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End-to-end 3D instance
segmentation of synthetic data
and embryo microscopy images
with a 3D Mask R-CNN

Gabriel David and Emmanuel Faure*

Laboratoire d’Informatique, de Robotique et de Micro-électronique de Montpellier, Centre National
de la Recherche Scientifique, Université Montpellier, Montpellier, France

In recent years, the exploitation of three-dimensional (3D) data in deep learning
has gained momentum despite its inherent challenges. The necessity of 3D
approaches arises from the limitations of two-dimensional (2D) techniques
when applied to 3D data due to the lack of global context. A critical task
in medical and microscopy 3D image analysis is instance segmentation,
which is inherently complex due to the need for accurately identifying and
segmenting multiple object instances in an image. Here, we introduce a 3D
adaptation of the Mask R-CNN, a powerful end-to-end network designed
for instance segmentation. Our implementation adapts a widely used 2D
TensorFlow Mask R-CNN by developing custom TensorFlow operations for 3D
Non-Max Suppression and 3D Crop And Resize, facilitating efficient training and
inference on 3D data. We validate our 3D Mask R-CNN on two experiences.
The first experience uses a controlled environment of synthetic data with
instances exhibiting a wide range of anisotropy and noise. Our model achieves
good results while illustrating the limit of the 3D Mask R-CNN for the
noisiest objects. Second, applying it to real-world data involving cell instance
segmentation during the morphogenesis of the ascidian embryo Phallusia
mammillata, we show that our 3D Mask R-CNN outperforms the state-of-the-
art method, achieving high recall and precision scores. The model preserves
cell connectivity, which is crucial for applications in quantitative study. Our
implementation is open source, ensuring reproducibility and facilitating further
research in 3D deep learning.
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3D deep learning, instance segmentation, Mask R-CNN, microscopy, Phallusia
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1 Introduction

In recent years, we have observed a growing interest in directly exploiting three-
dimensional (3D) data in deep learning despite the challenges it presents (Yang et al., 2024).
These challenges include the cost of data acquisition, annotation, and storage, as well as
the need for substantial computing power for manipulating the volume of data. Many
reasons concur with this development, such as the increasing availability of sufficiently
voluminous 3D datasets for learning and the trivialization of adequate computing resources.
However, the primary reason is that the realworld evolves in three dimensions (Ahmed et al.,
2018). Two-dimensional (2D) approaches applied to 3D data limit the learning performance
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because they lack the global context of the whole image. This is, in
particular, the case for the voxel images that are used in medical
or microscopy imaging, in which 3D deep learning has found
numerous applications (Singh et al., 2020; Liu et al., 2021) to replace
or complete 2D approaches (von Chamier et al., 2021).

One important but still challenging task that 3D deep learning
offers to solve is instance segmentation in these types of images.
Instance segmentation is already considered as themost complicated
task in 2D deep learning (Hafiz and Bhat, 2020). Its difficulty is
inherited from object detection (Girshick et al., 2014). Classical
end-to-end supervised learning assumes there is a one-to-one
mapping between the input and the ground truth output (Shalev-
Shwartz and Ben-David, 2014). However, there exist M! manners
to assign in parallel M labels to M object instances in an input
image. The existence of a non-sequential supervised method to
instantiate objects at one time is still an open question. The
recent deep learning literature nonetheless proposes prominent
sequential approaches to circumvent this problem.These approaches
mainly involve predicting feature maps, such as instance contours
or shape patches, using a deep learning approach of semantic
segmentation, followed by a post-processing step to achieve
instance segmentation (Wolny et al., 2020; Eschweiler et al.,
2019; Hirsch et al., 2020). This post-processing is usually a
watershed-like method preceded by more or less elaborated
steps in order to optimize the label seed locations. The actual
state-of-art approach for cell instance segmentation, Cellpose,
addresses 3D instance segmentation by fusing the 2D predictions
of its original method based on vector fields (Stringer et al.,
2020; Pachitariu and Stringer, 2022; Stringer and Pachitariu,
2024). However, the literature still lacks a competitive end-
to-end and generic approach that addresses the 3D instance
segmentation problem.

Here, we introduce this missing piece, which is the 3D Mask R-
CNNnetwork.Mask R-CNN is a powerful region-based end-to-end
network that detects and segments many classes, up to 80, in its 2D
application on the COCO dataset (He et al., 2017; Lin et al., 2014).
It relies on the region-based paradigm (Girshick, 2015; Ren et al.,
2017), which consists of first individualizing the instance regions of
interest (RoIs) and then segmenting the object within, in contrast to
a segment-first method.

We base our implementation on a well-known and widely used
two-dimensional TensorFlow implementation (Abdulla, 2017), and
we adapt all its operations to process 3D input tensors. In particular,
to benefit from TensorFlow core execution speed, we propose the
3D Non Max Suppression and 3D Crop And Resize algorithms as
TensorFlow custom operations because native algorithms only apply
to 2D images or features. This adaptation allows the delivery of
a truly end-to-end implementation with acceptable training and
inference time.

We validate our 3DMask R-CNNwith two experiences.The first
one involves training the network within a controlled environment
that consists of noisy images of objects that can belong to three
classes: cuboid, ellipsoid, and irregular pyramid. The Mask R-
CNN then gives good results in the evaluation. Finally, we apply
our network in the real case of cell instance segmentation during
the morphogenesis of the ascidian Phallusia mammillata (PM)
(Guignard et al., 2020a). We show that, although this second
case constitutes an extreme regime for the Mask R-CNN, our

implementation appears competitive against the state-of-the-art
method for 3D instance segmentation in bio-imaging and illustrates
itself in feature conservation. We provide the code of our 3D Mask
R-CNN on GitHub (David, 2024).

2 Methods

2.1 Network architecture

The 3D Mask R-CNN is composed of two successive blocks: an
initial Region Proposal Network (RPN) and a second part, often
called the Head. The RPN takes the whole image as input, while
the Head works on the RoI proposals extracted from the RPN
feature maps.

2.1.1 Region proposal network
The goal of the RPN is to detect objects in the input image

without regard to their specific classes. To achieve this, it uses a
system of predefined RoI proposals, also called anchors (Lin et al.,
2017). From these anchors projected over the input image, the RPN
aims (i) to determine which anchors are positive (overlapping with
an object in the input) or negative (not overlapping with ground
truth instances) and (ii) to predict the adjustments needed for each
positive anchor to best match the object bounding boxes. The RPN
is composed of a classifier backbone, usually a Residual Network
(He et al., 2016) with pyramidal features (Lin et al., 2017), and a
special layer that maps each anchor to a vector. These vectors are
used by a classifier and a regressor that fulfill the RPN purpose. Due
to the large number of anchors, the RPN samples the most relevant
anchors, applies the predicted adjustments, and sorts them using a
NonMax Suppression (NMS) algorithm to obtain the RoI proposals.
These proposals are cropped from the appropriate RPN featuremaps
and resized to predetermined shapes for the Head modules. The
cropping step relies on the RoIAlign approach (He et al., 2017),
which samples the feature maps in the normalized space in order
to avoid the importance of the quantification effect caused by the
classical RoIPooling method.

2.1.2 Head
The Mask R-CNN Head is composed of three branches:

the regression, classification, and segmentation modules. The
classification and regression modules refine the class and the
bounding box predictions from the RPN. Although the RPN only
determines if an anchor contains an object regardless of its precise
class, the Head classifier identifies the object class within the
submitted RoI, including the background class. The Head regressor
shares the RPN regressor’s objective of inferring the adjustment to
apply to RoI proposals to match the instance. The segmentation
module finally decodes the masks of the detected objects from
the RoI maps. During training, these three modules are trained
simultaneously. Meanwhile, in prediction, the RoI proposals are
first submitted to the Head classifier and regressor. The RoIs are
then modified and sorted according to the regressor and classifier
predictions with an NMS method by class and finally submitted to
the segmentation module. An instance segmentation image is thus
obtainable at this point.
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2.2 3D Non Max Suppression and crop and
resize

As the Mask R-CNN uses the TensorFlow NMS and Crop
And Resize (CAR) methods, and because we want to benefit from
the TensorFlow core execution speed, we implement the 3D NMS
and CAR operations as TensorFlow custom operations. Custom
operations are C-coded algorithms compiled within TensorFlow
sources and callable with the Python API of TensorFlow. In order
to build these algorithms, we start from the two-dimensional C
implementations available in TensorFlow sources, and we rewrite all
functions tomanage tensorswith onemore dimension. In particular,
the resizing part of the 2D CAR operation proposes two classical
interpolationmethods: the nearest neighbor and the bilinearmodes.
We thus convert the nearest neighbor approach to 3D, and we
implement the equivalent of the bilinear interpolation method at
3D, which is the trilinear interpolation method. We deliver safety
tests for the 3D NMS and CAR. In order to allow an end-to-end
back-propagation during training, we finally link to these operations
their exact analytical gradients. The code of the custom operation is
open source. We facilitate the portability of our work by adopting a
containerized approach.

2.3 Experience datasets

We validate our Mask R-CNN implementation through two
complementary experiences. The first one consists of training our
network on a simple controlled environment, called the Toy dataset,
whose purpose is to demonstrate that our 3D implementation is
fully functional and to test the network limitations in the context of
strong anisotropy and considerably weak signal-to-noise ratio. The
use of such a synthetic dataset is essential due to the scarcity of 3D
public datasets.The second validation illustrates the power of the 3D
Mask R-CNN in a real use case, that is, the instance segmentation
of PM embryo cells (Guignard et al., 2020b). Embryos show densely
connected cells, with strong overlap between ground truth bounding
boxes. For memory issues, we only use examples containing fewer
than 300 cell instances. The COCO dataset, on which the 2D Mask
R-CNN was benchmarked, exhibits roughly 4.5 instances per image
on average, against 10 for the Toy dataset.With an average number of
instances per image close to 125, the PM embryo dataset constitutes
an extreme scenario compared to other datasets and allows us to test
other limitations of this region-based method.

2.3.1 Toy dataset
As a controlled environment, the Toy dataset is automatically

generated owing to well-mastered parameters such as image size,
maximum instance number, or object shape. No data preparation or
augmentation is hence performed.This dataset contains three object
classes, in addition to the background class, allowing validation of all
the 3D Mask R-CNN modules. For this paper, we generate 10,000
noised images of 128× 128× 128 voxels containing three types of
objects: cuboids, ellipsoids, and irregular pyramids (see Figure 1).
The minimal and maximal number of instances per image are 3
and 20, respectively, and the typical size of the objects goes from
15 voxels to 60 voxels. The aspect ratios between two axes of an
instance range from 0.25 to 1.0, while the objects are generated

FIGURE 1
Ground truth training examples for the Toy dataset with cuboids,
ellipsoids, and irregular pyramids and for the Phallusia mammillata
dataset. The top pictures represent intensity maps of the input signal;
strong intensity is displayed in orange. This signal corresponds to the
objects in the case of the Toy dataset and the membrane signal in the
SPIM fused images. Note that, in the case of the Toy dataset, we
generate a special image with a signal-to-noise ratio much higher
than the images used for training and validation for the sake of
visualization (see implementation for creating original examples). Low
intensity, mainly image noise, appears as purple. For display comfort,
we eliminate low background values, and we crop the Phallusia
mammillata images to exhibit the complexity of the internal structure
of the membrane signal. The bottom pictures correspond to the
respective instance segmentation of the top pictures: each color
corresponds to the mask of one object instance in the input image.
We show two developmental stages of the PM1 embryo: an early stage
with a low number of cells and an intermediate stage with 250 cells.

with a randomly selected noise level, yielding instances that vary
from clearly visible to nearly indiscernible objects that cannot be
segmented using a simple Otsu method. The Toy dataset, therefore,
allows rigorously challenging the 3D Mask R-CNN performance
across a broad spectrum of shapes, anisotropies, and noise levels.
The noised images come with their pair instance segmentations. We
use 95% of the examples to train the 3D Mask R-CNN and the last
5% for validation. We use no test subset because the images created
within this controlled environment all share the same distribution
of signal and noise.

2.3.2 PM dataset
The PM dataset consists of 1,742 3D isotropic images of

21 PM embryos acquired at regular time steps and various
developmental stages (Guignard et al., 2020b). These images result
from a multiview selective plane illumination microscopy (SPIM)
acquisition and from a fusion method that merges the multiview
anisotropic images into an isotropic one. The SPIM acquisition
captures the embryo cell membranes labeled with a fluorophore,
giving a raw representation of the embryo morphology. Any
quantitative study of embryogenesis relies on such representations
(see Figure 1). The remarkable transparency of PM embryos
represents a rare opportunity in morphogenesis, allowing us to
obtain excellent quality and resolution images. The PM dataset also
offers high-quality cell instance segmentations. These ground truth
segmentations are generated using ASTEC, a specialized algorithm
that employs a seeded watershed approach.This algorithm accounts
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for the temporal propagation of the seeds, particularly focusing
on cell division to optimize seed positions. The key strength of
ASTEC is that the seeds for the initial time step are manually
validated, ensuring the quality of the seed propagation. A data
manual curation step is afterward performed using relevant tools
(Leggio et al., 2019).

The PM images and segmentations are cropped and resized to
the shape 256× 256× 256 voxels with conservation of the embryo
aspect ratio.The 256-voxel shape is a good compromise between the
conservation of the image details and processing speed for training
and prediction. Ground truth cell bounding boxes and masks used
for the Mask R-CNN training directly derive from the instance
segmentations. As the number of training examples is low, we apply
data augmentation to the 1,742 training examples. Using all possible
rotations and flips, the augmentation factor rises to 48 and thus gives
access to 83,616 examples.

We observe one major bias in the PM dataset: the image
containing voluminous cells, which appear at the early stages of the
morphogenesis, are under-represented among the cell instances in
comparison to the images exhibiting tinier cells, which are found in
all development stages of the embryo and especially in the later ones.
This imbalancewould lead the RPN and theHeadmodules to under-
perform on these images. Therefore, we balance our data according
to the volume of the cell bounding boxes.

We select 50%of the available examples in the augmented pool in
order to quicken the training of the 3DMask R-CNN while keeping
1% of this global set for validation. The training and validation
subsets hence contain 21,740 and 220 examples, respectively. To
evaluate the generalization of the training, we exclude from the
training and validation sets the 100 raw examples of the PM1
embryo, which constitutes the most reliable series in the PM dataset
as it is the most carefully curated series. We employ this test subset
to evaluate the performance of the 3DMask R-CNN on a completely
original embryo development sequence.

2.4 Training procedure

Our objective is to develop a controlled training procedure
that achieves satisfactory results as quickly as possible for both
datasets. The fine-tuning of the 3D Mask R-CNN requires weeks
or months. To significantly reduce the training time, we employ
a two-step training strategy. We initially train the RPN for up to
20 epochs. Subsequently, we freeze the RPN and train the Head
modules for 20 epochs. We generate the Head targets using 20% of
the training set and train the Head only on this subset to decrease
training time. In both scenarios, we select network hyperparameters
that reduce training memory requirements and duration. For the
Toy dataset, this optimization enables the training of the 3D Mask
R-CNN within 2 days, including target generation for the Head.
In the PM dataset case, we first optimize the hyperparameters
using a lightweight version of the network to maximize detection
and segmentation scores and then retrain with more RPN feature
channels to enhance performance. Consequently, the network
can be trained within 2 weeks for the latter case. We employ a
batch size of one image, a stochastic gradient descent optimizer
with a learning rate of 0.01, and an L2 regularizer for the total
training loss.

Among the numerous hyperparameters of the 3D Mask
R-CNN, we identify key parameters that significantly affect
the network size, training duration, and performance. The two
primary hyperparameters impacting memory usage are the number
of channels of the RPN and the maximal number of RoIs
handled by the Head. Our work is conducted on an IBM
Power System AC922 computer equipped with an NVIDIA
V100 graphic card featuring 32 GB of memory. This hardware
configuration supports up to 256 RPN feature channels and 350
instances per input image. Concerning the network performance,
alongside the detection of minimal confidence, the NMS threshold
of the RPN influences the sorting of overlapping bounding
boxes and the detection of connected objects within the input
image. In addition, we observe that the ratio of positive to
negative RoIs generated by the RPN during the Head training
greatly affects the Head classifier performance and should be
chosen carefully.

2.5 Validation metrics

We validate both experiments using precision, recall, and
mean average precision (mAP) scores for an intersection over
union (IoU) threshold defined as 50%, meaning that an instance
is considered detected if it is correctly classified and it exhibits
an IoU score over 50% with a ground truth instance. We also
calculate the mean IoU of detected instances per image in order
to measure the overall segmentation quality. These metrics are
widely used and represent concrete information for non-specialists
because the recall, which accounts for the false negative, can be
interpreted as a detection score, and the precision, which gives
insight into false positive prediction, can be interpreted as a
reliability score.

3 Results

3.1 Toy dataset

The 3D Mask R-CNN trained over the Toy dataset shows fine
results on the test subset with a median mAP of 99.1% and a mean
IoU of 81.9% for matching ground truth and predicted objects. This
relatively weak mean IoU performance arises from the important
input noise. The median recall and precision scores are 100% and
92.9%, respectively.This high recall score indicates that the 3DMask
R-CNN successfully detects all instances in most test examples.
However, the precision score suggests that the model predicts a
significant number of false positives. Interestingly, we find that for
both the misclassified and false negative detections, the aspect ratio
distributions align with the ground truth distribution, indicating
that the 3D Mask R-CNN handles anisotropy well. In contrast,
the noise level emerges as the principal source of error, with the
noisiest instances over-represented among the false negative and
misclassified detections in regard to the ground truth distribution
(see Supplementary Figures S1; Supplementary Figures S2).
This outcome highlights the performance limitations of the
3D Mask R-CNN in the context of an unfavorable object
signal-to-noise ratio.
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FIGURE 2
The plots on the left gather the 3D Mask R-CNN results, and the images on the right are the 3D Cellpose ones. The top plots represent the precision
score against recall, while the bottom ones display the mean instance IoUs against recall. The color scale indicates the number of instances in each
image in the test dataset. The Y-axis is shared between the horizontal pairs, and the X-axis is shared between vertical ones. The 3D Mask R-CNN shows
better results than 3D Cellpose for precision and mean instance IoUs. The 3D Cellpose outperforms the 3D Mask R-CNN in the recall score case.

3.2 PM dataset

3.2.1 The 3D Mask R-CNN predicts high-quality
cell instance segmentation in the PM dataset

The results of theMask R-CNN trained over the PM dataset (see
Figure 2) show a good median recall score of 96.3% and excellent
reliability with a median precision over 99.5%. The Mask R-CNN
hence manages to detect almost all cells with an almost nonexistent
number of false positives and also shows a low number of false
negatives, which accounts for missing cells in the prediction. The
recall deviation is wide, showing a value close to 98% for early
development stage images and values down to 91% for later stages.
The corresponding time steps indeed exhibit detection failures,
which appear as holes within the embryo cell segmentation. The
detection failures are blatant in the predicted segmentation images
due to the region-based paradigm (see Figure 3). The mean average
precision has a resulting median value of 95.8%.

The IoU score exhibits regular behavior close to its median
value 87.7%, and a score approximately 86% for the later stages,
which are good results, as the IoU is a score that strongly penalizes
pixel misclassification. In order to analyze the segmentation
errors, we display slices of some ground truth and predicted
segmentation examples in Figure 3, where we observe the mask
errors to be the most blatant. The detection errors penalizing
the recall score are indicated with red bounding boxes. We can
also identify poor-quality cell segmentations, marked with green
boxes, especially for elongated cells, showing a plausible lack of
training in the segmentation module. Another error source is the
divergence between ground truth and predicted cell connectivity,
which sometimes is significant, although these boundaries and cell
connectivities appear to be well-conserved for most cases. By cell

connectivity conservation, we refer to the ability of a segmentation
method to reproduce the full connection of the embryo cells with no
background voxels between instances.

3.2.2 3D Mask R-CNN appears to be competitive
against the state-of-the-art method

We compare the performance of the 3D Mask R-CNN with the
state-of-the-art deep learningmethod for cell instance segmentation
in microscopy images, 3D Cellpose, which is known to perform
very well on a variety of microscopy styles as well as species
(Stringer et al., 2020; Pachitariu and Stringer, 2022). In contrast with
the 3D Mask R-CNN, 3D Cellpose does not rely on the region-
based paradigm but on vector fields to delineate cells. 3D Cellpose
consists of the application of the 2D Cellpose on all image slices,
according to the three-space direction. The predicted 3D instance
segmentation results from a fusion step of the three stacks. In the
next paragraphs, we compare our predictions to those obtained
using the 3D Cellpose pre-trained model called cyto3 because it
offers the best results not only in comparison to the other pre-
trained model but also to a version of 3D Cellpose retrained over
our data (see Supplementary Table S1).

3D Cellpose shows a better overall success than the 3DMask R-
CNN for cell detection (see Figure 2) with a median mAP value of
97.5%, owing to an excellent recall score whose median is 99.5% on
the test subset. Interestingly, with amedian precision score of 96.6%,
3DCellpose is outperformed by the 3DMaskR-CNN. It appears that
3D Cellpose tends to predict many false positive cells (see Figure 3).
The Cellpose mean IoU score has a median of 86.4% that is also less
than the 3D Mask R-CNN score.

In Figure 3, we expose the typical segmentation errors of both
methods by highlighting them with colored bounding boxes. 3D
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FIGURE 3
Middle-section plots of 3D PM1 signal images and segmentation predictions at various developmental stages. Each row concerns one signal image,
whose stage is given by the ground truth cell number in the row title. The first column offers a representation of the SPIM images that we use as inputs
for both networks, and the second column corresponds to ground truth ASTEC segmentations of the signal images. The third and fourth columns are
the segmentations predicted by the 3D Mask R-CNN and the 3D Cellpose, respectively. The last column represents the cell IoUs for each prediction
method in comparison with the ground truth masks. The mean of the distribution is given by a red cross. It consistently falls below the y = x line,
indicating that 3D Mask R-CNN generally achieves a better IoU score on detected instances than 3D Cellpose. Some errors are shown with colored
bounding boxes. The red boxes highlight detection errors or false negatives, the yellow boxes indicate the false positive detections, and the green
boxes show the poor cell segmentations.

Cellpose also produces some poor segmentations (green boxes). 3D
Cellpose mistakes are mainly false positives (yellow boxes). These
errors, almost nonexistent in Mask R-CNN predictions, come from
the vector field approach of 3DCellpose, which can lead to confusion
between signal noise and instances.

4 Discussion

4.1 Results illustrate the paradigm of each
method

The high performance of the Mask R-CNN is directly linked to
the region-based paradigm onwhich it relies, which ensures that the

false positive detections remain low.TheMask R-CNN also shows a
general under-segmentation tendency at instance boundaries, which
comes from themask processing at theRoI level. In consequence, the
cell connectivity, while well conserved between correctly segmented
cells, does not reach the esthetic of a watershed approach, at least at
this point of training. In contrast, the 3D Cellpose approach offers a
cell connectivity quality close to ASTEC. However, it predicts many
false positive cells.The 3DCellpose bias is thus to over-segment cells.

4.2 Use case evaluation

Cell instance segmentation of a PM embryo is performed
to measure cell instance volume or cell–cell contact surface.
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FIGURE 4
Distribution of true positive (blue), false positive (orange), and false
negative (red) voxel maps after comparison between 3D Mask R-CNN
(top pictures) and 3D Cellpose (bottom pictures) predictions and
ground truth cell interface maps of a PM1 example. The left images
show a 3D representation of each map to illustrate the global
differences between the two tested methods, while an intermediate
slice plot of the 3D interface maps is given in the right pictures. Each
interface map is generated from the predicted instance segmentation
by finding the boundaries of each instance label. The 3D Mask R-CNN
conserves more cell interfaces than Cellpose.

This information is important because it directly translates the
coupling between genetic expression and morphogenesis regulation
(Guignard et al., 2020b). Membrane conservation is thus a key
criterion to validate the success of an instance segmentation
deep learning method intended to ensure reliable experimental
measurements in laboratory use. In order to evaluate the membrane
conservation, we first generate the masks of the cell segmentation
boundaries predicted by the 3D Mask R-CNN and 3D Cellpose, as
well as the ground truth membrane masks given by ASTEC for the
test subset examples. Afterward, we count the true positive voxels
that correspond to the conserved part of the cell interface between
ground truth and prediction (see Figure 4). We find that the average
true positive voxel rate for the 3D Mask R-CNN is approximately
61.8% while the rate is 57.8% for 3D Cellpose. The 3D Mask R-
CNN true positive rate rises to 63.7% if a simple one-voxel label
expansion is applied to its predictions (see Supplementary Table S2
for detailed results). In addition, the proportion of false negatives
is 2.1% for Cellpose and 1.2% for the Mask R-CNN (1.7% in case
of label expansion). The false negative errors of the Mask R-CNN
mainly come from bad segmentation and should decrease with
longer training. These results indicate that the 3D Mask R-CNN
predicts cell interfaces closer to the ASTEC gold standard than the
interfaces inferred by 3D Cellpose. Training 3D Cellpose over our
data does not change this result (see also Supplementary Table S2).

4.3 Perspectives

The 3DMask R-CNN demonstrates its reliability and limitations
on the Toy dataset and shows promising results for the instance
segmentation of cell embryos and for morphogenetic quantitative
studies. Its competitiveness against the state-of-the-art method
is particularly evident in preserving important features such as
instance interfaces.The analysis of segmentation errors reveals certain
challenges, including fragmented cell segmentations and boundary
divergence between instances due to under-training. Despite these
issues, the 3DMask R-CNN outperforms its competitor, 3DCellpose,
in terms of reproducing gold-standard cell interfaces. This finding
highlights the Mask R-CNN as the most promising network for
practical applications that require great precision.

The inference time of the 3D Mask R-CNN is relatively long,
taking approximately 13 h for 100 time steps, whereas 3D Cellpose
offers quicker predictions with a rough inference time of 3.5 h. This
difference in speed illustrates thedecision thatbio-imageanalystsmust
makebetweenamethod like3DCellposeandaregion-basedapproach
like the 3D Mask R-CNN. Although 3D Cellpose may provide faster
predictions, it may exhibit limited performance on specific usage. On
the other hand, despite being slower in both training and inference,
the 3D Mask R-CNN possesses the ability to reproduce the ground
truth features. This trade-off between speed and accuracy should be
carefullyconsideredwhenchoosinganappropriatemethodforspecific
bio-imaging analysis tasks.
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