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Introduction: Short-read amplicon sequencing studies have typically focused
on 1-2 variable regions of the 16S rRNA gene. Species-level resolution is
limited in these studies, as each variable region enables the characterisation
of a different subsection of the microbiome. Although long-read sequencing
techniques can take advantage of all 9 variable regions by sequencing the
entire 16S rRNA gene, short-read sequencing has remained a commonly used
approach in 16S rRNA research. This work assessed the feasibility of accurate
species-level resolution and reproducibility using a relatively new sequencing
kit and bioinformatics pipeline developed for short-read sequencing of multiple
variable regions of the 16S rRNA gene. In addition, we evaluated the potential
impact of different sample collection methods on our outcomes.

Methods: Using xGen™ 16S Amplicon Panel v2 kits, sequencing of all 9
variable regions of the 16S rRNA gene was carried out on an Illumina MiSeq
platform. Mock cells and mock DNA for 8 bacterial species were included as
extraction and sequencing controls respectively. Within-run and between-run
replicate samples, and pairs of stool and rectal swabs collected at 0–5 weeks
from the same infants, were incorporated. Observed relative abundances
of each species were compared to theoretical abundances provided by
ZymoBIOMICS. Paired Wilcoxon rank sum tests and distance-based intraclass
correlation coefficients were used to statistically compare alpha and beta
diversity measures, respectively, for pairs of replicates and stool/rectal swab
sample pairs.

Results: Using multiple variable regions of the 16S ribosomal Ribonucleic
Acid (rRNA) gene, we found that we could accurately identify taxa to
a species level and obtain highly reproducible results at a species level.
Yet, the microbial profiles of stool and rectal swab sample pairs differed
substantially despite being collected concurrently from the same infants.
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Conclusion: This protocol provides an effective means for studying infant gut
microbial samples at a species level. However, sample collection approaches
need to be accounted for in any downstream analysis.
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1 Introduction

Our ability to describe and appreciate the complexities of the
humanmicrobiome has been radically improved by next-generation
sequencing tools (Bharti and Grimm, 2021; Ji and Nielsen, 2015;
Rogers and Bruce, 2010). Although the use of second-generation,
short-read sequencing platforms allows high read depths to be
rapidly sequenced (Hu et al., 2021; Tucker et al., 2009), it is limited
in terms of the assembly of contiguous sequences (Li et al., 2010;
Zerbino and Birney, 2008). Various third-generation sequencing
techniques exist and allow long reads to be sequenced, yet a
greater number of errors have previously been found to result
with these techniques (Amarasinghe et al., 2020; Midha et al.,
2019; Sedlazeck et al., 2018; Van Dijk et al., 2018; Quail et al.,
2012). As short-read sequencing approaches are still frequently used,
however, there is a need to consider alternativeways to improve these
approaches.

The 16S rRNA gene has been identified as a particularly useful
target of research as it is common to all bacteria (Acinas et al.,
2004; Patel, 2001). The gene consists of regions of DNA in which
the sequence is conserved across all bacteria, while in other regions
there is variation according to the individual bacterial species (Wang
and Qian, 2009; Lane et al., 1985). As such, targeted amplicon
sequencing can be done, comparing variable region sequences
to a database of known taxa, to identify which bacterial species
are present in a sample (Wang and Qian, 2009). In the past,
amplicon sequencing studies have typically focused on one or two
variable regions at a time (Claassen-Weitz et al., 2018; Gao et al.,
2018; Yu et al., 2017; Hosgood III et al., 2014; Caporaso et al.,
2011; Zhou et al., 2011). Yet, certain variable regions are better
for enabling classification to lower taxonomic levels and each
variable region favours classification of specific taxa (Bukin et al.,
2019; Guo et al., 2013; Chakravorty et al., 2007). Consequently,
this approach limits the ability to obtain accurate species-level
resolution when focusing only on a single short fragment of
the 16S rRNA gene. Using the entire 16S rRNA sequence is
expected to provide better classification potential to a species level
(Johnson et al., 2019).

The use of short-read sequencing techniques to study multiple
variable regions of the 16S rRNA gene has captured the interest
of researchers. There has been a rapid development in sequencing
kits and bioinformatics pipelines to process multiple variable region
16S rRNA sequencing data (Callahan et al., 2021; Fuks et al., 2018;
Schriefer et al., 2018; Wang et al., 2016; Amir et al., 2013). The
xGen™ 16S Amplicon Panel v2 kits (Integrated DNA Technologies,
Coralville, IA, United States) are an example, having been developed
to amplify all nine variable regions of the 16S rRNA gene.
Furthermore, a complementary bioinformatics pipeline known as

the Swift Normalase Amplicon Panels APP for Python 3 (SNAPP-
py3), was developed specifically for the analysis of sequencing data
obtained using these kits (Chai, 2021).

Being relatively new, there are only a few publications in which
the SNAPP-py3 pipeline has been used to analyse data sequenced
with the xGen kits (Nuccio et al., 2023; Bennato et al., 2022).
However, neither of these studies took advantage of the species-
level classification that can be achieved with the xGen kits and
SNAPP-py3 pipeline. Although Bennato et al. (2022) included a
control containing DNA for 20 known bacterial species, they only
reported the ability to pick up these bacteria at a genus level. To our
knowledge, the combined ability of these kits and pipeline to obtain
accurate species-level classification has not been assessed.Therefore,
we sought to establish a protocol in which the SNAPP-py3 pipeline
and additional processing steps were utilised to analyse short-read
multiple variable region 16S rRNA data following sequencing with
xGen amplicon panel kits.

The accuracy of sequencing protocols can be evaluated in a
few ways using mock controls. Firstly, researchers can calculate the
proportion of expected species that have been detected down to a
species level when using a given protocol and for select regions of the
16S rRNAgene (Johnson et al., 2019; Fouhy et al., 2016). F-scores can
be calculated based on the precision and sensitivity with which these
species are identified (Özkurt et al., 2022). The classification process
can also be assessed according to the percentage of overall reads
that are classified as belonging to one of the expected control species
(Szoboszlay et al., 2023; Urban et al., 2021). Furthermore, accuracy
can be assessed by comparing observed relative abundances to
expected abundances (provided by suppliers) for each taxon in a
control (Maki et al., 2023; Szoboszlay et al., 2023; Drengenes et al.,
2021; Laursen et al., 2017; Caporaso et al., 2011). This can be done
at different taxonomic levels and gives an indication of whether
the amplification or sequencing processes have introduced bias by
favouring certain species over others.

As stool collection is not always possible due to various factors,
rectal swab collection has become a common sampling method
for studying the gut microbiome (Bassis et al., 2017). Storage of
rectal swabs differs to that of stool, as swabs generally need to
be placed in a medium (CDC, 2015), for example, PrimeStore
(Flygel et al., 2020). The results obtained from sequencing rectal
swab samples can be inconsistent in terms of numbers of
bacteria detected (Chanderraj et al., 2022).

Previous studies have explored whether rectal swab samples can
provide a reliable alternative to stool samples (Radhakrishnan et al.,
2023; Bokulich et al., 2019; Reyman et al., 2019; Bassis et al.,
2017; Freedman et al., 2017). Although pairs of stool and
rectal swab samples collected concurrently from the same
individual generally display similar diversity and functional
profiles (Radhakrishnan et al., 2023; Reyman et al., 2019;

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1484113
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Graham et al. 10.3389/fbinf.2025.1484113

Bassis et al., 2017), there have been other studies that suggest
that these samples are not equivalent for detecting specific taxa
(Jones et al., 2018; Freedman et al., 2017; Goldfarb et al., 2014).
In particular, rectal swab samples have been found to be more
effective for detecting a greater number of harmful species in
children with gastrointestinal infections (Freedman et al., 2017;
Goldfarb et al., 2014). When sequencing the meconium (first
stool) sample passed by newborn infants, rectal swab samples
have been found to provide a less accurate representation of the
microbiome compared to stool samples (Graspeuntner et al., 2023).
Moreover, rectal swab samples provide a poorer representation
of the microbiome if they are sequenced after greater than 48 h
at room temperature (Bokulich et al., 2019). As a result, the
interchangeability of stool and rectal swab samples needs to be
assessed for new protocols. Moreover, sample collection approach
is an important variable to consider with regards to the research
objectives of a study.

The first aim of this research involves assessing the accuracy
of extraction and sequencing protocols to achieve classification at
the species level. This will be done by sequencing and analysing
mock controls containing either whole cells or already-extracted
DNA from eight known bacterial species, assessing the precision
and sensitivity with which species were identified and howwell their
relative abundances matched theoretical abundances. Secondly, our
goal is to evaluate the within-run and between-run reproducibility
of species-level analysis. Technical replicate samples sequenced on
either the same plate (within-run) or across different sequencing
plates and runs (between-run), will be compared to determine this.
Finally, we aim to identify whether there are differences at a species
level between different sample collection approaches. To achieve
this, we will compare pairs of stool and rectal swab samples collected
from the same participants at the same time point (0–5 week-old
newborns). We hypothesise that by sequencing multiple variable
regions of the 16S rRNA gene and using the SNAPP-py3 pipeline,
we could obtain accurate species-level resolution and achieve
reproducible results.

2 Methods

2.1 Extraction controls, sequencing
controls and technical replicates

To assess the reproducibility and accuracy of DNA extraction
and sequencing steps, mock controls and technical replicates were
included on each plate (Figure 1). A ZymoBIOMICS™ Microbial
Community Standard (catalog number ZR D6300), consisting of
eight known bacterial species including both gram-positive and
gram-negative bacteria, was included on each plate as a DNA
extraction control. Each plate included a ZymoBIOMICS™Microbial
Community DNA Standard (catalog number ZR D6305), which
contains already extracted DNA for eight known bacterial species.
This served as a sequencing control. Seventeen within-run and 8
between-run technical replicate pairs were also included across the
sequencing plates.These included samples that were collected across
several different time points during infancy, specifically 0–5 weeks,
3 months, 6 months, 9 months and 12 months.

2.2 Stool and swab sample collection

Twenty six pairs of stool and rectal swab samples were collected
at the age of 0–5 weeks (baseline samples), for infants born between
37 and 42 weeks gestational age. Swabs were stored in Primestore
solution (PrimeStore®Molecular Transport medium). All stool
and swab samples were transferred to a −80°C freezer for long-
term storage.

Stool samples were thawed, and half of a pea-sized scoop was
collected from the side/centre of the sample. This was placed in a
tube with 750 µL of lysis buffer. For rectal swab samples, 400 µL of
sample in Primestore was placed in a tube with 400 µL of lysis buffer.
These then underwent off-board lysis, using the QT Qiagen bead
beater, prior to DNA extraction.

2.3 DNA extraction, preparation of
sequencing library and illumina sequencing

ManualDNAextraction of the stool and rectal swab samples and
mock extraction controls was carried out using the Quick-DNA™
Fecal/Soil Microbe Microprep Kit (ZymoBIOMICS catalog number
D6012). Prior to carrying out polymerase chain reaction (PCR),
Qubit™ (Thermo Fisher Scientific, Waltham, MA, United States)
was done to check the starting DNA concentrations. xGen™ 16S
Amplicon Panel v2 kits (Integrated DNA Technologies, Coralville,
IA, United States) were used in library preparation for sequencing.
Kits included primer pairs for amplification of all nine hypervariable
regions of the 16S rRNA gene. Additionally, the primers for these
kits have dual indices to allow greater numbers of samples to be
run together in a single flow cell. Moreover, the xGen kits include
Normalase™ which could be used to enzymatically normalise library
sizes prior to sequencing. Finally, qPCRwas performed following the
Normalase step to quantify the final library size prior to sequencing.

Negative controls, including Primestore, Milli-Q water,
elution buffer and Tris EDTA/Nuclease free water, were added
to each plate (Figure 1) together with prepared libraries from
the stool and rectal swab samples. Mock controls and technical
replicates, as described above, were also included on each plate.
Sequencing was conducted across two sequencing runs on seven
plates. The combined 16S library per run was subjected to paired-
end sequencing on the Illumina®MiSeq™ platform, employing the
MiSeq Reagent v3 kit with 600 cycles (Illumina, San Diego, CA,
United States).

2.4 Bioinformatics processing of
sequencing data

Ethics approval for this research was provided by the
Human Research Ethics Committees at the University of Cape
Town (801/2016 and 557/2020) and at Stellenbosch University
(M16/10/041). Following sequencing, preprocessing steps were
carried out for quality control and to prepare the data for statistical
analysis (Figure 2). Raw sequencing data was run through FastQC
(Andrews, 2010) to assess the quality of the reads. Following this
quality control step, forward and reverse reads for each sample were
processed using the SNAPP-py3 pipeline (Chai, 2021). Sequencing
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FIGURE 1
The plate layout used for sequencing microbial samples, including the negative controls, positive (mock) controls and replicates.

FIGURE 2
A flowchart summarising the processing and analysis steps carried out
using raw forward and reverse read sequencing files. Boxes in green
indicate the steps included in addition to the main
SNAPP-py3 pipeline.

data from run 1 and run 2 were processed separately. Of the four
main output files from the pipeline, the lineage table and an adapted
taxonomy table were used for further analysis.

The remaining processing and analysis were carried
out in R version 4.2.1 (R Core Team, 2022). This stage of
processing began with creating a phyloseq object (McMurdie
and Holmes, 2015; McMurdie and Holmes, 2013). Using the
decontam package (Davis et al., 2018), decontamination was carried
out separately for each plate, using plate-specific negative controls.
A combined frequency and prevalence approach was used, selecting
a threshold of 0.1 for the prevalence component. Phyloseq objects
from runs 1 and 2 were then combined into a single phyloseq object
for further downstream processing and analysis.

A normalisation step to account for different library sizes
was implemented by determining the median library size
and normalising each sample accordingly (Balle et al., 2020;
The Jackson Laboratory, 2019). Finally, subsetting into various

phyloseq objects was done to prepare for downstream statistical
analysis. We ultimately had separate phyloseq objects containing
the mock extraction controls, mock sequencing controls, within-
run repeats, between-run repeats and baseline pairs of stool and
rectal swab samples. Excel spreadsheets containing this data, as
well as the corresponding code for importing the files into R as
phyloseq objects, are provided in the Supplementary Datasheets S1,
S3, respectively.

Batch effect correction was done using MMUPHin
(Ma, 2022; Ma et al., 2022). This data was compared to data in
which no batch effect correction was carried out, to determine the
necessity of accounting for batch effects.

2.5 Statistical analysis

Relative abundances for controls, replicates and
stool/rectal swab sample pairs were visualised using
QIIME2 software (Bolyen et al., 2019). All microbiome analysis
was done at a species level in R. Genus-level and phylum-level
analyses were additionally included in select steps to provide
additional insights.

Performancemeasureswere calculated as outlined byÖzkurt et al.
(2022) using data for sequences classified to a species-level. Precision
and sensitivity were calculated based on the number of correctly
identified species expected to be in the mock control [true positives
(TP)], the number of expected species that were not detected
[false negatives (FN)] and the number of non-expected species
classified as being in the control [false positive (FP)]. F-scores could
then be calculated based on these values. The calculations used
were as follows:

Precision = TP/(TP+ FP)

Sensitivity = TP/(TP+ FN)

F-score = 2∗precision∗sensitivity/(precision + sensitivity)
(Özkurt et al., 2022).

The percentage relative abundances of each of the eight expected
species were determined for mock cell (extraction) and mock DNA
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(sequencing) controls on each sequencing plate. For each control,
the total percentage of sequences that were correctly classified
as an expected species, was calculated. Furthermore, observed
relative abundances were compared to the theoretical abundances
provided by ZymoBIOMICS for each species in the mock controls
by calculating Observed/Expected (O/E) ratios (Maki et al., 2023).

Functions from the phyloseq package in R (McMurdie and
Holmes, 2015; McMurdie and Holmes, 2013), specifically the
estimate_distance and distance function, were used to calculate
alpha and beta diversity measures for replicates and stool/rectal
swab samples. The alpha diversity measures included are observed
richness (Fisher et al., 1943), Shannon’s index (Shannon, 1948) and
Simpson’s index (Simpson, 1949). Bray Curtis (Bray and Curtis,
1957) and Jaccard’s (Ludwig and Reynolds, 1988) distances were
the beta diversity measures included in our analysis. Plot_richness
and plot_ordination functions were used to plot alpha and beta
diversity measures, respectively. Paired Wilcoxon tests were used
to compare alpha diversity measures between pairs of within-run
replicates and to identify differences between pairs of between-run
replicates. In order to determine whether beta diversity measures
were reproducible between technical replicate pairs, distance-based
intraclass correlation coefficients (dICCs) were calculated separately
for within-run and between-run replicates (Chen and Zhang,
2022). Paired Wilcoxon tests and dICCs were similarly used to
compare pairs of stool and rectal swab samples collected from the
same infants.

3 Results

Analysis of mock controls and technical replicates was carried
out to assess the use of the xGen Amplicon kits and the SNAPP-
py3 pipeline as a multivariate 16S rRNA sequencing approach
for achieving accurate and reproducible species-level resolution.
Furthermore, the similarity of samples collected using different
sample collection techniques was investigated by comparing pairs of
baseline stool and rectal swab samples from the same participants.

3.1 DNA extraction reliability

All eight expected bacterial species were detected in four
of our seven mock extraction controls (Table 1). Bacillus subtilis
was not detected to the species level in two controls (Table 2;
Figure 3A), however classification to a genus level (Bacillus) was
achieved (Supplementary Table S1). Listeria monocytogenes was not
detected even at a genus level in the control from run 2, plate
1 (Supplementary Table S1). For the three controls in which we
were unable to detect all eight species, the total percentage of
sequencing data correctly classified as expected mock species was
consequently lower (Table 2). Sensitivity scores were over 0.88 for all
controls. Precision scores were lower – particularly for the control
on run 1, plate 1, which had a score of 0.32. This was driven by
a high number of false positive results in this control. A median
F-score of 0.84 (range of 0.47–1.00) was obtained for the mock
extraction controls (Table 1).

The percentage abundances of species in these controls did
not accurately follow the order of theoretical abundances for some

species (Table 2; Figure 4A). In particular, the relative abundances
of L. monocytogenes were well below the theoretical abundances
suggested by ZymoBIOMICS at both a species and genus level.
This is emphasised by the low median Observed/Expected (O/E)
ratio of 0.32 at a species level. Similarly, Enterococcus faecalis and
Staphylococcus aureus had O/E ratios well below the value of 1. The
relative abundances of Escherichia coli and Salmonella enterica were
greater than expected, with a range of O/E ratios all lying well above
the value of 1.

3.2 Sequencing reliability

Among the mock sequencing controls, the eight anticipated
bacterial species were detected in five of the seven controls (Table 3;
Figure 3B). The overall percentages of sequences correctly classified
as expected species were slightly lower for these controls compared
to the mock extraction controls (Table 4). For the run 2 plate
1 control the prevalence of S. enterica was particularly low, and
this was not resolved at the genus level (Supplementary Table S2).
B. subtilis again was not detected at a species level for two of
these controls (Table 3). Precision scores for the mock sequencing
controls ranged from 0.50 and up, while sensitivity was greater
than 0.88 for all controls. F-scores had a median of 0.80 (range of
0.67–0.94).

The relative abundances of species in the mock sequencing
controls more closely matched the expected abundances than was
observed for the mock extraction controls (Table 4; Figure 4B), as
seen by the O/E ratios being closer to 1. In these controls the
abundance of Limosilactobacillus fermentum was well below the
theoretical threshold expected. The O/E ratios for this species and
S. aureus were consistently less than 1. Whereas E. faecalis, E. coli
and L. monocytogenes had O/E ratio ranges above 1.

Although the inclusion of a batch effect correction step was
trialled, substantial differences in the relative abundances of the
various species across the controls were observed compared to when
no batch effect correction was done (Supplementary Figure S1).
Similarly, stricter decontamination thresholds led to poorer
reproducibility in mock controls.

3.3 Within-run and between-run
reproducibility

Similar patterns in the relative abundance of species could be
seen when comparing pairs of within-run and between-run repeats
(Supplementary Figures S2, S3). When comparing alpha diversity
of within-run repeats using paired Wilcoxon tests, we found no
evidence to indicate differences at a species level in the Observed
richness [95% confidence interval (CI) (−3.50, 5.50); p = 0.587],
Shannon’s index [95% CI (−0.09, 0.12); p = 0.782] or Simpson’s
index [95% CI (−0.02, 0.01); p = 0.487] between these pairs
of technical replicates (Figure 5). Furthermore, when comparing
the beta diversity distance matrices of these within-run technical
replicate pairs (Figure 6), we observed a good level of reproducibility
for Bray Curtis as seen by a distance-based intraclass correlation
coefficient (dICC) value of 0.940 and Jaccard’s distance showed
good, albeit lower, reproducibility with a dICC of 0.762. Similarly,
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TABLE 1 A summary of performance and accuracy measures at a species level for mock cell controls containing eight known bacterial species.

R1P1
Zymoex

R1P2
Zymoex

R1P3
Zymoex

R1P4
Zymoex

R2P1
Zymoex

R2P2
Zymoex

R2P3
Zymoex

True positives 7 8 8 7 7 8 8

False positives 15 3 3 0 3 0 2

False negatives 1 0 0 1 1 0 0

Precision 0.32 0.73 0.73 1.00 0.70 1.00 0.80

Sensitivity 0.88 1.00 1.00 0.88 0.88 1.00 1.00

F-score 0.47 0.84 0.84 0.93 0.78 1.00 0.89

R#, run number; P#, plate number.

we found no differences between these technical replicates when
looking at their alpha and beta diversity measures at a genus level.

A comparison of alpha and beta diversity measures for between-
run technical replicates similarly found no clear differences between
these pairs at a species level (Figure 7). Paired Wilcoxon tests
comparing Observed species [95% CI (−2.00, 13.00); p = 0.362],
Shannon’s index [95% CI (−0.05, 0.49); p = 0.195] and Simpson’s
index [95% CI (−0.004, 0.11); p = 0.148] did not motivate for
the existence of differences in alpha diversity measures. Moreover,
dICC results showed good reproducibility for Bray Curtis (dICC
= 0.899) and moderate reproducibility for Jaccard’s distance
(dICC = 0.597) (Figure 8).

3.4 Interchangeability of stool and rectal
swab samples

To assess whether stool and rectal swab samples may
be combined for analysis, we compared 26 sample pairs
collected at 0–5 weeks after birth. The relative abundances of
species did not display similar patterns across pairs of samples
(Supplementary Figure S4) and alpha diversity was found to differ
when running paired Wilcoxon tests. Stool and swab samples
from the same participants differed at a species level in terms
of Observed species (p < 0.001) and Shannon’s index (p =
0.027), with no differences in Simpson’s index (p = 0.394) found
(Figure 9). A comparison of beta diversity measures at a species
level found that while Bray Curtis measures were moderately
reliable between the pairs of stool and swab samples (dICC = 0.684),
there was poor reliability when comparing their Jaccard’s distances
(dICC = 0.310) (Figure 10).

4 Discussion

We have outlined a short-read sequencing protocol which can
be used to carry out species-level analysis. Our findings, following
analysis of mock controls and technical replicates, indicate that the
kits and analytical pipelines used in this study can effectively enable
species-level classification and provide reproducible results within
and across sequencing plates.

When assessing data from different sample collection
approaches using this protocol, our results indicate that care needs
to be taken as stool and swab samples collected from the same
participant are not comparable at a species level.

4.1 Multiple variable regions of 16S rRNA
enable adequate species-level analysis

We were able to obtain relatively good species-level resolution
in terms of sensitivity using a nearly complete 16S rRNA
sequence, which the SNAPP-py3 pipeline developers refer to
as a ‘consensus’ sequence. The eight species expected to be
found in the ZymoBIOMICS mock controls were not consistently
detected to a species level in all mock controls across the
seven sequencing plates, suggesting that there is still room
for improvement in terms of reproducibility. The main species
which were not detected in all controls are B. subtilis and
L. monocytogenes. These species are gram-positive, containing
a strong wall of peptidoglycan which can be a challenge to
lyse, as has been presented in previous literature (Claassen-
Weitz et al., 2020). ZymoBIOMICS have intentionally developed
these mock controls to include both gram-negative and gram-
positive species to enable researchers to identify inconsistencies
and to optimise their lysis protocols (ZymoBIOMICS, 2024).
Moreover, research indicates that the primers used in library
preparation may have a greater affinity for some species compared
to others (Klindworth et al., 2013), whichmay also contribute to false
negatives in some controls. Our results indicate that the methods
used are capable of detecting all species, as seen in several of our
mock controls, however future optimisation of the protocol will
be required.

A previous study comparing the use of different variable regions
in Illumina Miseq sequencing, found that using 1-2 variable regions
could at best identify 16 of 20 (80%) mock control species correctly
(Fouhy et al., 2016). In five mock controls, we detected 7 of 8 mock
species (88%), yet for the remaining nine controls we detected all
the expected species (100%). Thus, our results would indicate that
using all nine variable regions of the 16S rRNA gene improves
accuracy compared to methods that look at only a couple of variable
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FIGURE 3
Relative abundances for (A) mock cell and (B) mock DNA controls; Legend: s = species, g = genus level classification. R# = run number; P# = plate
number. The legend only includes taxa of interest to the species or genus level.

FIGURE 4
Box and whisker plots showing the relative abundance percentages of the eight expected bacterial species across (A) mock extraction controls and (B)
mock sequencing controls; theoretical abundances shown as dots; outliers shown as crosses.

regions. Other short-read multiple variable region methods have
been able to identify all taxa within mock controls containing a
greater number of species (Fuks et al., 2018; Schriefer et al., 2018),
however in these studies there were also mock controls in which not
all species were identified. Schriefer et al. (2018) suggested that the
depth to which sequencing was done may play a role, however an

increase of sequencing depth by 10-fold ultimately had no impact
on their results. Therefore, the approach we present requires further
optimisation to ensure that 100% sensitivity is consistently achieved
and to assess whether this approach can perform at a similar level
to other multiple variable region tools when using more complex
mock controls.
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TABLE 3 A summary of performance and accuracy measures at a species level for mock DNA controls containing eight known bacterial species.

R1P1
Zymoseq

R1P2
Zymoseq

R1P3
Zymoseq

R1P4
Zymoseq

R2P1
Zymoseq

R2P2
Zymoseq

R2P3
Zymoseq

True positives 8 8 7 8 8 7 8

False positives 4 8 4 6 1 0 3

False negatives 0 0 1 0 0 1 0

Precision 0.67 0.50 0.64 0.57 0.89 1.00 0.73

Sensitivity 1.00 1.00 0.88 1.00 1.00 0.88 1.00

F-score 0.80 0.67 0.74 0.73 0.94 0.93 0.84

R#, run number; P#, plate number.

When focusing only on sequences that were classified to a
species level, sensitivity was high in both the mock extraction and
mock sequencing controls. However, our results indicate that high
sensitivity comes at the expense of obtaining poorer precision in
some controls. The overall performance for mock extraction and
mock sequencing controls were median F-scores of 0.84 and 0.80
respectively. These results are comparable with other research that
obtained F-scores greater than 0.80 using a bioinformatics tool for
analysing sequencing data, for which the authors described their
results as being indicative of good performance (Özkurt et al.,
2022). Poor precision scores in our case were often driven by false
positive taxa that were present in very low relative abundances.Thus,
removing rare taxa could yield even better results. Schriefer et al.
(2018) and Fuks et al. (2018), also reported false positives at low
abundances for their multiple variable region approaches.

As our measure of precision is based on the presence or absence
of expected taxa, it is quite strict in how it penalises false positives.
It is not weighted according to the abundances at which these occur.
Therefore, it is important for us to look at the precision scores in
conjunction with our abundance-based measures, to get a complete
picture of the performance of the methodology used in this paper.
The R1P1 mock extraction control displayed poor precision due
to having a particularly high number of false positives. However,
as these occurred at such low abundances, false positives had little
influence on our abundance-related analysis. Rather, we found that
the inability to detect all expected species (i.e., false negative results)
in our controls was the main factor responsible for differences in
observed abundances compared to expected abundances.

The overall percentages of sequences that were classified as
expected taxa and to a species level, ranged between 79.11% and
99.98% for mock extraction controls, and between 81.80% and
99.58% for mock sequencing controls. In a study by Szoboszlay et al.
(2023) the authors found that between 58.9%–68.9% of reads
obtained from Illumina sequencing of the V4 region could be
correctly classified to a species level. This improved if rare
taxa were excluded. Nanopore sequencing of the entire 16S
rRNA gene could yield classification of over 81% of reads to a
species level (Szoboszlay et al., 2023). Therefore, although we did
not remove rare taxa, our protocol could compete with a full-length
sequencing approach and perform better than using a single variable

region for short-read sequencing. Ultimately, our results indicate
that the RDP classifier is able to accurately identify the expected taxa
in our controls.

The relative abundances of species in our mock extraction
controls sometimes diverged from the theoretical abundances
outlined by the suppliers (ZymoBIOMICS, 2022), indicating that
there may be some bias introduced during the extraction process.
O/E ratios provided a quantitative means of assessing the bias
introduced in each control. In particular, they assisted with
identifying the species for which observed abundances differedmost
from theoretical abundances and showed that there was greater bias
in the mock extraction controls.

There are various stages in 16S rRNA sequencing where
prejudice can arise, favouring certain taxa or altering the relative
composition of a sample (Nearing et al., 2021). Studies have
found that DNA extraction kits and methods can differ in terms
of their ability to extract DNA from gram negative and gram
positive bacteria, indicating that the results of a study can be
influenced depending on which kit and extraction method are used
(Videnska et al., 2019; Yuan et al., 2012). The mock sequencing
controls (for which already-extracted DNA was obtained from
ZymoBIOMICS) more closely resembled the expected abundances.
L. fermentum differed substantially from the theoretical abundance
in the sequencing controls – unlike the extraction controls for
which this particular species had followed the expected abundance
more closely. This implies that, for the most part, there is minimal
bias introduced at the sequencing step. However, there may be
some bias specifically in sequencing L. fermentum. Our findings
complement other studies which have shown that the extraction
and amplification of DNA is particularly prone to prejudicing
results, while there is less bias introduced at the sequencing stage of
microbial research (Brooks et al., 2015; Lee et al., 2012). Similar to
our findings, previous research using a short-read multiple variable
region approach, also found that the observed abundance of taxa did
not always accurately match the expected abundances (Fuks et al.,
2018). The authors also suggested that bias may be introduced
during the amplification stage of library preparation.

Our findings suggest that using this multivariate analysis
approachmight provide ameans to improve the ability of short-read
16S rRNA sequencing studies to studymicrobial samples at a species
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FIGURE 5
(A) Observed richness, (B) Shannon’s index and (C) Simpson’s index for within-run technical replicates at species-level classification. s1, sample 1;
s2, sample 2.

level.This approachwould benefit from additional ways tominimise
bias – particularly in the DNA extraction process.

We considered including a batch effect correction step in the
processing of our data. The goal was to reduce bias introduced
due to samples being sequenced on different plates and in different
runs. However, when visualising the relative abundances of mock

sequencing controls, we found that batch effect correction led to far
less consistent results across the controls. Davis et al. (2018) reported
that the decontam package corrects for batch effects. As a result,
it may be redundant to carry out both decontamination and batch
effect correction. Moreover, as our protocol included a plate-wise
decontamination step, batch effects would have already been taken
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FIGURE 6
A comparison of (A) Jaccard and (B) Bray Curtis beta diversity measures between pairs of within-run technical replicates at species-level classification.

into account here. Thus, based on our findings, we considered an
additional batch effect correction step excessive and problematic –
leading us to exclude this step. Similarly, we found that using a very
stringent threshold for decontamination also had a negative impact
on our analysis. As such, we would suggest that care needs to be taken
when doing additional processing of data, to ensure that bias is not
introduced to the data by overcorrecting for contaminants and batch
effects. Researchers should take care in deciding whether batch effect
correction is necessary if their pipeline includes a decontamination
step, which removes contaminants according to batches.

4.2 Short-read multiple variable region
analysis can achieve good reproducibility

Observed richness provides an indication of the number of
different taxa within samples, while Shannon’s and Simpson’s indices
additionally account for how equally represented these taxa arewithin
samples (evenness) (Kers and Saccenti, 2021). Based on our results we
havenoreasontoreject thenullhypothesis that there isnodifference in
alphadiversitymeasuresbetweenwithin-run technical replicatepairs.

Jaccard’s distance quantifies how diversity varies between samples
based on whether or not taxa are present, while Bray Curtis factors
in the abundance of taxa (Kers and Saccenti, 2021; Schroeder and
Jenkins, 2018). More confidence is usually placed in Bray Curtis
compared to Jaccard’s distance (Schroeder and Jenkins, 2018). The
similarity between these beta diversity measures for replicate sample
pairs was assessed in terms of dICC. dICC is a distance measure
which has been established specifically for microbiome data, building
on the concept of intraclass correlation coefficients, to look at the
similarity between replicate samples (Chen and Zhang, 2022). Higher
ICC values are indicative of strong similarity between measures (Koo
and Li, 2016), in our case diversity measures for microbial sample
pairs. An ICC of 0.5, however, shows moderate reproducibility and

a value of <0.5 suggests poor similarity (Koo and Li, 2016). Thus,
our results in which we get dICC values of 0.940 and 0.762 for Bray
Curtis and Jaccard respectively, indicate thatweget goodbetadiversity
reproducibility when running samples in duplicate on the same plate.
Likewise, the diversity of between-run technical replicates was similar
with dICC values of 0.899 and 0.597. This suggests that we do not
have significant batch effects across sequencing plates of the same
run, or across different runs, when following the protocols set out in
this study for sequencing and processing short-read multivariate 16S
rRNA data. It should be noted that we only had one pair of replicates
across runs and this was grouped with the between-plate replicates
in what we referred to as our “between-run replicates.” Collectively
our findings indicate that there is no batch effect introduced. The
sequencing and processing of infant stool and rectal swab samples is
consistent, providing confidence in the analysis of the microbiome
datasets generated using this protocol.

4.3 Stool and rectal swab collection
approaches are not interchangeable

The implementation of a new kit and pipeline for analysing both
stool and rectal swab samples in this study warranted investigation.
Stool and rectal swab samples collected from the same infants and
at the same time point were found to differ for several diversity
measures. Contrary to our findings, studies have suggested that
rectal swab samples can be used in place of stool samples and provide
a reliable representative measure (Radhakrishnan et al., 2023;
Reyman et al., 2019; Bassis et al., 2017). However, a couple of studies
exploring diversity and functional roles of the microbiome have
previously reported differences between stool and swab samples
(Short et al., 2021; Sun et al., 2021). Short et al. (2021) specifically
found that beta diversity differed between these sample types, while
Sun et al. (2021) found that rectal swab samples varied from stool
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FIGURE 7
(A) Observed richness, (B) Shannon’s index and (C) Simpson’s index for between-run technical replicates at species-level classification. p# = run and
plate number.

in terms of both alpha and beta diversity measures. Moreover, there
have been indications that differences in the relative abundances of
specific taxa may occur between different sample types (Jones et al.,
2018). This would be particularly important to consider when
comparing the prevalence of individual taxa between groups, such
as when using differential abundance analysis.

Furthermore, a study by Bokulich et al. (2019) found that the
length of time between the collection and processing of samples is
an important factor to take into consideration when using rectal
swab samples in sequencing studies. Although samples in their study
were ultimately frozen, swabs were posted to the laboratory, while
stool samples were immediately placed on ice until they could be
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FIGURE 8
A comparison of (A) Jaccard and (B) Bray Curtis beta diversity measures between pairs of between-run technical replicates at species-level
classification.

collected and taken to the laboratory. Rectal swab samples received
andprocessedafter48 h following sample collectiondidnot accurately
match stool samples – with a higher proportion of Enterobacteriaceae
being favoured (Bokulich et al., 2019). The stool and rectal swab
samples in our studywere collected together and stored at −80°C until
DNA extraction and sequencing were done, and therefore we do not
face the same challenges as Bokulich et al. (2019) in termsof the length
of time for which samples remained at room temperature. However,
it may be important to consider factors such as the time for which
samples are stored in freezers, and the time between DNA extraction
and sequencing in futurework involvingboth stool and swab samples.

The fact that swabs were stored in Primestore, while stool
was not, would suggest a substantial difference which requires
consideration when using a combination of stool and swab samples
in carrying out analysis. Several studies have found that bacterial
compositions differ across different regions of entire stool samples
(Zreloff et al., 2023; Huson et al., 2017; Gorzelak et al., 2015).
Spectroscopic analysis has shown that patterns of metabolites can
also vary substantially across different regions of stool (Liang et al.,
2020; Gratton et al., 2016). Therefore, using only part of the sample
does not provide a good characterisation of the entire sample.
These studies highlight the importance of homogenising the entire
stool sample in order to carry out sequencing (Zreloff et al., 2023;
Liang et al., 2020; Gratton et al., 2016). As sequencing of rectal swab
samples is not limited to only a component of the collected sample,
this sample would be homogenous. This may explain the differences
observed between stool and rectal swab sample pairs.

4.4 Limitations and future work

The work presented included only one mock extraction
and one mock sequencing control on each sequencing plate.

Future work could include duplicates of controls on each
plate to better assess reproducibility of the controls. It would
also expand the options available for statistically comparing
these controls.

A limitation of this study is the inconsistent detection of all eight
species in eachmock control.We were able to detect all eight species
in several controls, suggesting that the methods used for library
preparation, sequencing and processing of the data are all capable
of achieving consistent detection. Given that gram positive species
particularly are not always detected (Claassen-Weitz et al., 2020),
and these are more challenging to lyse, future work to optimise
the lysis protocol should be done – for example, assessing whether
carrying out mechanical lysis for longer enables the consistent
detection of all species. A study involving sequencing of the entire
genome, has previously shown that sequencing depth may play
a crucial role in whether or not all expected taxa are detected
(Pereira-Marques et al., 2019). Sequencing depth is a variable that
differed for each control and may explain the inconsistencies in
our results. Sequencing was done based on the Illumina guidelines
which recommend a library depth of at least 100,000 reads
(ILLUMINA. 16S Metagenomic Sequencing Library Preparation,
2024). However, as we are using a pipeline which combines
multiple variable region reads into consensus sequences, and as
other short-read multiple variable region 16S rRNA studies have
utilised greater sequencing depths (Fuks et al., 2018; Schriefer et al.,
2018), future work could seek to optimise the sequencing depth
required for this protocol in order to better identify all species in
mock controls.

In this study we evaluated a single pipeline and protocol for
analysing data from multiple variable region 16S rRNA sequencing,
however in future this protocol would benefit from comparisons to
other tools andpipelines.Moreover, differentDNAextraction kits and
ampliconsequencingkitscouldbecomparedtoidentifythebestkits for
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FIGURE 9
(A) Observed richness, (B) Shannon’s index and (C) Simpson’s index for pairs of stool and rectal swab samples collected from the same infants using
data classified to a species level. p# = run and plate number.

carrying outmultiple variable region analysis. In this analysis we have
worked with compositional data, looking at the relative abundances
of taxa. However, in future, it would be useful to explore absolute
abundances for samples sequenced using this protocol. Moreover, we
could explore whether other databases – such as databases specific to
thehumangutmicrobiome–might enablemoreeffective andaccurate
classification of consensus sequences from the SNAPP-py3 pipeline.

Researchers intending to utilise this sequencing kit and pipeline
should ideally strive (where possible) to use data from samples
obtained through the same collection approach. In cases where
a combination of sample collection approaches is used, analysis
should be done to assess whether collection approaches influence
microbial composition. If they do, sample collection approach
should be controlled for in any analysis in which this data is used.

The goal of this paper was to assess the use of xGen kits and the
SNAPP-py3pipeline, to set the stage foranobservational clinical study.

Our assessment of this methodology is limited by the fact that we did
nothave access to awider variety of datasets sequencedusing the xGen
kits. Future research should explore the use of this methodology in a
greater selection of clinical settings and in the study of environmental
microbiomesamples.Thismightresult in theapproachbeingofgreater
relevance and interest to a broader audience.

4.5 Conclusion

The results of our 16S rRNA multiple variable region analysis,
using short-read Illumina sequencing data from all 9 variable
regions, show that there is promise for using this protocol for
species-level analysis.We have identified areas for improvement and
future work should assess whether this approach is comparable to
other bioinformatics pipelines and tools that have been established
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FIGURE 10
Principal coordinates analysis plots showing (A) Jaccard and (B) Bray Curtis beta diversity measures for pairs of stool and rectal swab samples collected
from the same infants at species-level classification.

for analysing multiple variable region short-read data. As we found
differences in diversity between stool and swab sample pairs, future
analysis of data which has been generated using this protocol should
take this into account. Furthermore, our findings indicate that when
using new sequencing kits and protocols to study both stool and
swab samples, it would be advisable to do analysis to compare
pairs of stool and rectal swabs from the same individual to confirm
whether these yield comparable results.
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