimer
experiment. The highest total score was not necessarily the best
ranked fromAF2 conf. alone. The best 1,088 structures were used for
all downstream analysis. See Figure 7.

HADDOCK docking

For each of the 1,088 experiments generated in this study,
HADDOCK v2.4 (van Zundert et al., 2016) was used to dock the
N protein and cytokine in each experiment.

HADDOCK, High Ambiguity Driven protein-protein
DOCKing, is a biomolecular modeling software that provides
docking predictions for provided structures using an
information-driven flexible docking approach.

For this study, we utilized a Docker containerized version of
HADDOCK, which contains all of the software dependencies to
allow HADDOCK to run more readily in an HPC environment.
HADDOCK was run on both 64 physical cores (Intel Xeon Phi
7,210) and 48 physical cores (Intel Xeon Platinum 8,260).
HADDOCK needed to be compiled against the number of
physical cores; more information can be found at: https://
github.com/colbyford/HADDOCKer, or on DockerHub at:
https://hub.docker.com/r/cford38/haddock.

HADDOCK experiment setup

Run parameters for each experiment were generated
programmatically, defining the N protein as the static object
around which the cytokine protein is positioned and measured.
Other experiment files were also copied or created programmatically
that include the scripts to run the docking process, define restraints,
and specify input PDB files.

HADDOCK required the definition of active/inactive residue
restraints (AIRs) to help guide the protein docking process. To avoid
biasing the docking placement of the cytokine, all surface residues
were selected as “active” and were then included in the AIR file on
which to dock.

The logic for this programmatic generation of HADDOCK
experiment files is available in the supplementary GitHub
repository.

HADDOCK outputs
The HADDOCK docking process consisted of three steps:

it0: Randomization of orientations and rigid-body minimization.
it1: Semi-flexible simulated annealing through molecular

dynamics simulations in torsion angle space.
itw: Refinement by energy minimization in Cartesian space with

explicit solvent (i.e., in water).

Each of the above steps generated 200 PDB files of the proteins
in a complex for a total of 600 PDB files. From the final, water-
refined (itw) set of outputs, the “best” PDB file was retrieved from
the cluster of predictions with the lowest van der Waals energy. This
representative PDB of each N-cytokine complex was then used in
subsequent analyses and comparisons.

1 SingalIP6.0 web portal: https://services.healthtech.dtu.dk/services/

SignalP-6.0/
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HADDOCK metrics
The HADDOCK system outputted multiple metrics for the

predicted binding affinities and an output set of PDB files
containing the N protein docked against the cytokine protein.
Some main metrics included:

• van der Waals intermolecular energy (Evdw)
• Electrostatic intermolecular energy (Eelec)
• Desolvation energy (Edesol)
• Restraints violation energy (Eair)
• Buried surface area (BSA)
• HADDOCK score:
1.0Evdw + 0.2Eelec + 1.0Edesol + 0.1Eair

Prodigy ΔG prediction
PRODIGY, a tool to predict the binding affinity of protein-

protein complexes from structural data, was used on each complex
in this study (Vangone and MJJ Bonvin, 2015). The predicted
binding affinities were reported as Gibbs energy, shown as ΔG
(in Kcal/mol units).

The predicted ΔG values were calculated by counting the
number of various interfacial contacts (ICs) between the chains
of the input complex (N protein and cytokine) along with some
properties of the non-interacting surfaces (NIS) using the
following equation:

ΔGpredicted � −0.09459 · ICscharged∕ charged
−0.10007 · ICscharged∕ apolar
+0.19577 · ICspolar∕ polar
−0.22671 · ICspolar∕ apolar
+0.18681 ·NIS%apolar

+0.38100 ·NIS%charged

−15.9433

FoldX ΔG prediction
FoldX (Schymkowitz et al., 2005), a tool that evaluates protein-

protein complex interactions and their stability, was also used to predict
ΔG for all of the complexes. In the command line, the AF2 and
HADDOCK structures were first repaired using the PDB repairing
function, RepairPDB, which minimized the complex energy by rotating
identified side chain residues.

FoldX calculated ΔG for the repaired structures using a linear
combination of empirically derived energy terms including van der

Waals, solvation energy for apolar and polar groups, and
electrostatic contribution of charged groups.

Graph-based interaction residue assessment
function (GIRAF)

The interfaces of all complexes were first processed with
INTERCAAT (Grudman et al., 2021) to produce a full list of
all interacting residue pairs between the N-protein and bound
cytokine. A bigraph was created using Python NetworkX v3.1
(Hagberg et al., 2008) where the nodes were defined as each
residue and the edges (ie. links) were defined as the predicted
distance between the residues (in angstroms) by INTERCAAT.
Distances longer than 3 angstroms were discarded. A lookup
table was constructed for the 17 N-proteins using a consensus
sequence from multiple sequence alignment (Geneious,
Dotmatics, Inc) so that each residue number was aligned with
the consensus (Supplementary Data S1). Baseline graphs were
generated for SARS-CoV-2-WA1 with CXCL12β from both
AlphaFold2 and HADDOCK predicted complexes. Graphs
were then generated for the other N-proteins with CXCL12β.
Graph Edit Distance (GED) was used as a metric to determine
how the binding pocket of two N-proteins differed. A greater
GED was indicative that more residues needed to be swapped in
or out to match the binding pocket between a pair of two
N-proteins. In other words, a low GED meant that the
binding pockets were similar. GED was computed between
each of the other N-proteins with SARS-CoV-2-WA1 as a
baseline. GED was also computed between each N:CXCL12β
complex from AlphaFold2 and HADDOCK to evaluate
differences in the predicted binding pockets of both methods.

The number of interfacing residues on N-protein from both
AlphaFold2 and HADDOCK were enumerated.

GED between a pair of graphs was defined as follows:

GED g1, g2( ) � min
e1 ,...,ek( )∈P g1 ,g2( )Σ

k
i�1c ei( )

where:

g1:Computed graph of a baseline complex (e.g., SARS-CoV-2-
WA1-N bound to CXCL12β.

g2: Computed graph of a query complex (e.g., SARS-CoV-2-XBB-
N bound to CXCL12β.

e: Graph edit operation (residue substitution, insertion, or deletion).
k: Step.
P: Set of all possible edit paths to match g1 to g2.
c: Cost of the edits to match g1 to g2, which is minimized.

GED minimization was capped at 10 s as we saw that further
significant cost minimization over the set of edit paths did not occur
beyond this point. GED costs were equally weighted a value of one
for substitutions, insertions, or deletions.

Example bigraphs are shown in Figure 8 where interfacing
residues between the N protein and a cytokine, shown as labeled
dots, are connected to one another.

Protein structure and results visualization
Protein complexes were visualized using using PyMOL

(Schrödinger, 2015). PyMol’s analysis capabilities were

FIGURE 8
Example bigraphs for SARS-CoV-2-WA1 (A chain, left) and SARS-
CoV-2-XBB (A chain, right) bound to CXCL12β (B chains) on models
predicted by HADDOCK.
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employed to detect and show interfacing residues (polar
interactions within 3.0Å) between the N protein and cytokine
in each complex.

Graphs were rendered using the ggplot2 v3.4.2 R package
(Hadley, 2016) or Matplotlib v3.8.1 (Hunter, 2007). The
phylogenetic tree figure was rendered using the ggtree v3.6.2 R
package (Yu et al., 2017).

N protein alignment, genetic distance, and tree
generation

The sequences for the N protein of each variant were aligned
using Muscle v3.8.425 (Edgar, 2004) and was written in FASTA
format. The multiple sequence alignment is available in the
(Supplementary Table S2). From the aligned FASTA file, the
pairwise distances were computed using the Fitch matrix (Fitch,
1966) from the seqinr v4.2.30 R package (Charif et al., 2007). For
Figure 4, the distance from the SARS-CoV-2WA1 isolate was used
as the reference point.

A maximum likelihood phylogenetic tree of the N protein
alignment was generated with RAxML v8.2.12 (Stamatakis,
2014). This tree was generated using the “rapid bootstrap”
mode with 100 replicates and rooted on the OC43 taxon.
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