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Background: Parkinson’s disease is a complex, age-related, neurodegenerative
disease associated with dopamine deficiency and both motor and nonmotor
deficits. Therapeutic pathways remain challenging in Parkinson’s disease due
to the low accuracy of early diagnosis, the difficulty in monitoring disease
progression, and the limited availability of treatment options.

Objectives: Few data are present to identify urinary biomarkers for various
ailments, potentially aiding in the diagnosis and tracking of illness progression in
individuals with Parkinson’s disease. Thus, the analysis of urinary metabolomic
biomarkers (UMB) for early and mid-stage idiopathic Parkinson’s disease (IPD) is
the main goal of this systematic review.

Methods: For this study, six electronic databases were searched for articles
published up to 23 February 2024: PubMed, Ovid Medline, Embase, Scopus,
Science Direct, and Cochrane. 5,377 articles were found and 40 articles were
screened as per the eligibility criteria. Out of these, 7 controlled studies were
selected for this review. Genetic profiling for gene function and biomarker
interactions between urinary biomarkers was conducted using the STRING and
Cytoscape database.

Results: A total of 40 metabolites were identified to be related to
the early and mid-stage of the disease pathology out of which three
metabolites, acetyl phenylalanine (a subtype of phenylalanine), tyrosine
and kynurenine were common and most significant in three studies.
These metabolites cause impaired dopamine synthesis along with
mitochondrial disturbances and brain energy metabolic disturbances
which are considered responsible for neurodegenerative disorders.
Furoglycine, Cortisol, Hydroxyphenylacetic acid, Glycine, Tiglyglycine,
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Aminobutyric acid, Hydroxyprogesterone, Phenylacetylglutamine, and
Dihydrocortisol were also found commonly dysregulated in two of the total
7 studies. 158 genes were found which are responsible for the occurrence of
PD and metabolic regulation of the corresponding biomarkers from our study.

Conclusion: The current review identified acetyl phenylalanine (a subtype
of phenylalanine), tyrosine and kynurenine as potential urinary metabolomic
biomarkers for diagnosing PD and identifying disease progression.

KEYWORDS

Parkinson’s disease, metabolomics, review, genetic profile, urine based diagnostics

Introduction

With a frequency of 1% in those over 60, Parkinson’s disease
(PD) is one of the most prevalent neurodegenerative illnesses
(De Lau and Breteler, 2006). The distinctive motor symptoms, such
as hypokinesia, postural instability, stiffness, and resting tremor,
are brought on by a lack of dopaminergic input to the striatum
when the degeneration of dopaminergic neurons in the substantia
nigra reaches 50%–60%. These clinical signs form the bulk of
the diagnostic (Rocca, 2005). The diagnosis of Parkinson’s disease
(PD) is now made mainly on clinical observation, although early
identification is difficult due to the vast variety of symptoms,
many of which are shared by other neurodegenerative diseases.
Since the symptoms of PD match those of other neurodegenerative
diseases, clinical diagnosis of PD is not always accurate (between
75% and 90%) but blood or laboratory tests are not yet available
to reliably diagnose Parkinson’s disease in clinical settings. Because
there are few disease-modifying treatments that can stop or slow
the development of the disease, the condition is often managed
symptomatically (Alexander, 2004).

Finding biomarkers that canmore precisely anticipate the illness
is, therefore, necessary in order to advance the development of
therapies and enable more accurate disease monitoring, both of
which would ultimately improve the prognosis of PD patients. A
technique now required in the evaluation and validation of PD is
the use of biomarkers for early diagnosis and disease progression
prediction (Jankovic, 2008). Metabolomic studies in PD have
improved knowledge of the underlying molecular pathways and led
to the development of biomarkers for early diagnosis. Additionally,
it has the ability to differentiate various metabolite variants
and find genetic changes that could be important functionally.
Metabolomics-based techniques also deliver objective, high output,
valuable data of a variety of good consistency metabolites. They
form an attractive method for identifying possible biomarkers
in Parkinson’s disease (PD). Changes in the profiles of urine
metabolites may signal the early stages of Parkinson’s disease. Given
that urine collects non-invasive samples and contains the majority
of the metabolic bi-products of the body, it is always a “favoured”
marker source for disease study (Bouatra et al., 2013; Luan et al.,
2015a). Urine holds an important part of acting as a biomarker in
neuro-degenerative conditions as it is available non-invasively and
it also mirrors biochemical changes in blood (Eller and Williams,
2009). Urinary 8-hydroxy-2’ (8-OHdG), a valuable bi-product in
oxidative damage of DNA, is correlated with PD progression. Urine
is a significant biofluid that is rich in metabolites that can be used as

biomarkers to diagnose neurological disorders. It also contains the
metabolic end products and is the most convenient way of sampling
than blood and CSF (Bai et al., 2021). Changes in urine composition
may be more helpful than those in serum (Bolner et al., 2011).

Presently, no biomedical tests are available to forecast the course
of PD illness, despite the fact that it is widely acknowledged that
such prediction tools are essential to the field. Despite the fact
that there are substantial data on other body fluids, the non-
invasive nature, abundance, stability, and rich metabolomic and
proteomic content (Luan et al., 2015b) make urine a highly valuable
fluid for PD biomarker discovery, potentially complementing or even
surpassing other fluids traditionally studied for this purpose. The
potential for discovering novel biomarkers in urine could significantly
improve early diagnosis and monitoring of Parkinson’s disease.
Determiningprospectiveurine-basedbiomarkersintheearlyandmid-
stage idiopathicPD(IPD), utilizing ametabolomicplatform is the goal
of this systematic review, which intends to increase the precision of
early diagnosis and progression of PD-prediction.

Materials and methods

The preferred reporting items for systematic reviews and meta-
analyses (PRISMA) checklist have been incorporated to write this
systematic review (Page et al., 2021).

Search strategy for literature

A thorough review of literature was done using an extensive
exploration employing keywords and subject headings, from which
a list of potential biomarkers could be created. Six electronic
databases were searched for articles published up to December
2023: PubMed, Ovid Medline, Embase, Scopus, Science Direct, and
Cochrane. The search criteria included “Parkinson,” “Parkinson’s
Disease,” “metabolites,” “metabolomics,” “metabolic,” “metabolome,”
“biomarkers,” “urine-based”, “urinary” and “human” in combination.
Terms were looked for using Boolean search in titles, abstracts, and
MeSH keywords to provide a specific search result.

Eligibility criteria for studies

By comparing the articles to the inclusion and exclusion criteria,
the eligibility of the articles was established. Articles that did
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not fit the requirements for inclusion were rejected. A second
round of screening was carried out using the full-text content of
the articles for the final shortlisting of the studies that met the
inclusion criteria.

Inclusion criteria
Studies were searched from inception to 23.02.2024. Controlled

studies focussing on urine based metabolomic analysis in early
and mid-stage PD patients were selected. English language studies
were included.

Exclusion criteria
Non-research articles like systematic reviews, interventional

studies, letter to the editor, narrative reviews were excluded.
Proteome and genome based studies with no control group were
also excluded.

Screening and data extraction process

Two reviewers (NRD & DJ) searched and assessed for
the eligible studies. They extracted the important data and
mentioned in Table 1, based on the listed eligibility criteria. Any
disagreement was resolved after a discussion with the third reviewer
(SS). Each separately extracted the data in compliance with the
study’s methodological characteristics, interventions, participants,
outcomes, and conclusions. PRISMA 2020 flowchart outlined the
complete selection process.

Quality assessment

The case-control quality evaluation tool from the National
Heart, Lung, and Blood Institute (NHLBI) was used to evaluate
the study’s overall quality (National Heart et al., 2013). NHLBI
developed a set of tailored quality assessment tools in 2013 to assist
reviewers in focussing on concepts that are key to a study’s internal
validity. The tools are specific to certain study designs and tested
for potential flaws in study methods or implementation. Based on
the study design (case-control study), this quality assessment tool
was used. The study quality was evaluated by two authors (NRD
and NP) separately and was rated as “yes,” “no,” or “not applicable.”
A study is considered of “Good” quality if it meets all or most of
the specified criteria, with minimal risk of bias. A study classified
as “Fair” quality does not meet the specified criteria’s and suggests
some risk of bias but not enough to completely undermine the
results. A “Poor” quality study has significant methodological flaws
that increase the risk of bias and limit the validity of its findings.
A third reviewer (SS) was brought in to help address any disputes
or issues.

Data analysis

Reproducibility of results
This was solely done on study and patient characteristics and

urinary metabolomic biomarkers (UMB).

Gene search for PD
To identify genes associated with Parkinson’s disease (PD)

and its potential biomarkers, a comprehensive search was
performed using the DisGeNET database (v7.0). DisGeNET is
a widely recognized open-access platform that provides insights
into the genetic underpinnings of human diseases and their
phenotypic traits (Piñero et al., 2017). For this study, the dataset
corresponding to Parkinson’s disease (C0030567) was selected. A
systematic search was conducted to extract the genes linked to PD.
In this analysis, two key metrics were introduced to prioritize the
genes: theDisease Specificity Index (DSI) and theDisease Pleiotropy
Index (DPI). The DSI ranges from 0 to 1, where a score closer to 1
indicates that the gene is highly specific to a single disease. Genes
with a DSI of 1 were selected as the most specific to Parkinson’s
disease. Gene Network (DisGeNET) database (C0030567) consists
of 685 unique PD-related genes. Among these genes, we selected
those with a gene-disease-association score greater than or equal to
0.1 (Score-GDA ≥ 0.1), yielding 169 genes. These genes are involved
in various functions and related to urinary biomarkers.

Protein-protein interaction (PPI) network
construction

The genes identified from DisGeNET were used to construct
protein-protein interaction (PPI) networks using the STRING
database (version 11.5) (Szklarczyk et al., 2023). STRING integrates
various sources of interaction data, including experimental studies,
computational predictions, and curated biological pathways. The
STRING web platform was utilized to filter interactions, selecting
those with a confidence score greater than 0.4 and a p-value less
than 0.05, ensuring statistical significance. The STRING platform
automatically evaluates whether the observed interactions in the
network are significantly more than expected in a random set of
proteins of similar size.

Both direct and indirect interactions were included in
the network.

Network analysis and visualization
The constructed PPI networks were imported into

CYTOSCAPE (version 3.8.2) (Otasek et al., 2019), a powerful tool
designed for the visualization and for analysis of complex biological
networks and same confidence score, STRING was selected. In
CYTOSCAPE, the networks underwent topological analysis to
identify key nodes, which are hypothesized to play critical roles
in the pathology of Parkinson’s disease.

Identification of hub genes
Hub genes, which are highly interconnected within the

PPI network, were identified using the CytoHubba plugin
(version 0.1) (Chin et al., 2014) in Cytoscape. These hub genes
are of particular interest due to their central roles in maintaining the
network structure and regulating essential biological processes.
Identifying such hub genes is crucial, as they may serve as
key molecular drivers in the development and progression of
Parkinson’s disease.

Meta-analysis framework
To conduct a meta-analysis, studies related to the identified

hub genes and their associations with Parkinson’s disease were
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TABLE 1 Description of the studies.

Authors and year No. of subjects Country Sample Method of
metabolomic

analysis

Main
finding/biomarkers

Chung et al. (2023)
(Profiling analysis of
Tryptophan metabolites in the
urine of patients with
Parkinson’s disease using
LCMS/MS)

41 PD patients (16-M, 25-F) Korea Urine sample LC-MS/MS Indole-3-acetic-acid

Wichit et al. (2021)
Monoamine levels and
Parkinsons’s disease
progression: evidence from a
High Performance Liquid
Chromatography study

24 early PD (M = 18, F = 6) and
16 late PD (M = 9, F = 7)

Thailand Urine samples HP-LC Homovanillic acid (in
dopaminergic system) and
5-hydroxyindoleacetic acid (in
serotonergic system)

Kumari et al. (2020a)
(Identification of potential
urine biomarkers in idiopathic
Parkinson’s disease using NMR)

100 PD with 62 in early stage
(78-M, 22-F)

India Urine sample High resolution
nuclear magnetic
resonance
spectroscopic
Analysis

Ornithine, tryptophan,
phenylalanine, isoleucine,
β-hydroxybutyrat, tyrosine and
succinate

Bai et al. (2021)
(Urinary Kynurenine as a
biomarker for Parkinson’s
disease)

41 early PD patients
24-male
17-female

China Urine sample ELISA to identify
KYN levels in urine

Kynurenine

Luan et al. (2015a)
(LC−MS-Based Urinary
Metabolite Signatures in
Idiopathic Parkinson’s Disease)

Total 106 (66-M, 40-F)
idiopathic early (sample
collected on week 1), 93 (56-M,
37-F) mid-stage (sample
collected on week 16) and 98
(54-M, 44-F) late-stage (sample
collected on week 32) PD
patients

China Urine sample High performance
LC-MS analysis
@45 metabolites
were profiled for
identification of PD

hydroxyprogesterone, cortisol,
tryptamine, 5-hydroxytryptophan,
indolelactic acid, kynurenine,
hydroxyphenylacetylglycine,
phenylacetylglycine, furoglycine,
tiglyglycine, glycine,
phenylacetylglutamine,
acetylphenylalanine, phenylacetic
acid, tyrosine, hydroxyphenylacetic
acid, glutamyltyrosine,
acetyltyrosine,
5,6-dihydroxyindole, deoxyinosine,
malonylcarnitine, urocanic acid,
spermidine, naphthol,
aminobutyric acid, trimethylamine
N-oxide

Luan et al. (2015b)
(Comprehensive urinary
metabolomic profiling and
identification of potential
noninvasive marker for
idiopathic
Parkinson’s disease)

14 early (6-M, 8-F) and 59
(41-M, 18-F) mid-stage PD and
19 (8-M, 11-F) late-stage
patients

China Urine sample LC-MS and GC-MS Acetyl phenylalanine, kynurenine,
hydroxytryptophan, furoylglycine,
tyrosine/hydroxyphenylacetic acid,
cortisol, glycine, aminobutyric acid,
tiglylglycine, hydroxybenzoic acid,
hydroxyprogesterone, xanthurenic
acid, isoleucine, leucine, alanine,
dihydrocortisol
phenylacetylglutamine, and
phenylalanine

Luan et al. (2015c)
(Elevated excretion of biopyrrin
as new marker for idiopathic
Parkinson’s disease)

14 early (6-M, 8-F) and 59
(41-M, 18-F) mid-stage and 19
(8-M, 11-F) late-stage patients

China Urine sample LC-MS analysis and
ELISA quantification

Biopyrrin

PD, Parkinson’s Disease; M, male; F, female; LC-MS, liquid chromatography mass spectrophotometry; LC-MS/MS, liquid chromatography tandem mass spectrophotometry; HP-LC, high
performance liquid chromatography; GC-MS, gas chromatography mass spectrophotometry.

systematically reviewed. Data were extracted from multiple
independent studies that reported on the genetic, transcriptomic,
and proteomic alterations linked to PD. The pooled data were

statistically analyzed to quantify the overall effect size and
assess the consistency of gene associations across studies. By
integrating data from DisGeNET, STRING, and Cytoscape, this
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FIGURE 1
PRISMA flow chart of the study selection process.

methodological approach provided a comprehensive analysis of
the genetic and protein interaction networks associated with
Parkinson’s disease, enabling the identification of potential
molecular targets for therapeutic interventions. This meta-analytic
framework aimed to strengthen the validity of gene associations
and uncover novel biomarkers for Parkinson’s disease diagnosis and
treatment.

Results

Study selection on literature search

5,377 items were found during a primary literature search. The
qualifying criteria were followed in the screening of 40 articles.
Seven (Luan et al., 2015a; Bai et al., 2021; Luan et al., 2015b;
Chung et al., 2023; Wichit et al., 2021; Kumari et al., 2020a;

Luan et al., 2015c) of these studies satisfied the requirements for
inclusion in the review. A PRISMAflow chart is shown for the search
parameters, study selection, and study exclusion in Figure 1.

Studies description

This review was based solely on studies with urinary
metabolomic biomarkers in early and mid-onset PD. Out of total
40 studies on PD biomarkers, only 7 studies were included based
on selection criteria. All studies passed the NIH quality assessment
evaluation and were of “fair” quality (Table 2).

Total number of PD patients in all studies who participated
was 512 and total number of healthy age and gender matched
control volunteers was 385. 321 were male and 191 were
female patients. A summary of the type of samples and
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TABLE 2 The NIH quality assessment method was used to evaluate the risk or bias of all included case-control studies (n = 5).

Criteria Luan et al.
(2015a)

Luan et al.
(2015b)

Luan et al.
(2015)

Bai et al.
(2021)

Kumari et al.
(2020a)

Chung et al.
(2023)

Chung et al.
(2023);
Wichit et al.
(2021)

1. Was there search question or
objective in this paper clearly stated
and appropriate?

Y Y Y Y Y Y Y

2. Was the study population clearly
specified and defined?

Y Y Y Y Y Y N

3. Did the authors include a sample
size justification?

N N N N N N N

4. Were controls selected or
recruited from the same or similar
population that gave rise to the
cases (including the same
timeframe)?

Y N Y Y Y Y Y

5. Were the definitions, inclusion
and exclusion criteria, algorithms
or processes used to identify or
select cases and controls valid,
reliable, and implemented
consistently across all study
participants?

Y Y Y Y Y Y Y

6. Were the cases clearly defined
and differentiated from controls?

Y Y Y Y Y Y N

7. If less than100% of eligible cases
and/or controls were selected for
the study, were the cases and/or
controls randomly selected from
those eligible?

NA NA NA NA NA Y NA

8. Was there use of concurrent
controls?

Y Y Y Y Y Y Y

9. Were the investigators able to
confirm that the exposure/risk
occurred prior to the development
of the condition or event that
defined a participant as a case?

Y Y Y Y Y Y Y

10. Were the measures of
exposure/risk clearly defined, valid,
reliable, and implemented
consistently (including the same
time period) across all study
participants?

Y Y Y Y Y Y Y

11. Were the assessors of
exposure/risk blinded to the case or
control status of participants?

N N N N N N N

12. Were key potential confounding
variables measured and adjusted
statistically in the analyses? If
matching was used, did the
investigators account for matching
during study analysis?

N Y N Y Y Y Y

Quality Fair Fair Fair Fair Fair Good Fair

Quality was rated as poor (0–4 out of 12 questions), fair (5–10 out of 12 questions), or good (11–12 out of 12 questions); Y, yes; N, No and NA, not applicable.
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FIGURE 2
An overview of the different types of samples used in various studies and the identitification of (A) all replicated UMB, (B) the total number of studies
that were included and excluded, and (C) Urinary biomarkers identified.

identified UMB is described in Figure 2. P-value (mann-
whitney U test), Mean decrease in accuracy (MDA), Fold
change (FC) value more >1.2 indicating upregulation in PD,
and Area under the ROC curve (AUC) value (determined by
Youden index) was kept at 0.59 to 0.95 indicating potential
metabolites (Supplementary Table S1).

Reproducibility in the findings of all studies

All studies focussed on identifying urinary biomarkers
for IPD. All three studies conducted by Hemi Luan et al.,
and Chung SH et al. used LC-MS to identify metabolites.
LC-MS is faster, highly sensitive and capable of detecting
low-abundance molecules than Nuclear Magnetic Resonance.
Reproducible findings about the metabolic alterations in PD in
all three studies contribute to the understanding that oxidative
stress, energy metabolism and neurotransmitter metabolism
pathways act as a target for biomarkers. Reproducibility was also
indicated by the occurrence of common UMB in these studies.
The availability of similar UMB with matched Fold Change
(FC) could determine a potential urinary biomarker in early
(acetylphenylalanine, hydroxytryptophan, tyrosine, kynurenine,
cortisol, tiglyglycine, phenylacetylglutamine, kynurenine) and mid-
onset (hydroxytryptophan, tyrosine/hydroxyphenylacetic acid,
phenylacetylglutamine) PD.

Gene search for Parkinson’s disease

From total 685 genes, 169 genes were selected from the
Parkinson’s disease (C0030567) dataset in DisGeNET, prioritized
based on their Disease Specificity Index (DSI). Genes with a DSI

closest to 1, indicating higher specificity to Parkinson’s disease, were
given preference for further analysis.

Protein-protein interaction (PPI) network
construction

The selected genes were analyzed using the STRING database,
revealing a protein-protein interaction (PPI) network in which 158
genes with 158 nodes (proteins) and 1,132 edges (interactions)
shows connection and the left are disconnected and hidden.The PPI
network exhibited a highly significant enrichment, with a p-value
of <1.0e-16 and obtained from a random set of proteins which is a
distinguishable property of STRING analysis, suggesting that these
proteins are more interconnected than expected by chance, pointing
to their potential roles in Parkinson’s disease pathology (Figures 3,
4). The bubble plot representing disease-gene associations and
gene ontology-enriched biological pathways, with significance level
is shown in Supplementary Figure 6-S2.

Identification of hub genes

Using the CytoHubba plugin, ten hub genes with the highest
interaction scores were identified within the PPI network. These
genes, marked in red, demonstrated the highest degree of
connectivity, making them strong candidates for further study
in Parkinson’s disease. Some of these genes are also emerging as
relevant to urinary biomarkers for Parkinson’s disease.

The top hub genes and their interaction scores are listed below:
These hub genes, particularly VPS35, VPS29, and GAK, hold

potentialnotonlyasmoleculardriversofParkinson’sdisease (Figure 5)
but also as candidates for developingnon-invasive urinary biomarkers
for early diagnosis and therapeutic targeting.
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FIGURE 3
STRING analysis of Parkinson’s disease-related genes showing a protein-protein interaction (PPI) network consisting of 158 nodes and 1,132 edges.

Discussion

The current systematic review demonstrated differentially
expressed urine-based biomarkers in early and mid-stage IPD.
Studies and systematic reviews on the identification of blood-
based biomarkers for diagnosing PD have been published in
2022 (Chelliah et al., 2022). There is no compiled information
till now on the studies demonstrating recognition of urinary
metabolites in diagnosing PD. Seven urine metabolomics analysis
studies in early IPD were identified in a database search.
Characteristics of each metabolite found in these seven studies

in terms of AUC, FC, MDA, and p-value have been described
in detail in Supplementary Table S1. Few metabolites were
identified to be related to the disease pathology. Three metabolites
Acetylphenylalanine, (Luan et al., 2015a; Luan et al., 2015b;
Kumari et al., 2020a), tyrosine (Luan et al., 2015a; Luan et al.,
2015b; Kumari et al., 2020a) and Kynurenine, (Luan et al.,
2015a; Bai et al., 2021; Luan et al., 2015b), were common in
three studies. Furoglycine, Cortisol, Hydroxyphenylacetic acid,
Glycine, Tiglyglycine, Aminobutyric acid, Hydroxyprogesterone,
Phenylacetylglutamine, and Dihydrocortisol, were found common
in two studies (Luan et al., 2015a; Luan et al., 2015b). Biopyrrin
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FIGURE 4
This network diagram illustrates the protein-protein interactions within a biological system. Nodes represent individual proteins, and edges indicate
known interactions between them.

(Luan et al., 2015c), Homovanillic (Wichit et al., 2021), 5-
Hydroxyindoleacetic acid (Wichit et al., 2021) and indole-
3-acetic acid (Chung et al., 2023) are the metabolite which
were found in three individual studies. The authors cautiously
propose that elevated urinary indole-3-acetic acid (IAA) levels
might serve as a potential biomarker for Parkinson’s disease
(PD), but they emphasize the need for further confirmation
through studies on larger cohorts and other biological samples
to validate this finding (Chung et al., 2023). All metabolites showed
dysregulation in the metabolic pathways. They all crossed the MDA
and FC threshold indicating their ability to differentiate amongst
three stages of PD and also to differentiate IPD from normal healthy
subjects respectively. Our study produced a panel of altered urinary
metabolites associated with idiopathic early and mid-stage PD.

Role of acetyl phenylalanine in PD

Alanine derivatives were found elevated in early-stage PD
indicating disrupted phenylalanine and tyrosine metabolism, which
may be linked to PD patients’ reduced ability to synthesize
dopamine (Luan et al., 2015a; Luan et al., 2015b; Luan et al.,
2015c). There is a metabolite shift in the phenylalanine metabolism
in PD from tyrosine production to producing trancinnamate

instead (Shebl et al., 2024). This alteration may deprive the
body of synthesizing dopamine, norepinephrine, and every other
phenylalanine and tyrosine metabolite. Altered acetylphenylalanine
levels cause phenylalanine metabolism to be disrupted in early-
stage Parkinson’s disease and can be considered as a dopamine
precursor (Ramdani et al., 2015), indicating its therapeutic role in
themanagement of PD study have shown a statistically significant (p
= 0.05) increase in acetyl phenylalanine in PD patients’ urine with
fold change ranging from 1.2 to 2.5 between patients and controls
(Sandler et al., 1969), and supposed to be correlated with various
neurological conditions (Kobayashi et al., 1984).

Role of Kynurenine in PD

This study suggested that urine KYN levels distinguished
patients with early-stage PD and those with healthy controls.
Urine KYN levels positively correlated with Hoehn-Yahr stages and
disease durations, and negatively correlated with MMSE scores of
patients with PD. These results suggested that urine KYN may
represent a novel biomarker for detecting early-stage PD and
evaluating the progression of PD. The urine KYN measurement
might assist clinicians in identifying patients with early-stage PD
(Bai et al., 2021). The kynurenine pathway has been linked to
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FIGURE 5
Network of top ten hub genes. The colour represents the degree of connectivity: red iindicates the highest degree of connectivity, orange indicates
intermediate connectivity and yellow indicates low connectivity degree.

oxidative stress, immune system dysregulation, and excitotoxicity,
all processes involved in PD pathology. Under the induction of pro-
inflammatory cytokines, Kynurenine Pathway activation disrupts
the balance between neuroprotection and neurotoxicity branches,
tending to produce neurotoxic products 3-Hydroxyuric acid (a
strong inducer of neurotoxic free radicals) and Quinolic acid,
which play an important role in the pathogenesis of PD through
excitotoxicity, oxidative stress, and/or inflammatory reactions (Chen
and Geng, 2023). These changes in the pathology correspond to
the early stage of PD. Neuroprotective metabolite kynurenic acid
(KYNA) is reduced due to this alteration in the kynurenine pathway.
KYNA analogs are important therapeutic agents in preventing or
delaying PD.

Role of tyrosine/hydroxyphenyl acetic acid
in PD

Tyrosine is metabolized through several pathways, one of
which leads to the production of hydroxyphenyl acetic acid.
Hydroxyphenyl acetic acid is a downstream metabolite of tyrosine
that results from its breakdown. In the early stages of Parkinson’s
disease, the loss of dopamnergic neurons in the substantia nigra
leads to reduced conversion of tyrosine into dopamine. As a result,
the levels of tyrosine or its metabolites may become dysregulated.
Studies suggest that alterations in tyrosine hydroxylase activity,
the enzyme responsible for converting tyrosine to L-DOPA, may
be detectable in early PD (Bogdanov et al., 2008; Hatano et al.,
2016). A reduction in enzyme activity could indicate the early
neurodegeneration process. Urinary and plasma metabolomic
studies have identified elevated or altered levels of tyrosine and its
metabolites in individuals with PD, which may occur even in the
early stages of the disease. Tyrosine metabolism generates reactive
oxygen species (ROS), contributing to oxidative stress, which is a
key feature in the pathogenesis of PD (Fedorova et al., 2021).

Early research on the variance in steroidogenesis metabolism
revealed that people with Parkinson’s disease (PD) had noticeably
greater levels of cortisol in their saliva and blood (Charlett et al.,
1998; Djamshidian et al., 2011; Hartmann et al., 1997). Stress-related
cortisol release may be able to pass across the blood-brain barrier
and bind to glucocorticoid receptors in the central nervous system.
Cortisol excretion in the urine is thought to be a sign of elevated
oxidative stress, which exacerbates dopamine cell degeneration in
Parkinson’s disease (PD) (Joergensen et al., 2011).

Isoleucine and leucine levels in PD patients’ urine are strongly
linked with their stage of the disease. Tremors, twitching, and
muscular atrophy may be caused by a deficiency in leucine and
isoleucine (Mally et al., 1997; Molina et al., 1997). Succinate
functions as a junction point for multiple metabolic pathways
and is involved in the production and removal of reactive
oxygen species (Tretter et al., 2016).

Similar metabolites were found elevated in serum and saliva
samples in PD patients (Kumari et al., 2020b). Patients with
Parkinson’s disease have been shown to have higher concentrations
of alanine, acetate, and trimethylamine N-oxide in both their serum
and saliva samples (Kumari et al., 2020b; Kumari et al., 2020c).
While alanine, acetate, and trimethylamine N-oxide content were
considerably higher in both serum and saliva samples in patients
with Parkinson’s disease (PD), phenylalanine, citrate, glutamine, and
isoleucine were shown to be differentially raised in urine and saliva
samples (Kumari et al., 2020b; Babu et al., 2018).

The PPI network for the selected 158 genes also exhibited highly
significant connection with the identified urinary biomarkers. Ten
hub genes with the highest interaction scores were identified within
the PPI network. These genes, particularly VPS35, VPS29, and
GAK, are central regulators of metabolic pathways that influence
PD progression. For instance, genes such as VPS35 and VPS29,
which regulate protein trafficking and degradation, may influence
the levels of excreted biomolecules detectable in urine. Similarly,
GAK and RAB29 are implicated in mitochondrial dysfunction,
which has been linked to urinary biomarker research in Parkinson’s
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disease. The strong correlation between these genetic hub genes
and urinary biomarkers suggests a genetic basis for the observed
metabolic alterations in PD which is a novel finding. The review
is one of the knowledge-enhancing chapters with few limitations.
This review is conducted on early and mid-stage IPD patients’
controlled studies, hence making it less applicable to advanced
stages of PD. Also, this review studied only urine based biomarkers,
although urine sampling and analysis is more convenient than
other methods of analysis. Small sample size and the incorporation
of 3 studies (Hemi Luan et al.) by the same author leading to
possibility of population overlapping and biased results are few
limitations of this study. Although, two of the studies (Luan et al.,
2015b; Luan et al., 2015c) had same patient population but not
acknowledged anywhere in text. Moreover, they used different
methods for sample analysis. As identification of metabolomics
and their interaction with drug compounds has been recognised
as a crucial part of drug repurposing. So, various advanced models
like Graph CPIs, Graph Contrasting learning, Regular Wave Graph
and heterogenous information network learning model can be
used in future research to address the clinical utility of identified
biomarkers, and to explore these gene-metabolite interactions to
develop targeted therapies, thereby improving early detection and
disease management strategies for PD (Zhao et al., 2025; Zhao et al.,
2024; Cui et al., 2025; Chen et al., 2023).

Conclusion

Our study found a total of 40 urinary biomarkers associated
with idiopathic early-onset PD. These metabolites are involved in
key metabolic pathways, such as phenylalanine and tryptophan
metabolism, fatty acid β-oxidation, and neurotransmitter synthesis,
all of which were found to be dysregulated in PD patients.
Importantly, a set of coremetabolites including acetyl phenylalanine,
kynurenine, and tyrosine (metabolises to hydroxyphenyl acetic
acid) were found to be consistently altered across multiple
studies, further supporting their role as reliable PD biomarkers.
Dysregulation in the genes can contribute to the altered
metabolite profiles, providing insight into the mechanistic
links between genetic variations and PD-related metabolic
changes. Understanding these gene-metabolite relationships
opens up new avenues for personalized medicine approaches,
where genetic and metabolomic profiling could guide more
tailored therapeutic strategies for PD patients. In conclusion,
our findings support the use of urine-based metabolomics as
a promising diagnostic tool in PD, while also demonstrating
the significant genetic underpinnings of the metabolic
alterations observed.
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