
TYPE Opinion
PUBLISHED 16 December 2024
DOI 10.3389/fbinf.2024.1510352

OPEN ACCESS

EDITED BY

Matthew Bashton,
Northumbria University, United Kingdom

REVIEWED BY

Chen Yao,
National Institutes of Health (NIH),
United States
Giovanni Fiorito,
IRCCS Giannina Gaslini Institute, Italy

*CORRESPONDENCE

Benson R. Kidenya,
benkidenya@gmail.com

†These authors have contributed equally

to this work

RECEIVED 12 October 2024
ACCEPTED 29 November 2024
PUBLISHED 16 December 2024

CITATION

Kidenya BR and Mboowa G (2024) Unlocking
the future of complex human diseases
prediction: multi-omics risk score
breakthrough.
Front. Bioinform. 4:1510352.
doi: 10.3389/fbinf.2024.1510352

COPYRIGHT

© 2024 Kidenya and Mboowa. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Unlocking the future of complex
human diseases prediction:
multi-omics risk score
breakthrough

Benson R. Kidenya1,2*† and Gerald Mboowa3,4,5†

1Department of Biochemistry and Molecular Biology, Weill Bugando School of Medicine, Catholic
University of Health and Allied Sciences, Mwanza, Tanzania, 2Train-The-Trainers for Bioinformatics
Group, Human Heredity and Health for Africa Bioinformatics Network (H3ABioNet), Cape Town,
South Africa, 3Department of Immunology and Molecular Biology, College of Health Sciences, School
of Biomedical Sciences, Makerere University, Kampala, Uganda, 4The African Center of Excellence in
Bioinformatics and Data-Intensive Sciences, The Infectious Diseases Institute, College of Health
Sciences, Makerere University, Kampala, Uganda, 5Africa Centres for Disease Control and Prevention,
African Union Commission, Addis Ababa, Ethiopia

KEYWORDS

complex human disease prediction, multi-omics risk score, polygenic risk score (PRS),
multi-omics, trait prediction

Introduction

Precise prediction of the risk of acquiring complex human diseases using genomic data
has gained a considerable traction among clinicians, medical geneticists and researchers,
particularly in this era of next-generation sequencing. Multi-omics methods utilize various
high-throughput screening technologies such as genomics (GWAS), DNA methylomics,
metagenomics, transcriptomics, proteomics, metabolomics, and many others which play a
crucial role in advancing the understanding of human diseases (Figure 1). These diverse
multi-omics indicators create a comprehensive framework, yielding significant insights
into future health status predictions. The polygenic risk scores (PRS) —a calculation
of a person’s genetic predisposition to a trait or disease based on their genotype from
pertinent genome-wide association study (GWAS) findings (Choi et al., 2020)— as well
as methylation risk scores (MRS) —a linear combination of CpG (5′–C–phosphate–G–3′)
methylation (covalent attachment of a methyl group onto the cytosine residue of DNA)
states (Thompson et al., 2022)—have shown promise in predicting complex human diseases
accurately (Liu et al., 2024). However, their translation into clinical care is yet to be realized.
Several efforts have been made to improve their accuracy in predicting complex human
diseases, such as increasing diversity in the genetic training databases, such as the All of
Us Research Program, and including conventional risk factors in the PRS model (Liu et al.,
2024). In the realm of predictive medicine, conventional risk factors span socio-
demographic elements like age and sex, alongside anthropometric data such as body
mass index (BMI) and crucial clinical measures, including blood pressure, lipid profiles,
kidney and liver function tests, and other key biomarkers such as glycated hemoglobin
(HbA1c). These conventional risk factors intertwine with lifestyle choices, behaviors, and
environment.

The advent of GWAS, methylome-wide association studies (MWAS), and
transcriptome-wide association studies (TWAS) have propelled genetic research
forward by leaps and bounds, enabling the genotyping, methylation typing, and
transcriptome analysis of millions of human samples. Through this vast endeavor,
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FIGURE 1
Shows how Multi-omics risk score is constructed from various high-throughput screening technologies such as genomics (GWAS), DNA methylomics,
metagenomics, transcriptomics, proteomics and metabolomics to precisely predict and advancing the understanding of human diseases.

researchers have extracted genetic variants (Wu et al., 2021)
and methylation patterns intricately linked to disease susceptibility
across the human genome. The genetic variants and methylation
patterns serve as the building blocks for constructing PRS
(Choi et al., 2020) and MRS tailored to predict complex diseases
in individuals based on their unique architecture. The efficacy
and clinical potential of these tools shine brightly, offering
invaluable insights into risk prediction for a plethora of common
complex human diseases including cardiovascular diseases,
cancers, diabetes mellitus, Alzheimer’s disease, and ankylosing
spondylitis (Cappozzo et al., 2022). They represent transformative
applications in the arsenal of personalized medicine, promising to
revolutionize healthcare by unlocking more secrets hidden within
our genomes.

The immense potential of genome-wide genotyping arrays lies
in their ability to serve as a cost-effective approach capable of
generating hundreds of PRSs. This groundbreaking technology is
now undergoing rigorous evaluation in clinical studies across global
healthcare systems. The allure of PRSs as predictive tools resonates
profoundly, offering a glimpse into a future where personalized
healthcare is not just a dream, but a tangible reality poised to
transform medical practice. The full clinical potential of PRS and
MRS remains largely untapped (Martin et al., 2019). This reality is
especially pronounced in populations with high genetic diversity,
diminished linkage blocks, and historical under-representation in
genome databases, such as those of sub-Saharan African descent.
The journey towards widespread clinical implementation of PRS is
still in its infancy, with considerable challenges to overcome. Yet,
with determination and concerted effort, bridging these gaps holds
the key to unlocking the transformative power of PRS and MRS in
diverse populations worldwide. Of note, there are concerted efforts
such as the All of Us Research Program (Bick et al., 2024), Human
Heredity and Health Africa (H3Africa), and others, to increase the

representation of historically under-represented populations in the
global genome databases to leverage this disparity. Ultimately the
quantity and quality of data to compute PRS andMRS are escalating.

Discussion

The potential of multi-omics data in
predicting precisely the human complex
diseases

The advent of multi-omics technologies and accrued data
thereof in recent era suggest the feasibility of measuring and
combining various omics data and cellular factors. This enables
the creation of multi-omics risk scores (MoRS) with enhanced
predictability for complex diseases (Liu et al., 2024). PRS
integrated withmulti-omics data analyses, includingmetagenomics,
epigenomics, and transcriptomics have revealed potential
biomarkers and ultimately improved predictability for several
prevalent age-related conditions like heart disease, diabetes,
dementia, and various cancers (Liu et al., 2024).

The human gut microbiota, which refers to the collection of
microorganisms residing in someone’s gastrointestinal tract, has
been implicated in numerous common diseases (Chen et al., 2024;
Huang et al., 2024). Specific microbial signatures in the gut have
been linked to mortality and the development of diseases such
as type 2 Diabetes (T2D), liver issues, and respiratory diseases
among the general population (Liu et al., 2024). This suggests that
the composition of the gut microbiome could potentially aid in
predicting disease risk. It is worth noting that while GWAS has
shed light on the genetic underpinnings of the gut microbiome, it is
evident that the heritability of the gut microbiome is relatively low.
Furthermore, similarities in the gut microbiome across generations
are primarily associated with living in the same household rather
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than genetic factors. Recent studies have highlighted the association
of various omics data such as gut metagenomics, DNA methylome
data from epigenome-wide association studies and transcriptomics
data with complex human diseases (Wu et al., 2021; Liu et al., 2024).

Recent research indicates that PRS models alone demonstrate
superior predictive power compared to traditional risk factors
(Liu et al., 2024). Furthermore, integratingMRS and transcriptomics
data into the PRS showed a substantial improvement in prediction
of prostate cancer (Wu et al., 2021). However, when conventional
risk factors are incorporated into the PRS model, performance
improves (Liu et al., 2024). Moreover, integrating both conventional
risk factors and additional omics data such as from gut
metagenomics into the PRS model significantly enhances its
predictive performance for complex human diseases (Liu et al.,
2024). Therefore, these studies demonstrated that the inclusion of
other omics data from gut metagenomics, DNA methylomics and
transcriptomics have shown a promise to improve the prediction
of the incidence of age-related complex human diseases such as
coronary artery disease, type 2 diabetes, Alzheimer’s disease, and
prostate cancer (Wu et al., 2021; Liu et al., 2024).

Recent research suggests that studying blood DNA methylation
at various CpG sites can serve as a valuable surrogate biomarker
for exposure to risk factors, aiding in the prediction of complex
human diseases such as cardiovascular diseases and in identifying
high-risk populations (Cappozzo et al., 2022). Methylation risk
scores (MRS) are typically constructed to model the relationship
between methylation at CpG sites and specific traits or diseases
through epigenome-wide association studies (EWAS). DNA
methylation scores have been effectively utilized to assess an
individual’s biological age (epigenetic clock) and have been
strongly associated with several non-communicable diseases
(NCDs) risk factors such as smoking, alcohol consumption, low
physical activity, obesity, socioeconomic status, and occupational
characteristics. This existing collinearity has made DNA
methylation scores a powerful tool for predicting aging-related
diseases as well as lifestyle-related diseases such as cancer and
cardiovascular diseases (Cappozzo et al., 2022).

These epigenetic clocks demonstrate strong predictive
capabilities for aging-related diseases and overall mortality.
Research indicates that the risk of developing complex human
diseases depends on the interaction between host genetic factors,
environmental influences, and human behaviors or lifestyles.
Incorporating conventional risk factors such as age, sex, smoking,
and alcohol consumption into models accounts for human behavior
(Levine et al., 2018). Studies, including the one conducted by
Liu et al., have demonstrated that including these conventional
risk factors improves the predictive ability for complex human
diseases (Liu et al., 2024). Moreover, environmental factors, gene-
environment interaction, and host lifestyle can be surrogated by
epigenetic methylation analysis. Therefore, it is of the essence for
the DNA methylomics data to be integrated into PRS models to
enhance predictability for complex human diseases. There is a
hypothesis suggesting that epigenomics data fromDNAmethylation
might offer better predictive ability than many of the current PRS
utilized today (Thompson et al., 2022). Consequently, integrating
these multi-omics data into the PRS model could potentially yield
the most effective predictive model for complex human diseases. To
the best of our knowledge, there are very limited studies reported

to integrate the DNA methylomics data into the PRS. Therefore,
further investigations are warranted to explore the impact of
integrating DNA methylomics data into PRS models for enhancing
and predicting the development of complex human diseases.

Epigenetic modifications are widely recognized as influential
factors in the biological pathways of both communicable diseases
and non-communicable complex human diseases like hypertension
and cancer with DNA methylation being the most extensively
studied. Epigenetics involves the alteration of gene expression
without changing the genetic code through processes such as
DNA methylation and histone modification. This procedure
entails attaching covalently a methyl group to the cytosine base
found within sections containing repeated cytosine-guanine
bonds, also referred to as CpG islands. When a gene undergoes
heavy methylation, it typically remains transcriptionally silent
(Irizarry et al., 2009). Environmental factors can trigger significant
changes in methylation levels. The methylation patterns found
in promoter CpG islands, which are clusters of CpG sites
located in gene promoters, hold significant promise as potential
biomarkers. They could play crucial roles in disease detection,
disease classification, prognosis, and forecasting treatment
responses (Ehrlich, 2019).

Recent research has revealed compelling links between DNA
methylation and fluctuations in blood pressure, cardiovascular
ailments, and various other non-communicable diseases. Han et al
highlighted the pivotal role of gene-specific DNA methylation
in elevating blood pressure, notably concerning factors like
angiotensin-converting enzyme, lipid and amino acid metabolism,
and impaired glucose metabolism (Han et al., 2016). Richard et al.
pinpointed 13 replicated CpG sites, explaining 1.4% and 2.0%
of individual differences in systolic and diastolic blood pressure,
respectively (Richard et al., 2017). Intriguingly, new findings
propose a strong link between DNA methylation and lifestyle
choices (like smoking, alcohol intake, and diet), aging, obesity, and
gender—all vital risk factors for hypertension. Kim et al. identified
an association between DNA methylation in peripheral blood
leukocytes and hypertension prevalence hints at the potential of
DNA methylation as a high blood pressure biomarker (Kim et al.,
2010). This highlights the promise of integrating DNAmethylomics
data into models to significantly enhance PRS performance.

The most common bioinformatics and
computational tools for multi-omics risk
prediction of complex human diseased

Constructing multi-omics risk scores for complex human
diseases typically involves integrating multiple layers of biological
data (genomics, methylomics, metagenomics, transcriptomics,
proteomics and metabolomics) into a single predictive score that
quantifies disease risk. Bioinformatics and computational tools
for construction multi-omics risk scores use various statistical,
machine learning, and feature selection techniques to identify
predictive markers across omics layers and combine them into
a single aggregated risk score. Table 1 summarizes the most
commonly used analytical tools for multi-omics data integration.
By combining these bioinformatics and computational tools and
frameworks, researchers can construct multi-omics risk scores that
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provide comprehensive, predictive insights into complex human
disease susceptibility and progression. Ultimately enhancing our
understanding of the molecular basis of these complex diseases by
leveraging complementary information across multi-omics data.

Challenges, limitations and future research
direction

The main challenges and limitations for multi-omics utility
for improving prediction of complex human diseases are
underrepresentation of diverse population in the genome databases,
due to the fact that collecting multi-omics data is challenging due
to the time consuming and costly process, particularly from large
scale human genetic studies. As a result, multi-omics data may
only be available for a subset of participants in a study limiting
its statistical power, generalizability and hence transferability
(Hasin et al., 2017; Chen and Han, 2023). Furthermore, lack of
expertise among clinicians and biological scientists particularly
from low income countries slows down the process to realize its
clinical utility of multi-omics for all.Therefore, the concerted efforts
are needed for establishment of multi-omics databases, as well as
fostering training among biological scientists in health and life
sciences in underserved areas.

Furthermore, several key limitations affect the reliability and
effectiveness of multi-omics technologies. Batch effects are a
significant challenge in omics data analysis, particularly in large-
scale studies where samples are processed in batches or over
extended periods. These technical variations between experimental
runs can greatly impact data quality. Batch effects in omics studies
refer to systematic differences in data caused by variations in
experimental conditions across different batches of samples. These
differences are unrelated to the biological variables or phenomena
being studied and, if not properly addressed, can lead to misleading
conclusions. Batch effects can arise from issues related to study
design, such as flawed or confounded experimental setups or
treatment effects. Variations in sample preparation and storage,
including differences in protocols, reagents, equipment, storage
conditions, operators, or laboratories, can also contribute to batch
effects. Technical variations, such as inconsistencies in laboratory
equipment, reagents, operators, or protocols across batches, further
exacerbate the problem. Temporal variations, which occur when
samples are processed at different times, and environmental factors,
such as changes in temperature, humidity, or other conditions
during sample preparation or analysis, are additional sources of
variability (Yu et al., 2024).

High-throughput experiments are particularly prone to batch
effects due to variability in data generated by different sequencing
machines or mass spectrometry instruments. For example, DNA
sequencing platforms may differ in kits, sequencing depth, quality,
or laboratory practices. Bulk and single-cell RNA sequencing
protocols may vary in terms of laboratory methods, RNA quality, or
library size. Similarly, LC-MS-based proteomics and metabolomics
can be influenced by differences in instruments, processing order,
or laboratory-specific procedures (Yu et al., 2024). Finally, data
analysis introduces its own challenges, with variability arising
from differences in analysis platforms or pipelines, software
tools, reference databases, and the treatment of low-detected

or missing values. Addressing these sources of batch effects is
critical to ensuring the reliability and reproducibility of multi-
omics studies (Yu et al., 2024). Therefore, addressing batch effects
is crucial to ensuring the reliability of results in multi-omics studies
and minimizing the risk of drawing inaccurate conclusions.

Batch effects are notoriously common technical variations in
multi-omics data and can lead to misleading outcomes if not
properly addressed or if over-corrected. These effects can obscure
true biological signals, create spurious associations, reduce the
reproducibility and reliability of studies, and compromise the
accuracy of downstream analyses, such as clustering, classification,
or biomarker discovery. To address this challenge, several batch-
effect correction algorithms have been developed to facilitate multi-
omics data integration. However, their respective advantages and
limitations must be thoroughly evaluated based on the type of
omics data, performance metrics, and specific application scenarios
before selecting an appropriate method for use (Ugidos et al.,
2022; Yu et al., 2023; 2024). Assessing and mitigating batch
effects is crucial to ensuring the reliability and reproducibility of
omics data while minimizing the impact of technical variation on
biological interpretation. As multi-omics data continue to expand,
the importance of robust experimental design, optimized pipelines,
and effective batch-effect correction algorithms is expected to grow,
becoming central to large-scale research and clinical applications.
The review by Yu et al. provides detailed insights into the sources,
diagnostics, visualization techniques, and potential solutions for
addressing batch effects in large-scale omics studies, including
an overview of the currently available batch-effect correction
algorithms (Yu et al., 2024). Reproducibility between individual
studies is another significant concern, as experimental conditions
can vary across studies, potentially leading to inconsistent results
(Yu et al., 2023; Yu et al., 2024).

Additionally, certain omics types, such as transcriptomics,
are particularly sensitive to sample extraction and preservation
methods, which can introduce variability. Moreover, differences
in platform technologies for the same omics type can further
contribute to variability. For instance, DNA methylation analysis
can be performed using a variety of BeadChip microarrays
for detecting human DNA methylation. These include the
HumanMethylation27 BeadChip (27K, which covers approximately
27,000 CpGs), the HumanMethylation450 BeadChip (450K,
measuring over 485,000 CpGs), the HumanMethylationEPIC
BeadChip (EPICv1 or 850K, measuring over 850,000 CpGs),
and the HumanMethylationEPIC v2.0 BeadChip (EPICv2 or
900K, measuring over 900,000 CpGs (Lussier et al., 2024) as
well as the gold standard, whole-genome bisulfite sequencing
(WGBS), each offering different levels of resolution and
coverage (Graw et al., 2021). Similarly, metabolomics can vary
significantly depending on whether it is targeted or untargeted,
presenting challenges in comparability. Lastly, there is the issue
of interpreting absolute versus relative measures of risk, which
complicates the translation of findings into practical applications
(Canzler et al., 2020).

Furthermore, additional challenges include data complexity
as integrating diverse data types with distinct scales, noise and
missing values is challenging and requires advanced statistical
and computational techniques, sophisticated normalization and
imputation methods. Computational requirements are also a
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TABLE 1 The most common bioinformatics and computational tools for multi-omics risk prediction of human complex diseased.

Category Tool Description [Rerefences]

Polygenic and Multi-Omics Risk Score Tools

PRSice PRSice calculates PRS based on GWAS data. While
primarily focused on genomics, PRSice can be used in
combination with other omics tools to construct
multi-omics risk scores by integrating genetic data
with additional omics (Euesden et al., 2015)

PRS-CS PRS-CS is a Bayesian polygenic risk scoring tool that
improves the accuracy of PRS by accounting for
linkage disequilibrium via Bayesian regression and
continuous shrinkage (CS) priors. This tool allows
integrating genomics data with other omics layers,
such as transcriptomics data, to build multi-omics risk
scores (Ge et al., 2019)

Machine Learning and Deep Learning-Based
Multi-Omics Tools

DeepOmics A deep learning-based tool that integrates multi-omics
data using neural networks to identify predictive
biomarkers and generate risk scores. Its architecture
can handle complex, non-linear relationships across
omics layers, making it well-suited for multi-omics
risk prediction (Kang et al., 2022)

DeepOmics and MiBiOmics These machine learning tools use various algorithms to
integrate omics data and predict disease risk scores.
They support feature selection, classification, and
regression to create multi-omics risk prediction
models (Zoppi et al., 2021; Ballard et al., 2024)

MOFA+ (Multi-Omics Factor Analysis+) It performs factor analysis to reduce dimensionality
across omics datasets, identifying factors that
contribute to disease risk. These factors can then be
combined to build risk scores for predicting disease
phenotypes and clinical outcomes (Argelaguet et al.,
2020)

CustOmics CustOmics is a versatile deep-learning-based
framework for multi-omics integration, designed for
survival and classification tasks. It leverages
customizable architectures to integrate data across
omics types, particularly in cancer research
(Benkirane et al., 2023)

Statistical and Probabilistic Tools for Multi-Omics
Integration

PLIER (Pathway-Level Information ExtractoR) PLIER is a tool for dimensionality reduction and
feature selection that leverages known pathways to
combine multiple omics layers. It can generate
interpretable factors used in risk score modeling,
making it ideal for multi-omics risk prediction
(Mao et al., 2019)

CIMLR (Consensus Independent Multilayer Learning) CIMLR integrates multi-omics data by learning a
consensus clustering across omics layers, useful for
stratifying patients and creating disease risk scores.
This method is effective in scenarios where disease
subtypes must be identified in multi-omics datasets
(Ramazzotti et al., 2018)

Bayesian Omic Integrator (BOI) BOI is a Bayesian framework that uses priors based on
biological knowledge (e.g., pathway information) to
integrate data across omics layers and predict risk. It is
particularly effective in combining genomics and
epigenomics data to improve disease risk prediction
(Fang et al., 2018; Almutiri et al., 2024;
Novoloaca et al., 2024)

(Continued on the following page)
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TABLE 1 (Continued) The most common bioinformatics and computational tools for multi-omics risk prediction of human complex diseased.

Category Tool Description [Rerefences]

Network-Based Tools for Multi-Omics Risk Scoring

NetDx NetDx combines multi-omics data to build predictive patient similarity networks, which can
be used to classify patient risk. NetDx allows for the creation of risk scores based on
network-derived patient profiles and has been applied in cancer and psychiatric disease risk
prediction (Pai et al., 2019)

Mergeomics Mergeomics uses network-based integration to link multi-omics markers with pathways and
disease-related gene networks. By identifying critical network modules associated with
disease risk, Mergeomics aids in building risk scores that combine multi-omics biomarkers
(Shu et al., 2016)

Multi-Omics Risk Prediction Pipelines and Platforms

OmicsPipe This end-to-end analysis pipeline provides workflows for analyzing multi-omics data,
including RNA-seq, DNA-seq, and epigenomics data. OmicsPipe integrates these layers to
build disease prediction models and can be adapted to produce multi-omics risk scores
(Fisch et al., 2015)

TranSMART A translational research platform that integrates and analyzes multi-omics data, clinical data,
and biomarker information. TranSMART includes tools for multi-omics data integration,
risk score modeling, and data visualization. While tranSMART itself does not directly
compute risk scores, it can help identify biomarker candidates and generate hypotheses about
disease risk factors by linking omics data to clinical outcomes (Athey et al., 2013;
tranSMART-Foundation/transmart, 2023)

Pathway and Functional Annotation Tools

MetaboAnalyst Although primarily focused on metabolomics, MetaboAnalyst has multi-omics capabilities,
including pathway analysis and functional annotation. It can identify metabolomics and gene
expression biomarkers linked to disease risk. Researchers typically use MetaboAnalyst’s
results in conjunction with statistical or machine learning models to develop personalized
risk scores based on identified pathways and biomarkers (Pang et al., 2024)

GeneMANIA A network and pathway analysis tool that integrates multi-omics data, including genomics,
transcriptomics, and proteomics information, to predict disease-related genes.
GeneMANIA’s network-based approach can support risk score creation based on pathway
associations (Mostafavi et al., 2008)

Integration and Visualization Tools

MixOmics An R package that provides multi-omics integration and visualization methods, including
PLS-DA, DIABLO, and multivariate factor analysis. It supports building predictive models
and risk scores by selecting key features from multiple omics layers (Rohart et al., 2017)

ComplexHeatmap A visualization package in R that supports hierarchical clustering and multi-layered
heatmaps for multi-omics data. It is commonly used to visualize relationships across omics
layers, aiding in feature selection for risk scoring (Gu et al., 2016; Gu, 2022)

challenge as multi-omics data integration is computationally
intensive, requiring high performance computing resources and
efficient algorithms. Lastly, interpretability due to the complexity
of multi-omics models that makes them challenging to interpret,
and limiting their utility in clinical settings. The opportunity and
future research direction of multi-omics risk prediction hinge
at the fact that integrating multi-omics data within a systems
biology framework fosters researchers to model pathways and
networks that drive diseases, leading to insight into causative
mechanisms and potential therapeutic target. Multi-omics risk
prediction has the potential to tailor interventions based on an
individual’s molecular profile, personalized medicine, optimizing
prevention strategies and improving outcomes. This can be used in
population preventive screening to identify high-risk individual for
early intervention, particularly for diseases which early detection
is critical such as cancer, cardiovascular diseases, diabetes mellitus,
etc. Furthermore, the multi-omics has the potential to be used in
understanding diseasemechanisms by identifying the keymolecular
drivers of disease, it can highlight new therapeutic targets and

inform drug development. Multi-omics risk prediction holds the
promise for enhancing precision in complex human diseases risk
assessment, with the potential to move to healthcare towards more
individualized, proactive care. Asmethodologies and computational
tools continue to advance, multi-omics integration will likely play
an increasingly pivotal role in predicting, preventing and managing
complex human diseases.

Conclusion

In conclusion, human complex diseases arise from a complex
interplay between the host genetics, host behaviors or lifestyle,
and environmental factors. Integrating multi-omics data—such as
metagenomics, epigenomics, particularly DNA methylomics, and
transcriptomics data—and conventional risk factors into risk score
models holds the potential for achieving the highest predictive
performance for age-related complex human diseases compared
to models based solely on PRS. Further research investigating
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the integration of multi-omics data is warranted to enhance PRS
performance in predicting complex human diseases.
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