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Vineeta Pandey1‡, Aarshi Srivastava1‡, Ramwant Gupta2,
Haitham E. M. Zaki3,4*, Muhammad Shafiq Shahid � 5* and
Rajarshi K. Gaur � 1*
1Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar
Pradesh, India, 2Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur,
Uttar Pradesh, India, 3Horticulture Department, Faculty of Agriculture, Minia University, El-Minia,
Egypt, 4Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur,
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Phytoplasma, a potentially hazardous pathogen associated with witches’ broom,
is an economically harmful disease-producing bacteria that damages chilli
cultivation. Phytoplasma-infected plants display various symptoms that indicate
significant disruptions in normal plant physiology and behaviour. Diseases
caused by phytoplasma are widespread and have a major economic impact
on crop quality and yield. This work focuses on identifying and examining chilli
microRNAs (miRNAs) as potential targets against the 16S rRNA and secA gene of
“Candidatus Phytoplasma trifolii” (“Ca. P. trifolii”) through plant miRNA prediction
algorithms. Mature chilli miRNAs (CA-miRNAs) were collected and used to
hybridise the 16S rRNA and secA genes. A total of four common CA-miRNAs
were picked according to genetic consensus. Three algorithms applied in the
present study suggested that the physiologically relevant, top-ranked miR169b_
2 has a possibly specific site at nucleotide position 1,006 for targeting the ‘Ca.
P. trifolii’ 16S rRNA gene. The circos algorithm was then utilised to create the
miRNA-mRNA regulatory network. The free energy between the miRNA:mRNA
duplex was also computed, and the best value of −17.46 kcal/mol was obtained
for CA-miR166c_2. Currently, there are no suitable commercial ‘Ca. P. trifolii’-
resistant chilli crops. As a result, the expected biological data provide useful
evidence for developing ‘Ca. P. trifolii’-resistant chilli plants.

KEYWORDS
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Introduction

Chilli (Capsicum annuum L.) is a staple vegetable and spice crop, valued for its
young green and red ripe fruits. As a medicinal plant, it is known to possess various
pharmacologically and biochemically active compounds (Bosland, 1996; Powis et al.,
2013). Chilli fruits are attributed to the richness and diversity of bioactive components,
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including capsaicinoids, carotenoids, and vitamins (Bal et al.,
2019b; Bal et al., 2020a; Bal et al., 2020b). Consuming capsaicin
in chilli has antioxidant properties and can bind and destroy
cancer cells (Oh et al., 2010). Agriculture crops face numerous
biotic and abiotic challenges, with phytoplasma-associated diseases
being a major concern in many parts of the world. These
diseases significantly reduce both production yield and quality.
(Bertaccini et al., 2014). Phytoplasma, which causes little leaf
disease, is one of the major constraints for chilli production and
can result in significant economic losses (Singh and Singh, 2000).
Phytoplasmas, which are prokaryotic wall-less bacteria that flourish
in isotonic habitats in insect hemolymph and phloem tissues of
plants. They possess a small genome, approximately 680–1,600 kb
in size. Phytoplasmas are associated with over 600 diverse plant
diseases worldwide (Bertaccini et al., 2014). Phloem-feeding insects,
specifically leafhoppers and plant hoppers, serve as the principal
vectors of phytoplasma transmission (Bertaccini et al., 2014).
Phytoplasmas disease are associated with a variety of symptoms,
including little leaves, virescence, large buds, shorter internodes,
witches’ broom, massive calyx, phyllody, vascular discoloration, and
floral abnormalities. The ability to classify phytoplasmas into groups
and subgroups was made possible by the development of molecular
techniques; this process mostly relied on the examination of the
16S rRNA gene sequence (Lee et al., 1998a; IRPCM, 2004). As
the fundamental elements of the Sec translocation protein system,
secA, secE, and secY have been found in onion yellow phytoplasma
(OY) (Economou, 1999; Kakizawa et al., 2001). They are crucial
for both protein movement and cell survival in Escherichia coli.
Phytoplasma diseases have existed in India for over a century.
Coconut root wilt disease was first observed in South Kerala in
1874 (Varghese, 1934), whereas first phytoplasma disease in chilli
was reported in India by Singh and Singh (2000) and ‘Candidatus
Phytoplasma trifolii’ causing witches broom disease in chillies was
also reported by Rao et al. (2017). According to a recent study,
the 16SrVI-D phytoplasma subgroup was associated with Capsicum
chinense in India (Dutta et al., 2022).

MicroRNAs (miRNAs) are short (19–25 nucleotide) non-
coding, single-stranded RNA molecules that exist naturally in
plants and have evolved to be conserved (Finnegan and Matzke,
2003). In higher plants, the synthesis of miRNA gene (MIR) is
controlled by RNA polymerase II. The miRNA gene is translated
and generates single-standard polycistronic primary transcripts or
primarymiRNAs.ThesemiRNAs regulate a wide range of biological
activities in plants, including gene expression, differentiation,
development, cell growth, and host-pathogen interactions (Millar,
2020; Islam et al., 2022). The post-transcriptional gene-silencing
(PTGS) process known as miRNA-mediated RNA interference
(RNAi) regulates or inhibits viral or non-viral infection by regulating
host-virus interactions and providing antimicrobial innate
immunity (Jin et al., 2022). Profiling miRNAs in mulberry phloem
saps due to phytoplasma infection can help evaluate the molecular
mechanisms underlying phytoplasma pathogenicity (Gai et al.,
2018). The “Ca. P. trifolii”s’ gene were used as the target binding
sites for chilli genome-encoded miRNAs, using a comprehensive
multi-network strategy based on “Ca. P. trifolii” infection evaluation.

The major purpose of this study is to discover multiple host-
derived miRNA binding sites in the 16S rRNA and secA genes that
may be used to create transgenic chilli cultivars resistant to “Ca. P.

trifolii”. This study used several miRNA prediction algorithms to
detect microRNA-mRNA binding locations in the 16S rRNA and
secA gene. These loci may be used to create hybrid/non-hybrid chilli
plants resistant to “Ca. P. trifolii” and similar phytoplasma.

To get an in-depth comprehension of phytoplasma plant
interactions during infection, it was also interesting to identify
relevant targets for the most efficient CA-miRNAs. There have been
no investigations on using amiRNA-based techniques to establish
phytoplasma resistance in chilli plants, considering its potential for
silencing “Ca. P. trifolii”. Further analysis of the anticipated locus-
derived CA-miRNAs in the chilli genome was conducted to uncover
new antiviral targets and comprehend the complicated relationships
between the phytoplasma “Ca. P. trifolii” and the chilli host plants.

Materials and methods

Capsicum annuum CA-miRNA and target
genome sequence (phytoplasma) retrieval

The miRNA sRNAanno database was used to retrieve
76 mature chilli microRNAs (CA-miRNAs) that have been
experimentally confirmed with high confidence from chr1 to
chr5 (Supplementary Table S1). The miRNA targets chosen
for this analysis were phytoplasma 16S rRNA (Accession no.
MZ557805) and secA (Accession no. MZ620707) gene sequences
identified in our previous study of mixed infection in the
chilli plant. The sequences were collected from the NCBI
GenBank database (Supplementary Figure S1).

Target prediction in 16S rRNA and secA of
phytoplasma

Target prediction is a crucial factor in establishing reliable
miRNA-mRNA interaction hybridization. Many target prediction
algorithms have been used to identify the best miRNA target
candidates. Each tool utilizes distinct criteria and methodologies
to make predictions. We assessed five target prediction techniques
documented in the literature to determine the most relevant
CA-miRNAs for phytoplasma components silencing: RNAhybrid
(Krüger and Rehmsmeier, 2006), TAPIR (Bonnet et al., 2010),
RNA22 (MiRanda et al., 2006; Loher and Rigoutsos, 2012),
MiRanda (Enright et al., 2003; John et al., 2004) and psRNATarget
(Dai and Zhao, 2011; Dai et al., 2018). These tools calculate
complementarity-based miRNA-mRNA binding. An effective
computational method was employed to evaluate miRNA targets
by examining three different prediction levels: individual, union
and intersection (Supplementary Figure S1).

Target prediction algorithms: RNAHybrid,
tapirhybrid, RNA22, MiRanda and
psRNATarget

A large number of plant miRNAs bind to their targets with
perfect or almost perfect sequence complementarity (Llave et al.,
2002; Reinhart et al., 2002). RNAHybrid, an online programme,
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FIGURE 1
The Venn diagram plot of chilli-encoded miRNAs has been created for all five methods. Chilli-encoded miRNAs target 48 locations on “Ca.P.trifolii” 16S
rRNA and secA. Furthermore, the computational tools used in this work confirm the total number of targeting sites for 33 CA-miRNAs that interact with
16S rRNA and secA. Three mathematical approaches (Tapirhybrid, RNA22, and miRanda) predicted the presence of a single CA-miRNA (CA_miR169b_2).

allows users to identify miRNA targets using mRNA and miRNA
minimum free energy (MFE) matching easily. We accepted the
default parameters that were specified with hit per target of 1 with
MFE threshold of −20 kcal/mol to get the more stable miRNA
and mRNA heteroduplex. The Tapirhybrid method evaluates plant
miRNAs in the target region for their seed-based interactions.
With FASTA and RNAhybrid search capabilities, it is utilised
to provide accurate miRNA target predictions, including target
mimics. The free energy ratio of 0.2 and score of 9 were selected to
increase the accuracy in the result (Table 1). Using RNA22, target
locations with appropriate hetero-duplexes was predicted. Among
themost delicate algorithmic components are non-seed interactions,
pattern detection, MFE, and site compatibility (MiRanda et al.,
2006). The study was conducted with sensitivity and specificity of
63% and 61% respectively, the GU region allowed in seed region
with no limit and MFE for heteroduplex was −12 kcal/mol for
identifying more than 60% accurate and consistent interactions.
MiRanda is the most extensively used standard computational
approach for predicting miRNA targets (Table 1). The MiRanda
method was executed using free energy of −15 kcal/mol and
score threshold of 140 led to better alignment and sustained
interactions (Table 1). The psRNATarget algorithm, finds that the
target phytoplasma componentsmRNA region and CA-miRNAs are
reversely complementary (Dai et al., 2018). Target-site accessibility
was evaluated by calculating the unpaired energy (UPE) using

the psRNATarget approach. The interaction between miRNA and
mRNA was computed using user-specified factors and an expected
value cut-off of 5 (Table 1) determining the most probable binding
locations while reducing the risk of false positives.

CA-miRNA–16S rRNA and secA interaction
mapping

The Circos method was used in the R programme to
construct an interaction map between 16S rRNA, secA, and CA-
miRNAs (Krzywinski et al., 2009) (Supplementary Figure S1) to
enable the detection and study of similarities and differences
resulting from miRNA and mRNA interaction. Circos method
allows for effective visualisation of sequence alignments,
genome mapping, hybridisation arrays, and genotyping
experiments (Krzywinski et al., 2009).

Thermodynamic stability: free energy (ΔG)
evaluation of duplex binding

Sequence alignment is beneficial in predicting miRNA-
mRNA interactions, but the thermodynamic aspects of miRNA-
mRNA complexes provide critical information for determining
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TABLE 2 List of chilli known miRNA showing target within “Candidatus phytoplasma trifolii” 16S rRNA and secA through a different algorithm.

Known chilli miRNA Algorithms predicted miRNA within 16S rRNA and secA

Tapirhybrid RNA22 psRNATarget RNAHybrid miRanda

CA-miR169b_2 16S rRNA 16S rRNA ---------- ---------- 16S rRNA

CA-miR319c_2 ---------- secA 16S rRNA 16S rRNA ----------

CA-miR399e_2 ---------- 16S rRNA, secA ---------- 16S rRNA ----------

CA-miR482a_1 ---------- secA ---------- ---------- ----------

CA-miR482a_2 ---------- 16S rRNA ---------- ---------- ----------

CA-miR1446a_2 ---------- ---------- 16S rRNA ---------- ----------

CA-miR156b_2 ---------- ---------- 16S rRNA 16S rRNA ----------

CA-miR159a_1 ---------- ---------- secA ---------- ----------

CA-miR159b_1 ---------- ---------- secA ---------- ----------

CA-miR159c_1 ---------- ---------- secA ---------- ----------

CA-miR160_1 ---------- ---------- ---------- 16S rRNA ----------

CA-miR160_2 ---------- ---------- 16S rRNA 16S rRNA ----------

CA-miR166c_2 16S rRNA ---------- 16S rRNA ---------- ----------

CA-miR166d_2 ---------- ---------- ---------- 16S rRNA ----------

CA-miR168a_1 16S rRNA ---------- 16S rRNA ---------- ----------

CA-miR168a_2 ---------- ---------- ---------- 16S rRNA ----------

CA-miR168b_1 ---------- ---------- ---------- 16S rRNA ----------

CA-miR168b_2 ---------- ---------- 16S rRNA ---------- ----------

CA-miR169a_1 ---------- ---------- ---------- 16S rRNA ----------

CA-miR169a_2 ---------- ---------- ---------- 16S rRNA ----------

CA-miR169b_1 ---------- ---------- ---------- 16S rRNA ----------

CA-miR171a_2 16S rRNA ---------- ---------- ---------- ----------

CA-miR171b_2 16S rRNA ---------- ---------- ---------- ----------

CA-miR172b_2 ---------- ---------- ---------- ---------- secA

CA-miR319c_1 ---------- ---------- ---------- 16S rRNA ----------

CA-miR399e_1 ---------- ---------- ---------- 16S rRNA ----------

CA-miR399g_1 ---------- ---------- ---------- 16S rRNA ----------

CA-miR399g_2 ---------- ---------- ---------- 16S rRNA ----------

CA-miR403a_1 ---------- ---------- ---------- ---------- secA

CA-miR403a_2 ---------- ---------- ---------- ---------- 16S rRNA

CA-miR482a_2 ---------- ---------- ---------- 16S rRNA ----------

CA-miR5300_1 ---------- ---------- ---------- 16S rRNA ----------

(Continued on the following page)

Frontiers in Bioinformatics 05 frontiersin.org

https://doi.org/10.3389/fbinf.2024.1493712
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Pandey et al. 10.3389/fbinf.2024.1493712

TABLE 2 (Continued) List of chilli known miRNA showing target within “Candidatus phytoplasma trifolii” 16S rRNA and secA through a different
algorithm.

Known chilli miRNA Algorithms predicted miRNA within 16S rRNA and secA

Tapirhybrid RNA22 psRNATarget RNAHybrid miRanda

CA-miR5300_2 16S rRNA ---------- 16S rRNA (at two different locus) ---------- ----------

CA-miR6026_1 ---------- 16S rRNA 16S rRNA, secA ---------- ----------

FIGURE 2
The “five algorithms” strategy predicted unique chilli CA-miRNAs and their high-confidence binding regions across Ca.P.trifolii’s 16S rRNA. (A)
CA-miRNA binding sites were identified using RNAhybrid. (B) Tapirhybrid reported the target’s CA-miRNA positions and MFE ratio. (C) RNA22 predicts
miRNA binding affinity sites. (D) miRanda reported the target’s CA-miRNA spots. (E) psRNATarget indicates CA-miRNA binding sites.

hybridization durability (Riolo et al., 2020). Most miRNA-
targeting prediction approaches use the free energy (ΔG) of the
expected interaction to assess the thermodynamic characteristics
of the miRNA-mRNA complex. RNAcofold, an online tool
(http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAcofold.cgi),

predicts the duplex (miRNA and mRNA) free energy (ΔG)
of interactions (Bernhart et al., 2006). Using the miRNA-
target pair from psRNATarget, the necessary 16S rRNA and
secA sequences, as well as CA-miRNAs, were studied with
the RNAcofold default parameters.
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FIGURE 3
The union plot depicts every predicted binding region identified by each method used. Coloured dots represent numerous copies of the binding spots
for miRNA targets by different computational methods.

FIGURE 4
The “three algorithms” strategy predicted unique chilli CA-miRNAs and their high-confidence binding regions across ‘Ca.P.trifolii’ secA. (A) RNA22
predicts miRNA binding affinity sites. (B) miRanda reported the target’s CA-miRNA sites. (C) psRNATarget indicates CA-miRNA binding sites along with
expectation scores.
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Result

CA-miRNA target prediction on
phytoplasma

miRNAs with a precise or near-perfect match to their target
mRNAs regulate post-transcriptional gene expression through
mechanisms such as translation inhibition and cleavage. The
microRNA causes mRNA cleavage and subsequent degradation
by binding with complementarity in the seed region and base
pairing in the central section (Pasquinelli, 2012). This degradation,
which is sequence-specific, relies on RNA hydrolysis, leading to
effective silence (Dykxhoorn et al., 2003). Limited compatibility,
on the other hand, typically results in lower gene expression
because it prevents the host from translating the targeted mRNA
(Bonnet et al., 2004). This study revealed host miRNAs capable
of selectively targeting known phytoplasma 16S rRNA and secA
isolates in chilli plants. Because miRNA binding to target RNA
genomes is quite diverse, we employed five algorithmic approaches
(RNAHybrid, Tapirhybrid, RNA22, MiRanda and psRNATarget) to
determine the binding strength and phytoplasma relevance of the
76 known CA-miRNAs (Supplementary Table S1).When numerous
in silico approaches were employed to establish target alignment
with phytoplasma 16S rRNA and secA phytoplasma components,
around 48 target transcripts were identified to be targeted by
these 76 known CA-miRNAs (Figure 1). Out of the 76 known
miRNAs, three algorithms identified one CA-miRNA (i.e., CA_
miR169b_2) (Table 2). RNAHybrid predicted seventeen miRNA
targets. Similarly, Tapirhybrid identified six miRNAs that target
16S rRNA. Both RNAHybrid and Tapirhybrid revealed no miRNA
with the binding affinity to the secA gene. Furthermore, four
miRNAs in RNA22 showed an interaction for their target, each
having one target within the 16S rRNA, whereas secA had three
target sites (Table 2). Similarly, MiRanda confirmed that both 16S
rRNA and secA were targeted by four distinct miRNAs (Table 2).
While evaluating the psRNATarget data, we observed ten and four
high-probability miRNA binding sites for 16S rRNA and secA,
respectively, whereas CA-miR5300_2 targets two different locations
in 16S rRNA.

Chilli-miRNA target prediction at 16S rRNA

This analysis found that thirty-four of the seventy-six known
CA-miRNA transcripts encoded by chr1 to chr5 had targets in
‘Ca. P. trifolii’ 16S rRNA gene. RNAHybrid showed a total of
seventeen miRNA transcripts targeting the 16S rRNA, with CA-
miR399 transcripts indicating four targets (Figure 2A). Likewise,
tapirhybrid predicted six targeting sites, including two transcripts of
CA-miR171 (Figure 2B). In RNA22, four separate miRNA members
(i.e., CA-miR6026_1, CA-miR399e_2, CA-miR169b_2, and CA_
miR482a_2) targeted the four different prediction sites (Figure 2C).
CA-miR403a_2 and CA-miR169b_2 showed cleavage affinity for
16S rRNA in miRanda (Figure 2D). psRNATarget identified ten
targeting sites for nine miRNA transcript each targeting one
sites except CA-miR5300_2 which individually targeted at two
different loci in 16S rRNA (Figure 2E) (Figure 3). MiRanda
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FIGURE 5
An intersection graph illustrates the most prevalent CA-miRNAs found using at least twodistinct approaches at homologous loci. Colour codes are
provided in the figure showing algorithms.The expected cut-off score (psRNATarget), the minimum free energy (MFE) (RNAhybrid, miRanda, and
RNA22), and the MFE ratio (Taphirhybrid) are presented.

confirmed CA-miR403a_1 and CA-miR172b_2 as targeting two
distinct loci (Figure 3).

CA-miRNAs targeting secA

Bacterial Sec protein transfer involves the secA protein.
The translocation of proteins across the cell membrane that is
dependent on ATP is mediated by it. According to Xue et al.
(2023) secA most likely aids in the survival of phytoplasmas
by moving proteins across the cell membrane. We obtained
data for the secA gene from three target prediction algorithms.
MiRanda, RNA22, and psRNATarget each predicted two, three,
and four secA target sites, respectively (Figures 4A–C). In
psRNATarget, transcripts of CA-miR159 targeted three of the
targeting sites. However, RNA22 predicted three different binding
sites by CA_miR319c_2, CA_miR399e_2, and CA_miR482a_
1.

Consensual identification of CA-miRNAs

The current study was carried out primarily on the consensus
of the target binding loci of CA-miRNAs obtained through
multiple approaches. We chose four CA-miRNAs, CA-miR169b_2,
CA-miR166c_2, CA-miR168a_1, and CA-miR5300_2, considering
consensus nucleotide spots 1,006, 533, 906, and 131, respectively
(Tables 3) (Figure 5). Only one CA-miRNA, miR169b_2, was
identified by combining nucleotide consensus sites at location 1,006
using three approaches (RNA22, TapirHybrid, and MiRanda).

Mapping of miRNA- “Candidatus
phytoplasma trifolii” 16S rRNA and secA
gene interaction

To correctly integrate biologically valid data for investigating
the miRNA-host gene, we utilised the R-tool to create circos plots
for miRNA targets (Table 2). To enable best visualisation and
readability, this mapping between the CA-miRNAs with their 16S
rRNA and secA gene targets were done (Figure 6).

Thermodynamic stability: free energy (ΔG)
estimation for miRNA–mRNA heterodimer

The free energy (ΔG) of miRNA-mRNA duplex for those
miRNAs that were supported by at least two predicted tools
were evaluated. The miRNA-mRNA complex is thought to be
highly thermodynamically stable, with as stronger miRNA-mRNA
association when the ΔG of the complex is low (i.e., greater
negative ΔG) which strengthens the miRNA’s regulatory influence
on the target mRNA (Bernhart et al., 2006). This constitutes
essential information because it increases the likelihood that stable
miRNA-mRNA binding will be recognized as an actual interaction
(Riolo et al., 2020). The RNAcofold algorithm’s free energy (ΔG)
estimation was based on the alignment (miRNA-mRNA) result of
psRNATarget. Four duplexes were identified, with the lowest free
energy (ΔG) of > −15 kcal/mol for CA-miR166c_2, CA-miR166c_2,
CA-miR168a_1 and CA-miR168b_2 for 16S rRNA (Table 4). CA-
miR6026_1 had the lowest binding energy for secA, which was
−12.34 kcal/mol.
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FIGURE 6
The “Ca.P.trifolii” 16S rRNA and secA gene schematic representation for the chilli-target interaction. The known CA-miRNAs retrieved from sRNAanno
dataset and their targets against the 16S rRNA and secA gene are summarized in a circular plot (Circos) constructed with the R-program. The outer ring
represents the genetic components of “Ca. P. trifolii” and known CA-miRNAs. The coloured lines reflect the interaction of both 16S rRNA and secA with
the target.

Known CA-miRNAs secondary structures

The sRNAanno database (Chen et al., 2021) was used to predict
stable secondary structures for known CA-miRNAs (Figure 7).
Precursors for mature CA-miRNAs were retrieved from same
database. The secondary structures of four pre-miRNA precursors
as predicted by the intersection of two consensus algorithms
at the same locus were identified. We identified the important
attributes of thirty-three precursor miRNAs that showed targets
for either 16S rRNA or secA, including MFE, Adjusted Minimum
Folding Free Energy (AMFE), Minimum Folding free Energy Index
(MFEI), length precursor, length of mature miRNA, nucleotide
and GC content (Figure 8). The MFE is the most important
determinant for assessing precursors’ stable secondary structures.
According to Bonnet et al. (2004), precursor microRNAs must
have less folding energy compared to different non-coding RNAs.
The RNAfold tool were used to accessed the MFE value of

precursor miRNA (Lorenz et al., 2011). These known CA-miRNAs
precursors were found to have lowered MFE values (range from
−27.00 to −134.20 kcal/mol) (Table 5). In this work, the precursor
length ranged from 116–319 nucleotides (Figure 8), and the (G
+ C) % varied from 34.9% to 54.8%. The AMFE measured
between −26.54 and −49.52 kcal/mol, with an MFEI of −0.58
to −1.24 kcal/mol. Using standard characteristics, the topmost
stable secondary structure of precursor was CA-miR6026_1 (MFE:
134.20 kcal/mol, MFEI: 1.16 kcal/mol).

Discussion

Chilli fruit and its supplementary components have significant
applications and a diverse range of bioactive chemicals in farming,
nourishment, pharmaceuticals, healthcare, and skincare sector.
Its by-products are also useful in the field of textile (Havsteen,
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FIGURE 7
Secondary structure of known CA-miRNAs: those with a greater abundance are coloured red, whereas those with a low abundance are coloured green.

FIGURE 8
Mature miRNA length and precursor miRNA length were measured. Pink indicates mature miRNAs, whereas blue indicates the length of miRNA
precursors. Nucleotide composition of the precursor miRNA was also determined.

2002; Dixon and Pasinetti, 2010; Liu et al., 2013). Aside from its
restricted genetic base, chilli revenue is severely affected due to its
susceptibility against to biotic and abiotic pressures. Phytoplasmas
are non-culturable prokaryotic bacteria responsible for a variety of

plant diseases and are spread by insect’s feed on phloem. Chilli is
prone to a variety of diseases, among which little leaf disease, caused
by phytoplasmas, responsible for major economic losses (Singh
and Singh, 2000).
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TABLE 5 The characteristics of the known precursors of chilli were identified.

Known chilli miRNA (Acronyms) MFEa (kcal/mol) AMFEb MFEIc (G + C) %

CA-miR169b_2 −61.90 −49.52 −1.11 44.8

CA-miR319c_2 −94.10 −48.75 −1.10 44.5

CA-miR399e_2 −55.10 −47.5 −1.23 38.7

CA-miR482a_1 −50.50 −41.05 −1.18 34.9

CA-miR482a_2 −50.50 −41.05 −1.18 34.9

CA-miR1446a_2 −59.50 −54.09 −1.24 43.6

CA-miR156b_2 −49.80 −35.82 −0.82 43.8

CA-miR159a_1 −76.20 −39.68 −1.03 38.5

CA-miR159b_1 −76.20 −39.68 −1.03 38.5

CA-miR159c_1 −88.80 −46.01 −1.11 41.4

CA-miR160_1 −53.10 −50.09 −1.11 45.2

CA-miR160_2 −53.10 −50.09 −1.11 45.2

CA-miR166c_2 −30.00 −26.54 −0.61 43.3

CA-miR166d_2 −46.50 −35.22 −0.90 39.3

CA-miR168a_1 −99.30 −33.66 −0.77 44.0

CA-miR168a_2 −99.30 −33.66 −0.77 44.0

CA-miR168b_1 −47.10 −32.04 −0.58 54.8

CA-miR168b_2 −47.10 −32.04 −0.58 54.8

CA-miR169a_1 −54.50 −35.38 −0.94 37.7

CA-miR169a_2 −54.50 −35.38 −0.94 37.7

CA-miR169b_1 −61.90 −49.52 −1.11 44.8

CA-miR171a_2 −27.20 −36.75 −0.91 40.5

CA-miR171b_2 −27.00 −35.52 −0.90 39.4

CA-miR172b_2 −45.60 −35.07 −0.35 53.3

CA-miR319c_1 −94.10 −48.75 −1.10 44.5

CA-miR399e_1 −55.10 −47.5 −1.22 38.8

CA-miR399g_1 −45.70 −47.60 −1.11 42.7

CA-miR399g_2 −45.70 −47.60 −1.11 42.7

CA-miR403a_1 −50.70 −47.83 −1.21 39.6

CA-miR403a_2 −50.70 −47.83 −1.21 39.6

CA-miR482a_2 −50.50 −41.05 −1.18 34.9

CA-miR5300_1 −80.30 −34.31 −0.89 38.5

(Continued on the following page)
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TABLE 5 (Continued) The characteristics of the known precursors of chilli were identified.

Known chilli miRNA (Acronyms) MFEa (kcal/mol) AMFEb MFEIc (G + C) %

CA-miR5300_2 −80.30 −34.31 −0.89 38.5

CA-miR6026_1 −134.20 −42.06 −1.16 36.4

aMFE: minimum free energy.
bAMFE: adjusted minimum free energy.
cMFEI: minimum free energy index.

In eukaryotes, microRNAs (miRNAs) are well-conserved, short
endogenous non-coding RNAs that use sequence complementarity
to target and destroy mRNA. In plant miRNAs often exhibit perfect
base-pairing with target sites whereas animal miRNAs establish
imperfect duplexes with target sequences, hence confounding
the prediction of direct targets (Pasquinelli, 2012). MiRNAs
typically suppress target expression in plants and animals by
causing mRNA de-adenylation and degradation, as well as limiting
translation (Pasquinelli, 2012). Research has explored complex
host-virus interactions and employed computational approaches to
study miRNAs targeting plant viruses (Akhter and Khan, 2013;
Ashraf et al. 2022; 2023; Iqbal et al., 2017; Jabbar et al., 2019;
Shahid et al., 2022). In our earlier study, we predicted and examined
the mature locus-derived microRNAs in the chilli and papaya
genome that were expected to be chilli leaf curl virus (ChiLCV) and
papaya leaf curl virus (PaLCuV) targets based on in silico criteria
(Pandey et al., 2024; Srivastava et al., 2024).

In this in silico research, we attempted for the first time
to align mature chilli CA-miRNAs with the genomic sequence
of the 16S rRNA and secA gene of ‘Ca. P. trifolii’ targets
in order to identify miRNA-mRNA binding loci hypothesised
for comprehending complex host-phytoplasma interactions. The
survival of phytoplasma relies on its two primary components, 16S
rRNA and sec (A, Y, and E) genes. The 3′end of 16S rRNA interacts
with proteins S1 and S21, which are believed to be associated
with protein synthesis beginning (Czernilofsky et al., 1975). The
16S rRNA gene is frequently used in phylogenetic investigations
(Weisburg et al., 1991) because it is primarily conserved across
diverse bacteria and archaea (Coenye and Vandamme, 2003).
Similarly, proteins released via the Sec system are anticipated to be
crucial throughout the infection process as they facilitate protein
translocation. So, this work employs “Ca. P. trifolii” 16S rRNA
and secA as CA-miRNA targets, which might be useful for similar
phytoplasma sequences.

We investigated the effectiveness of computational strategies
for assessing miRNA target prediction data to filter out false-
positive outcomes. We developed a reliable method for validating
these predictions at the individual, union, and intersection stages.
Algorithmic prediction provides quick ways for identifying putative
host-derived target regions for miRNA in phytoplasma genomes.
The parameters vary depending on the algorithm or tool and may
be adjusted to fine-tune the settings or increase the degree of
sensitivity for expected spots. Five different approaches were utilised
for target prediction: RNAHybrid, Tarpirhybrid, RNA22, miRanda,
and psRNATarget.We applied all five approaches to determining the
MFE and target inhibition sites.

Two or more algorithms may jointly identify a number
of putative CA-miRNAs targets and miRNA-mRNA duplexes
(Figure 3). Target gene destruction is induced by plant miRNAs
by the application of perfect or near-perfect complementary
base pairing (Jones-Rhoades et al., 2006). The present study
shows that a collection of consensus CA-miRNAs may target
‘Ca. P. trifolii’ genomic components (16S rRNA and secA gene).
Furthermore, three algorithms identified CA-miR169b_2 as
targeting 16S rRNA at the same consensus hybridisation site
(i.e., 1,006), and because this specific miRNA’s target region was
proven by three approaches, more research could be undertaken
on it (Figure 5). miR169 is largely conserved across plant species
and may be activated by drought and salt environments in rice
(Sunkar and Jagadeeswaran, 2008). Free energy estimation is a
dynamic characteristic of miRNA and target binding. Previous
research has identified a strong link between free energy and
both translational repression and seed hybridization binding
(Doench and Sharp, 2004). The thermodynamic stability of the
miRNA-mRNA heterodimer was assessed using free energy
analysis to track site availability for secondary structure duplex
identification (Peterson et al., 2014). To validate miRNA-mRNA
interactions, we calculated the free energy of the heterodimer
(Table 4). Our prediction indicates that the chilli-encoded miRNA-
phytoplasma-mRNA duplex is highly stable at low free energy
levels (Table 4). The increased stability of the RNA duplex is
attributed to the stronger interaction between the miRNA and
mRNA (Lewis et al., 2005; Huang et al., 2010).

We applied union and intersection methods to decrease false
positive predictions. When it comes to detecting genuine and false
targets, union techniques rely on merging many target prediction
tools. An intersecting method is fundamentally different, relying on
the integration of two or more computational algorithms to increase
the specificity of anticipated targets by reducing insensitivity
(Witkos et al., 2011). Our target prediction outcomes showed that
both computationalmethods performed optimally when identifying
and estimating the optimum targets (Figures 3, 5). Based on the
manner of miRNA-target identification, MFE is another significant
component that influences miRNA-target interaction during result
validation (Pinzón et al., 2017). Setting a lower MFE value increases
the possibility of miRNA-target building complexes (Kertesz et al.,
2007). For miRanda analysis, a strict cut-off value of −15 kcal/mol
was used to filter out miRNA candidates. Similarly, to confirm
host-phytoplasma interaction, RNA hybrid analysis was performed
with an MFE cut-off value of −20 kcal/mol present investigation,
we identified 17 candidate miRNA hybridization binding sites with
low MFEs and free energy for duplex formation (Enright et al.,
2003). Although MFE plays an important role in the formation of
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miRNA-mRNAduplexes, it fails to guarantee that interactions result
in functional alterations. In the present investigation, we identified
14 candidatemiRNAhybridization binding sites with lowMFEs and
free energy values for duplex formation by using psRNATarget and
RNAcofold.

These candidate CA-miRNAs have potential transgenic targets
for the 16S rRNA and secA genomes, as well as a greater
possibility of forming miRNA-phytoplasma mRNA complexes.
We selected best four experimentally confirmed CA-miRNAs
with identified high-confidence targets from ‘Ca. P. trifolii’
(Table 3) (i.e., CA-miR169b_2, CA-miR166c_2, CA-miR168a_
1 and CA-miR5300_2) and predict their secondary structure
through sRNAanno database. The amiRNA-based silencing
technique has been effectively proven in numerous agricultural
plants for controlling emerging plant pathogens (Niu et al., 2006;
Ali et al., 2013; Petchthai et al., 2018).

To the best of our knowledge, this is the first-time known
CA-miRNAs have targeted at phytoplasmic components. Our
computational study of “Ca. P. trifolii” gene silencing may provide
a novel strategy for the creation of anti-phytoplasma agents.
Furthermore, we developed a technique for minimising the new anti-
phytoplasma impacts of host-derived miRNAs on “Ca. P. trifolii”. The
in silico researchaimedtoprovideabasis forexperimentalvalidationto
determinewhetherknownCA-miRNAscouldconferresistanceto“Ca.
P. trifolii” in plants. The expression of CA-miR169b_2 in transgenic
chilli varieties to silence “Ca. P. trifolii” target genesmight help us gain
insight into crucial host-virus interactions.

Conclusion

In India, phytoplasma has emerged as a major agricultural
threat, affecting a wide range of crops and “Ca. P. trifolii” lowers
the quantitative production of chilli cultivars. In this study, we used
computational techniques to predict and thoroughly investigate
possible miRNA from chilli against “Ca. P. trifolii” 16S rRNA
and secA gene. The best CA-miRNA for interacting with the
“Ca. P. trifolii” was discovered to be miR169b_2. Our findings
suggest that miR169b_2 may be a viable and successful treatment
strategy for “Ca. P. trifolii” infection in chilli cultivars. Large-scale
transgenic chilli cultivar development must be substantiated by
pathological implications. As a result, the next challenge will be
to find the crucial miR169b_2 targets involved in silencing the
“Ca. P. trifolii” genome’s 16S rRNA gene, as well as determining
their involvement in a genome-editing-based conversion system.
Using chilli transformation procedures, predicted new targets can
be created to create “Ca. P. trifolii” -resistant chilli cultivars. Chilli
transformation processes can be used to generate expected new
objectives for “Ca. P. trifolii” -resistant chilli cultivars.
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