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Neotropical Freshwater Fish (NFF) fauna exhibits the greatest phenotypic
disparity and species richness among all continental aquatic vertebrate faunas,
with more than 6,345 species distributed across the mostly tropical regions
of Central and South America. The last two decades have seen a proliferation
of molecular phylogenies, often at the species level, covering almost all 875
valid NFF genera. This study presents the most comprehensive genome-wide,
time-calibrated phylogenetic hypothesis of NFF species to date, based on
DNA sequences generated over decades through the collaborative efforts
of the multinational ichthyological research community. Our purpose is to
build and curate an extensive molecular dataset allowing researchers to
evaluate macroevolutionary hypotheses in the NFF while facilitating continuous
refinement and expansion. Using thousands of DNA sequences from dozens of
studies, we compiled a supermatrix of 51 markers for 5,984 taxa, representing
3,167 NFF species. Based on this dataset, we built the most species-rich time-
calibrated phylogeny of the NFF taxa to date, summarizing the collective efforts
of the ichthyological research community since themidpoint of the last century.
We provide a summary review of this remarkable evolutionary history and
hope this dataset provides a framework for forthcoming studies of the NFF
fauna, documenting compelling, emergent patterns in the world’s most diverse
continental vertebrate fauna.
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Introduction

The Neotropics is a vast biological realm encompassing over 17 million km2 from
Central Mexico to southern Argentina, home to some of the world’s largest rivers, including
the Amazon, Orinoco, and La Plata (Lévêque et al., 2008; Van der Sleen and Albert,
2022; Dagosta et al., 2024). These rivers harbor the most diverse continental aquatic
vertebrate fauna on Earth, an astonishing diversity of freshwater fishes totaling over 6,345
valid species at present, with more discovered every year (Reis et al., 2016; Albert et al.,
2020; Chamon et al., 2022; Becker et al., 2023; Dagosta et al., 2024). Among these
are many families found nowhere else on earth, such as the piranha (Serrasalmidae)
and electric eel (Gymnotidae), lending the Neotropical Freshwater Fish (NFF) fauna
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a readily identifiable character and a unique place among the
freshwater faunas of the world (Albert et al., 2011).

A large majority (77%) of NFF species diversity is concentrated
in just five taxonomic orders (Albert et al., 2011); Characiformes,
Cichliformes, Cyprinodontiformes, Gymnotiformes, and
Siluriformes. The NFF fauna evolved in isolation for tens of millions
of years when South America was an island continent, between its
final separation from Africa c. 100 Ma and Antarctica (c. 34 Ma)
to its connection with Central America c. 12–3.5 Ma. Over these
millions of years, the evolutionary history of NFF taxa was shaped
by dynamic processes of river capture (Tagliacollo et al., 2015;
Albert et al., 2018; Boschman et al., 2023) and marine incursions
(Lovejoy et al., 1998; Bloom et al., 2011; Abreu et al., 2020) at
continental scales. This process gave rise to the greatest variety
of phenotypes and ecological traits of any continental fish fauna on
Earth (Su et al., 2019; Albert et al., 2020). The macroevolutionary
patterns in the NFF fauna therefore serve as a compelling example
of how continental faunas diversify over evolutionary time periods
(Miller and Román-Palacios, 2021), driven by the interactions
between intrinsic organismal traits and environmental factors
like plate tectonics and climate variability (Silva et al., 2016;
Cassemiro et al., 2023; Val et al., 2022).

Yet studying this evolutionary history is challenging as,
with more than 6,345 species, inferring comprehensive and
accurate relationships among NFF clades is expensive in time and
computational resources regardless of the datasets or methods
used for phylogeny estimation. This challenge is compounded
by the phenotypic diversity of these fishes, which exhibit a
myriad of morphological, physiological and behavioral adaptations
(Crampton, 2011; Val and Almeida-Val, 2012; Albert et al., 2020;
Soares et al., 2023). Nevertheless, substantial molecular data have
been produced by the ichthyological research community across
hundreds of studies and are now available in public repositories
(e.g., Musilová et al., 2008; Cramer, et al., 2011; Oliveira et al., 2011;
Thomaz et al., 2015; Tagliacollo et al., 2016; Bragança and Costa,
2018). These data give us an opportunity to build a large-scale, time-
calibrated phylogeny as a framework for future evolutionary studies
documenting macro-scale patterns in the world’s most diverse
continental vertebrate fauna.

Such a phylogeny will help us disentangle the complexity that
makes the Neotropics the most species-rich region for freshwater
fish on Earth in several ways (Cerezer et al., 2023; Cassemiro et al.,
2023). A comprehensive phylogenetic tree is essential for studying
evolutionary patterns, offering insights into speciation (Albert et al.,
2020), adaptive radiation (López-Fernández, 2021), and lineage
diversification (Miller and Román-Palacios, 2021). Considering a
phylogenetic tree in the context of major earth history events
further reveals the historical distributions of lineages coexisting
under similar geological or trophic conditions (Emerson and
Gillespie, 2008; Baumsteiger et al., 2012). A phylogeny will
also enable large-scale macroevolutionary analyses by facilitating
the investigation of rate changes over time (Graham et al.,
2018), morphological variations across distantly related lineages
(Winemiller, 1991; Jablonski, 2017), and other macroevolutionary
patterns (Henao Diaz et al., 2019). Comprehensive phylogenetic
trees can even inform conservation strategies by clarifying diversity
patterns and identifying unique lineages within regions of high

evolutionary diversity (Albert et al., 2020). These insights are
invaluable for prioritizing conservation efforts (Dagosta et al., 2021).

To this end, we build on the work of dozens of ichthyologists
spanning over three decades of taxonomic, phylogenetic and
biogeographical research to present a comprehensive, time-
calibrated phylogeny of NFF diversity. The purpose of this study is
not primarily to introduce new evolutionary hypotheses or propose
new taxonomic classifications, but to compile and systematically
organize an extensive, reproducible, and extensible dataset of
DNA sequences, alignments, matrices, and phylogenetic trees into
a single resource. This is a collective effort, integrating genetic
alignments, phylogenetic trees, and divergence time estimates to
summarize our current understanding of the evolutionary history
of the most diverse continental ichthyofauna on Earth. We aim
to continue refining and expanding the dataset, enabling future
studies to test alternative evolutionary hypotheses in the NFF. By
elucidating NFF relationships on a broad scale, this study establishes
a framework for further research and opens new avenues in
historical biogeography, macroecology, and macroevolution within
the Neotropical ichthyofauna.

Methodology

NFF species

The discovery of new species and the reclassification of existing
ones are essential processes for refining our understanding of
biodiversity and species boundaries. This taxonomic evolution
inevitably makes constructing an up-to-date phylogeny challenging.
We compiled the list of all valid NFF species described up
to December 2021 using information available from original
descriptions (Thimotheo et al., 2020; Malabarba et al., 2021),
taxonomic reviews (e.g., Crampton et al., 2016; Villa-Navarro et al.,
2017; Ferrer and Malabarba, 2020), checklists (Ferraris et al., 2017;
Beltrão et al., 2019; Meza-Vargas et al., 2021), and online catalogs
(e.g., Eschmeyer’s Catalog of Fishes) (Fricke, 2021). In total, we
compiled a list of 6,345 species, 870 genera and 97 families.

Acquiring DNA sequences

We used the R package PhylotaR (Bennett et al., 2018) to extract
published DNA sequences from metadata repositories such as
GenBank. PhylotaR is a pipeline designed to automate the retrieval
of orthologous DNA sequences, enabling the construction of large-
scale phylogenetic trees. It clusters sequences into operational
taxonomic units (OTUs) based on predefined taxonomic ranks, such
as families, genera, or species, and organizes them by gene region.
We used PhylotaR to retrieve sequences for each OTU across all
loci from GenBank, downloading them at the family level, using the
GenBank Taxonomy Database as a reference (Schoch et al., 2020).
To mitigate potential errors from taxonomic misidentification or
low-quality sequencing, we retrieved amaximumof three sequences
(individuals) per species, when available, and visually inspected the
alignments. The vast majority (over 95%) of sequences ascribed to
the same species exhibited near-zero nucleotide variation, strongly
indicating that the individual sequences were correctly identified,
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and we therefore retained these in the alignment. In cases where
multiple sequences purporting to represent the same species showed
high nucleotide variation, suggesting issues related to taxonomic
misidentification or sequencing errors, an outlier could be easily
identified on the basis of poor homology or imprecise identification
(e.g., names including “cf.”, “sp.” and “aff.”), and these were excluded.
This approach allowed us to detect and exclude outliers, mitigating
aberrant phylogenetic signals due to poor data curation. A similar
approach has been applied successfully in other phylogenetic studies
(e.g., Arce-H et al., 2017; Mirande, 2019).

PhylotaR retrieved DNA sequences from GenBank through
BLAST searches, identifying 51 orthologous clusters, resulting in
43,850 bp, 21,223 sequences, 5,984 terminals, and 3,167 species
representing 741 genera (or 86% of NFF genera). The retrieved
DNA markers consisted of 61% mitochondrial and 39% nuclear
genomic sequences, primarily comprising protein-coding genes
and a few non-coding genomic regions (e.g., tRNAs; rRNAs)
many of which have been commonly sequenced for phylogenetic
research (e.g., Li et al., 2007; Oliveira et al., 2011; Tagliacollo et al.,
2012; Ochoa et al., 2017; Melo et al., 2018; Fontenelle et al.,
2021). Since orthologous sequences were independently retrieved
at the family level, some markers were available for certain
families but not for others. Nonetheless, all families showed some
degree of marker overlap, ensuring reliable empirical estimates of
species evolutionary relationships. To elucidate relationships at finer
taxonomic scales, we split the D-LOOP marker into alignments for
three specific clades: Siluriformes, Poecilidae, and Cichlidae. This
strategy guaranteed amore reliable hypothesis of homologies for this
rapidly evolving genetic marker. The complete list of accessions can
be found in the Supplementary Material, located in the “csv” folder,
under the filename “Annex_1 - accession_numbers.xlsx”.

Alignment, trimming and partitioning
scheme

After downloading the DNA sequences from GenBank, we
individually aligned each genetic marker using MAFFT v. 7
(Katoh and Toh, 2008) with default parameters. To enhance
data quality, we conducted trimming with GBlocks (Castresana,
2000; Talavera and Castresana, 2007) to remove gap-rich sites at
both ends of the alignments, thereby avoiding subjective manual
trimming. We achieved this by setting the “Allowed Gap Positions”
parameter to -b5 = h, which permits gaps in internal positions
but removes them from the flanking regions. This approach
ensures that Gblocks eliminates gaps in non-conserved areas while
retaining gaps in more conserved regions of the alignment. We
concatenated the trimmed alignments into a supermatrix, assigning
each marker to an independent partition and GTR evolutionary
model with gamma (G) in four rate categories to account for rate
heterogeneity among sites. With PartitionFinder2 (Lanfear et al.,
2017), we concurrently estimated an optimal partitioning scheme
and identified the best-fitting models of molecular evolution for
selected partitions. The best-fitting scheme for the supermatrix
estimated 30 independent partitions, with each adhering to a GTR
+ G model. While the partitions share the GTR + G models, each
has an independent set of parameter estimates. Alignments both
before and after GBocks analysis and partition information are

available in the Supplementary Material in the “mtx” and “pfinder”
folders respectively.

Tree inferences

Wecarried out amaximum likelihood tree search usingRAxML-
HPC v.8 (Stamatakis, 2014). We incorporated a backbone tree
with some node constraints, especially at the family level, based
on other evolutionary hypotheses available in the literature (e.g.,
(Armbruster et al., 2015; Tagliacollo et al., 2016; Lujan, et al.,
2018 Melo et al., 2022; Reis and Lehmann, 2022). The backbone
tree and its respective node constraints are available in the
Supplementary Material in the “mtx” folder. These constraints were
necessary due to the low phylogenetic signal for resolving deep node
relationships. Unfortunately, alternative genomicmarkers like UCEs
(Faircloth et al., 2012) that are more suitable for inferring deeper
node relationships were not available for enough NFF taxa to be
included in the matrix. We designated the two lamprey (Agnatha)
speciesGeotria australis andMordacia lapicida as outgroup taxa and
rooted the tree at theirmost recent common ancestral node. RAxML
estimated all free model parameters and optimized the likelihood of
the final tree under the GAMMAmodel using its rapid hill-climbing
mode. To assess tree support, we conducted 100 bootstrap replicates
on the resulting likelihood tree topology. RAxML analyses were
performed on the CIPRESGateway portal (Miller et al., 2010). Since
some analyses are compatible with fully bifurcating trees exclusively
andwill not be possible given trees with polytomies, we include both
fully resolved trees and treeswith poorly supported nodes (bootstrap
values below 70%) collapsed in our Supplementary Material in the
“phy” folder. We advise researchers pursuing downstream work to
use the high-confidence trees where possible, and only use the
fully resolved trees if their given approach is incompatible with
polytomies.

Divergence time estimates

Estimating divergence times concurrently with topology using
Bayesian inference would be challenging due to the large size of
the matrix and the number of terminals. Additionally, given the
geological conditions of the Neotropics, fish fossils are typically
quite rare, leaving us with few reliable primary calibrations. As an
alternative, we used the congruification method implemented in the
R package geiger v2 (Pennell et al., 2014) to estimate divergence
times using a reference time-calibrated tree as a source of secondary
calibrations (Eastman et al., 2013; Pennell et al., 2014). In brief,
divergence times of a target tree (with branch lengths in units of
nucleotide substitutions) can be estimated by taking any divergence
times also found in the reference tree as secondary calibrations. For
this, we selected a published global time-calibrated phylogeny of ray-
finned fishes based on 1,105 selected phylogenomic markers from
303 extant species representing 66 or 72 recognized ray-finned fish
orders, and including 31 fossil calibrations (Hughes et al., 2018). As
an additional source of secondary calibrations among cartilaginous
fish, we used the shark tree of life based on 10 fossil calibrations
(Stein et al., 2018). Divergences shared between our tree and these
two reference trees were identified using the congruify.phylo ()
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function in geiger (Pennell et al., 2014) in R (R Core TeamR, 2023).
These divergence times were then used to calibrate nodes in our
tree using treePL (Smith and O'Meara, 2012). We first initialized the
treePL optimization by setting thorough and prime to TRUE, and
then used the default priming step to optimize parameters when
estimating divergence times. The suggested optimized parameters
included opt = 1, optad = 1, and optcvad = 4. The treePL input
files with all calibration points and parameter settings can be
found in our Supplementary Materials in the “phy” folder.

Results

Species relationships inferred from RAxML

Here we present the most species-rich NFF tree to date,
comprising 5,984 terminals and 3,167 species across 741 genera
(Figure 1).Themajority of the phylogenetic relationships we recover
are consistent with published molecular studies (Oliveira et al.,
2011; Near et al., 2012; Sullivan et al., 2013; Tagliacollo et al.,
2016; Betancur-R et al., 2017; Hughes et al., 2018; Ilves et al., 2018;
Betancur-R et al., 2019), as expected given that much of the data
underlying our novel supermatrix was submitted to GenBank as
part of numerous past phylogenetic efforts. Relationships among
the four largest clades of the NFF, Characiformes, Siluriformes,
Cichliformes, and Cyprinodontiformes corroborate the current
consensus in fish classification (Dornburg and Near, 2021). Our
tree estimates positions Lepisosteiformes (i.e., gars) as the sister
group to Teleostei, with the clade Euteleostei as the sister group
to Elopiformes (Anguillidae, Megalopidae), Osteoglossiformes
(Arapaimidae, Osteoglossidae), and Otocephala (Figure 2). Within
Otocephala, our findings support a close relationship between the
Clupeiformes and Characiphysae, with Characiformes forming the
sister group to Siluriformes and Gymnotiformes (Figure 2).

Within the first major NFF clade, Characiformes, which
includes the piranha as well as over a thousand small tetras and
darters, our tree includes only representatives of the suborder
Characoidei, recapitulating the monophyly of families and several
well-established relationships at genus level (Oliveira et al., 2011;
Tagliacollo et al., 2012; Abe et al., 2014; Thomaz et al., 2015;
Melo et al., 2022). These relationships include Crenuchidae as
the sister group to all other characiforms, the monophyly of
Anostomoidea (sensu Vari, 1983; Vari, 1983; i.e., Curimatidae,
Prochilodontidae, Anostomidae, and Chilodontidae, but see
Betancur et al., 2019), a sister-group relationship between
Ctenoluciidae and Lebiasinidae, and the monophyly of Characidae
(sensu Oliveira et al., 2011, but see Melo et al., 2024), including
the genus Amazonspinther as the sister group to all remaining
characids (Figure 3).

Within the second major clade, Siluriformes, comprising
over a thousand catfishes ranging from miniatures such as
Scoloplax to the six-foot riverine predator Brachyplatystoma,
our tree indicates that Diplomystidae forms the sister group to
all other catfishes, which are further divided into two primary
clades (sensu Sullivan et al., 2006) Loricarioidei and Siluroidei
(Figure 4). Within Siluroidei, several well-established relationships
were corroborated, such as the close relationships between
Doradidae, Aspredinidae, and Auchenipteridae, as well as the

grouping of Pseudopimelodidae, Pimelodidae, Phreatobiidae,
Heptapteridae and Conorhynchos (Figure 4). Within Loricarioidei,
our tree indicates that Nematogenyidae is the sister group to the
remaining families (Figure 4), and Trichomycteridae is sister to
remaining loricarioids, with Callichthyidae being sister to advanced
loricarioids and Loricariidae, and Astroblepidae forming a sister
group to Scoloplacidae (Figure 4). A point to note is that within
Trichomycteridae, the subfamily Vandelliinae is not closely related
to Tridentinae and Stegophilinae. This result must be interpreted
with caution. Several independent studies have shown a close
relationship between these three clades including through genomic
data (de Pinna, 1998; Ochoa et al., 2017; Ochoa et al., 2020), which
are important to our understanding of the origins of parasitism in
the Trichomycteridae clade.

Within the third major clade, Cichliformes, including cichlid
fishes like the peacock bass and the freshwater angelfish and
discus, our tree supports the monophyly of the seven proposed
tribes (sensu López-Fernández et al., 2010; Ilves et al., 2018). The
relationships we recover suggest that Cichlini is the sister group
to Retroculini, and together they represent the earliest-diverging
lineages among Neotropical cichlids (Figure 5). Astronotini and
Chaetobranchini were recovered as sister groups, collectively
forming a sister clade to Geophagini (Figure 5). This latter clade
is related to a large group consisting of Cichlasomatini, which
is sister to Heroini, a lineage that includes representatives in
Central America (Figure 5). Within Heroini, the biogeographical
distribution patterns of species suggest that the tribe originated in
South America, with subsequent colonization of Central America
and the Caribbean occurring through more than one independent
event during the Neogene (Figure 5).

Within the fourth major NFF clade, Cyprinodontiformes,
including the livebearing guppies and killifish, our tree revealed
a close relationship between two major clades: one comprising
the family Rivulidae and another consisting of Profundulidae,
Cyprinodontidae, Fluviphylacidae, Anablepidae, and Poeciliidae
(Figure 6). In this latter clade, we recovered Profundulidae as the
sister group to all other families, followed by Cyprinodontidae as
sister to the remaining clades (Figure 6). Poeciliidae, the largest
group within this clade, was recovered as the sister group to
Anablepidae, and together they formed a sister group relationship
with Fluviphylacidae (Figure 6). As seen in Cichliformes, the
biogeographical distribution patterns suggest that this group
originated in South America, with subsequent colonization of
Central America.

Time-calibrated tree

Our divergence time estimates align closely with the established
timeline of NFF evolution found in our reference phylogenies,
Hughes et al. (2018) and Stein et al. (2018), and other published
independently-estimated divergence times accessible through
TimeTree.org (McMahan et al., 2013; Kappas et al., 2016;
Fontenelle et al., 2021; Melo et al., 2022). The NFF earliest lineages
to diversify, the jawless lamprey (Agnatha) species, diverged from
other clades in the Paleozoic, specifically during the Ordovician,
approximately 480 million years ago (mya) (Figure 2). This
divergence aligns with the Great Ordovician Biodiversification
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FIGURE 1
A time-calibrated phylogeny of 3,167 NFF species (or 51% of NFF) allocated to 741 genera (or 86% of NFF), illustrating evolutionary relationships among
genera across major lineages. This tree was estimated using RAxML-HPC and time-calibrated through congruification (Eastman et al., 2013) employing
divergence tree estimates from Hughes et al. (2018). The tree resulted from alignments of 51 orthologous markers, totaling 43,850 bp, with 21,223
sequences and 5,984 terminals. Vertical bars indicate the complete species per genus represented on the tree. All GenBank accession numbers,
alignments, species-level relationships, divergence clade estimates and species representativeness percentages are provided in the Supplementary
Material. This phylogeny, as well as one with nodes bearing bootstrap values below 70% collapsed, is available as a Newick string in the Supplementary
Material and can be found in the “phy” folder.

(GOBI) event, during which vertebrates, particularly fishes,
emerged and reached their peak diversification in the Devonian
(Servais et al., 2010). The three gnathostome vertebrate lineages
with extant freshwater species in the Neotropics—Chondrichthyes,
Sarcopterygii, and Actinopterygii—share a most recent common
ancestor from the Silurian, with a subsequent split in the
Permian, between 299 and 252 mya (Figure 2). The Permian
period was marked by the formation of Pangaea and one of the
largest mass extinction events in Earth’s history (Erwin et al.,
2002), creating new evolutionary opportunities for surviving
lineages to diversify, including the Actinopterygian ray-
finned fishes, which today dominate freshwater environments
worldwide.

The Actinopterygii, encompassing all four major clades
of the NFF (Characiformes, Siluriformes, Cichliformes, and
Cyprinodontiformes) as well as the electric eel and other electric
fishes (Gymnotiformes), diverged from their sister group the

Sarcopterygian lobe-finned fishes during the Silurian, with most
families within Actinopterygii diversifying during the Paleogene,
specifically between 66 and 23 mya (Figure 2). This period was
characterized by significant geomorphological changes in South
America, including the uplift of the Andes, which rearranged river
basins, particularly in the Western Amazon (Hoorn et al., 2010;
Wilkinson et al., 2010; Albert et al., 2018) and triggered marine
incursions along the sub-Andean Foreland (Bloom et al., 2011).
At 23 mya, the Miocene epoch saw the formation of the Pebas
system, a network of long-lived lakes and wetlands in western
Amazonia (Hoorn et al., 2010; Boschman et al., 2023). Most
modern lineage diversification within the NFF occurred during
this interval, suggesting that the Pebas system, along with the shift
in the Amazon River from its original Northward drainage to its
current mouth at Belém in Eastern Brazil, played an important role
in shaping one of the richest freshwater vertebrate faunas on Earth
(Albert et al., 2018; Albert et al., 2021).
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FIGURE 2
A time-calibrated phylogeny of Neotropical Freshwater Fishes (NFF) illustrating evolutionary relationships among genera from all recognized families,
except within Characiformes (shown in detail in Figure 3), Siluriformes (shown in detail in Figure 4), Cichliformes (shown in detail in Figure 5), and
Cyprinodontiformes (shown in detail in Figure 6). Divergence time estimates indicate that the evolutionary history of the NFF has its roots in the
Ordovician, around 480 million years ago (mya), a period of high diversification in the oceans, particularly among agnathans. Pie charts on nodes
indicate bootstrap support, with the proportion of black space corresponding to the percentage of bootstrap replicates in support. Full black circles
represent 100% support. All GenBank accession numbers, alignments, species-level relationships, divergence clade estimates and species
representativeness percentages are provided in the Supplementary Material. This phylogeny, as well as one with nodes bearing bootstrap values below
70% collapsed, is available as a Newick string in the Supplementary Material and can be found in the “phy” folder.

We recover the crown of the Characiformes in the Upper
Cretaceous, with most families evolving during the Paleogene,
particularly in the Eocene (55–33 mya) (Figure 3). The
Siluriformes also originated in the Upper Cretaceous, with

the majority of families diversifying during the Paleogene,
primarily in the Eocene (Figure 4). Fossil records indicate that
both Characiformes and Siluriformes were already established
in the continental waters of South America during the Upper
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FIGURE 3
A time-calibrated phylogeny of Characiformes, the second-largest clade in the Neotropics, illustrating evolutionary relationships among genera of all
currently recognized families. Divergence times place the most recent common ancestor of Neotropical characiforms at the boundary of the Upper
Cretaceous, around 100 million years ago (mya). Pie charts on nodes indicate bootstrap support, with the proportion of black space corresponding to
the percentage of bootstrap replicates in support. Full black circles represent 100% support. All GenBank accession numbers, alignments, species-level
relationships, divergence clade estimates and species representativeness percentages are provided in the Supplementary Material. This phylogeny, as
well as one with nodes bearing bootstrap values below 70% collapsed, is available as a Newick string in the Supplementary Material and can be found in
the “phy” folder.
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FIGURE 4
A time-calibrated phylogeny of siluriformes, the largest clade of Neotropical Freshwater Fishes (NFF), illustrating evolutionary relationships among
genera of all currently recognized Neotropical families. Divergence time estimates suggest that the most recent common ancestor of Neotropical
siluriformes and some of its families (e.g., stem clades: Diplomystidae, Cetopsidae, Nematogenyidae, Trichomycteridae) arose in the Upper Cretaceous,
around 100 to 66 million years ago (mya). Pie charts on nodes indicate bootstrap support, with the proportion of black space corresponding to the
percentage of bootstrap replicates in support. Full black circles represent 100% support. All GenBank accession numbers, alignments, species-level
relationships, divergence clade estimates and species representativeness percentages are provided in the Supplementary Material. This phylogeny, as
well as one with nodes bearing bootstrap values below 70% collapsed, is available as a Newick string in the Supplementary Material and can be found in
the “phy” folder.
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FIGURE 5
A time-calibrated phylogeny of the Neotropical Cichlidae, showing evolutionary relationships among genera of all currently recognized Neotropical
families. Divergence time estimates indicate that Cichlidae is the youngest of the four largest clades of Neotropical Freshwater Fishes (NFF), with the
most recent common ancestor evolving in the Cenozoic, during the Eocene, around 40 million years ago (mya). Pie charts on nodes indicate bootstrap
support, with the proportion of black space corresponding to the percentage of bootstrap replicates in support. Full black circles represent 100%
support. All GenBank accession numbers, alignments, species-level relationships, divergence clade estimates and species representativeness
percentages are provided in the Supplementary Material. This phylogeny, as well as one with nodes bearing bootstrap values below 70% collapsed, is
available as a Newick string in the Supplementary Material and can be found in the “phy” folder.

Cretaceous (Alves et al., 2019). This is further supported
by the modern distribution of Characiformes in Africa and
South America, and Siluriformes globally, except in Antarctica
(although an Eocene–Oligocene fossil has been reported
from Antarctica; (Grande and Eastman, 1986), suggesting
that dispersal likely occurred during the era of the Pangaea
supercontinent.

The Neotropical cichlids of the subfamily Cichlinae (Cichlidae),
the youngest of the major NFF clades, evolved approximately 40
million years ago during the Cenozoic (Figure 5). Within this

clade, all South American genera originated in the Miocene,
while a few Central American genera emerged later during
the Pliocene-Pleistocene (Figure 5). The origins of Central
American cichlids remain a point of debate (Holden and Dietz,
1972; MacPhee, 1999; Bacon et al., 2015), likely involving
multiple colonization and diversification events associated
with the Caribbean plate margins (Tagliacollo et al., 2017).
The Cyprinodontiformes of the Neotropics also diverged
in the Upper Cretaceous, with the most recent common
ancestors of Rivulidae, Cyprinodontidae, and Fluviphylacidae
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FIGURE 6
A time-calibrated phylogeny of Cyprinodontiformes illustrates the evolutionary relationships among Neotropical clades including Rivulidae,
Profundulidae, Cyprinodontidae, Poeciliidae, Anablepidae, and Fluviphylacidae, as well as their respective genera. Divergence estimates place the origin
of this clade in the Upper Cretaceous, with the most recent common ancestor of Rivulidae, Cyprinodontidae, and Fluviphylacidae appearing in the
Eocene, and that of Profundulidae, Poeciliidae, and Anablepidae in the Oligocene. Pie charts on nodes indicate bootstrap support, with the proportion
of black space corresponding to the percentage of bootstrap replicates in support. Full black circles represent 100% support. All GenBank accession
numbers, alignments, species-level relationships, divergence clade estimates and species representativeness percentages are provided in the
Supplementary Material. This phylogeny, as well as one with nodes bearing bootstrap values below 70% collapsed, is available as a Newick string in the
Supplementary Material and can be found in the “phy” folder.

diversifying in the Eocene, while those of Profundulidae,
Poeciliidae, and Anablepidae diverged in the Oligocene
(Figure 6). All phylogeny files are available in easily viewable
and editable Newick format in the Supplementary Material in
the “phy” folder. Divergence estimates for NFF families are
provided in Supplementary Table S1.

Discussion

Constructing a comprehensive phylogenetic tree of NFF species
from public data repositories such as GenBank is important in
both scientific and conservation contexts (Winter et al., 2013;
Tucker et al., 2017). Scientifically, the tree presented here provides
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a holistic view of the NFF biodiversity, unraveling evolutionary
relationships and establishing a comparative framework to test
macroevolutionary hypotheses in the Neotropics. It will also form a
baseline for continuous updates as new sequences become available
through the collective efforts of taxonomists and evolutionary
biologists, advancing our understanding of one of the Earth’s most
diverse biotas (e.g., Antonelli et al., 2017). Maintaining an accurate
timed phylogeny also benefits databases such as TimeTree.org,
allowing researchers who are not phylogenetic experts to export
phylogenies or summaries of divergence times for their own
downstream analyses (Kumar et al., 2022).

This phylogeny also plays an important role in conservation
efforts. It will inform targeted initiatives based on evolutionary
distinctiveness and phylogenetic shape and rate metrics, and
will contribute to threat assessments among the NFF species
(Weber et al., 2017; Albert et al., 2020). Given that continental
freshwaters harbor diverse yet fragile ecosystems threatened by
human activities, prioritizing geographic areas with the highest
number of coexisting evolutionary lineages, including those with
threatened species, can significantly enhance conservation efforts for
NFF taxa (Tagliacollo et al., 2021; Dagosta et al., 2021).

Maintaining this comprehensive NFF tree presents challenges
due to the ongoing discovery of new species, taxonomic
revisions, and advancements in genomic sequencing technologies
(Remec et al., 2021). Consequently, community-driven efforts
are crucial for updating the tree, encompassing the inclusion
of newly-described taxa, review of taxonomic changes, and the
integration of new DNA markers generated by next-generation
sequencing technologies such as UCEs (Faircloth et al., 2012)
and exons (Bragg et al., 2016). Over the years, new DNA sequences
will be generated as methodologies improve, allowing for the
continuous refinement of evolutionary hypotheses. Future studies
will also incorporate phylogenomic data, improving node support
and removing some tree constraints that were necessary due to
the lack of sufficient phylogenetic signal to recover deeper node
evolutionary relationships.

Using publicly available sequences for research comes with
inherent limitations, including misidentifications of taxa, where
sequences may be attributed to the wrong species due to errors in
specimen identification, and incomplete coverage in the alignments,
which can affect the accuracy and comprehensiveness of analyses.
While misidentified sequences are common on public sequence
repositories like GenBank (Li et al., 2018), we mitigated their
impact through rigorous manual evaluation by multiple experts in
Neotropical ichthyology, and we will continue to review public data
by the community and evaluate the reliability of sequences during
future updates to the tree. As these updates unfold, the tree will
expand in the number of both taxa andmolecularmarkers, requiring
the utilization of bioinformatic tools to standardize and streamline
such updating processes. Because public databases can often contain
sequences that are incomplete or represent only certain regions of
the genome, which can impact the accuracy and comprehensiveness
of analyses (Li et al., 2018), researchers should always be aware
of these limitations and biases when using publicly available DNA
sequences and exercise caution in interpreting and generalizing
results derived from such data. Incorporating multiple data sources
and rigorous validation processes can help mitigate these issues to
some extent.

One possible alternative is to continue developing
methodologies of phylogenetic placement which allow us to
determine the phylogenetic position of new species without
remaking the entire tree (e.g., Matsen et al., 2010). Importantly,
phylogenetic placement techniques require less time and
computational power than full Bayeseian or likelihood-based tree
inferences and can be implemented collaboratively on platforms
connected to computer servers across different locations. While
this strategy provides a more efficient means of performing small,
localized updates to the phylogenetic tree, it will still periodically
be necessary to rebuild the entire tree to incorporate all new taxa
and genomic markers, which will be a computationally intensive
process. This only underscores the importance of investing in high
powered computational infrastructure as the field evolves.

The ichthyological research community is invited to embark
on a collaborative journey to enhance the phylogenetic tree of NFF
species.With a dedication to continuous data contribution, available
online in repositories such as GenBank, periodic taxonomic
reviews, and methodological advancements, the community
can collectively refine and expand this initial effort to elucidate
the evolutionary relationships among NFF taxa. Emphasizing
data sharing, interdisciplinary collaboration, and community
engagement will foster a clear understanding and application of
these phylogenetic insights in future studies. The curation of public
repositories, development of new methods, and interdisciplinary
collaboration ensure a robust and accessible framework for ongoing
research, aiming to reveal the intricate processes and patterns
of formation of the diverse NFF taxa. A proactive approach to
address data gaps solidifies the commitment to advancing our
knowledge of the evolutionary relationships of NFF species,
supporting empirical means for biodiversity conservation plans, and
contributing to global scientific endeavors uncovering the origins
and diversification of freshwater vertebrate faunas in theNeotropics.

Conclusion

This study presents the first comprehensive, time-calibrated
phylogeny of NFF species, based on a supermatrix of 51 genes with a
total of 43,850 bp for 5,984 specimens in 3,167 species representing
50% of all valid NFF species and 741 or 86% of all NFF genera.
This supermatrix reflects three decades of molecular research by the
ichthyological community by drawing on sequence data deposited
in GenBank in hundreds of separate studies. While standing out
as the most species-rich dataset of NFF taxa assembled to date,
the accuracy of this phylogeny is affected by the representation of
genes and taxa included in previous investigations, with known
biases in the representations of fish species by clade (e.g., family),
traits (e.g., adult body size), geographic and ecological ranges
(e.g., investigator access), and conservation status. Despite these
shortcomings, this study establishes an initial framework for fauna-
wide investigations of macroevolutionary and macroecological
patterns, acknowledging the need for continual updates as science
progresses. Our commitment as a scientific community to regular
updates ensures its increasing accuracy and relevance, aligning
with advancing ichthyological knowledge. This study underscores
the importance of collaborative efforts and unlocks avenues for
future research in historical biogeography, macroevolution, and
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macroecology. By fostering active collaboration and embracing
scientific inquiry, we hope this assembled tree serves as a start point
for more efforts to protect freshwater fishes, marking a stride toward
sustainable biodiversity conservation.
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