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repurposing for
NAFLD-associated
hepatocellular carcinoma using
machine learning integrated
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The incidence of non-alcoholic fatty liver disease (NAFLD), encompassing
the more severe non-alcoholic steatohepatitis (NASH), is rising alongside
the surges in diabetes and obesity. Increasing evidence indicates that
NASH is responsible for a significant share of idiopathic hepatocellular
carcinoma (HCC) cases, a fatal cancer with a 5-year survival rate below 22%.
Biomarkers can facilitate early screening andmonitoring of at-risk NAFLD/NASH
patients and assist in identifying potential drug candidates for treatment.
This study utilized an ensemble feature selection framework to analyze
transcriptomic data, identifying biomarker genes associated with the stage-
wise progression of NAFLD-related HCC. Seven machine learning algorithms
were assessed for disease stage classification. Twelve feature selection methods
including correlation-based techniques, mutual information-based methods,
and embedded techniques were utilized to rank the top genes as features,
through this approach, multiple feature selection methods were combined to
yieldmore robust features important in this disease progression. Cox regression-
based survival analysis was carried out to evaluate the biomarker potentiality of
these genes. Furthermore, multiphase drug repurposing strategy and molecular
docking were employed to identify potential drug candidates against these
biomarkers. Among the seven machine learning models initially evaluated,
DISCR resulted as the most accurate disease stage classifier. Ensemble feature
selection identified ten top genes, among which eight were recognized
as potential biomarkers based on survival analysis. These include genes
ABAT, ABCB11, MBTPS1, and ZFP1 mostly involved in alanine and glutamate
metabolism, butanoate metabolism, and ER protein processing. Through drug
repurposing, 81 candidate drugs were found to be effective against these
markers genes, with Diosmin, Esculin, Lapatinib, and Phenelzine as the best
candidates screened through molecular docking and MMGBSA. The consensus
derived from multiple methods enhances the accuracy of identifying relevant
robust biomarkers for NAFLD-associated HCC. The use of these biomarkers in
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a multiphase drug repurposing strategy highlights potential therapeutic options
for early intervention, which is essential to stop disease progression and
improve outcomes.

KEYWORDS

NAFLD, HCC, machine learning, ensemble feature selection, drug repurposing,
molecular docking

1 Introduction

The alarming rise in the incidence of non-alcoholic fatty liver
disease (NAFLD), triggered by obesity and the type 2 diabetes
mellitus (T2D) epidemic, has increased the concerns within the
healthcare system (Teng et al., 2023). NAFLD can progress to
non-alcoholic steatohepatitis (NASH), liver fibrosis and cirrhosis,
or even hepatocellular carcinoma (HCC), the most common
form of primary liver cancer. HCC is associated with a poor
prognosis, partly because it is often diagnosed at a late stage.
Furthermore, the lack of approved pharmaceutical treatments
specifically targetingNAFLD-inducedHCC (Zhang andYang, 2021)
necessitates the urgent need for targeted therapeutic interventions.
High-throughput omics technology has generated extensive gene
expression datasets, allowing diverse new approaches to improve
analysis and interpretation (Chen C. et al., 2023). The transition
from NAFLD to HCC follows a prolonged timeline of 5–15 years,
posing difficulties in conducting patient research (Straś et al., 2020).
This challenge can be addressed by integrating data from various
samples, though identifying key regulators of disease progression
remains difficult. Conventional methods analyze disease stages
separately, but merging these results often leads to issues like
overfitting, technical noise, and reduced robustness (Posekany et al.,
2011). These challenges can significantly impact the reliability
and generalizability of the results. Machine learning-based feature
selection has recently emerged as a solution to this problem.
Recently, amachine learning (ML)-based approach has been applied
to breast cancer prediction and classification by the detection of
malignant cells using models like XGBoost, logistic regression, K-
nearest neighbor, etc., (Chen H. et al., 2023). This kind of method
holds great potential for early diagnosis of cancer. The results of
the ML-based studies using imaging, such as lung cancer CT scans,
showedpromising results in identifying cancer subtypes (Nazir et al.,
2023). Biomarker selection for early detection using gene expression
data can be accomplished through robust feature selectionmethods,
which have recently been applied in breast cancer (Sarkar et al.,
2021), gastric cancer (Azari et al., 2023), lung and colon cancers
(Talukder et al., 2022), etc., In gene expression analysis, effective
feature selection techniques can pinpoint the most relevant and
unique genes or molecular characteristics (Barrera et al., 2007),
which facilitates the development of robust and easily interpretable
gene signature models. Ensemble feature selection is a recently
introduced approach, that enhances the robustness and accuracy
of selected features by combining the results of multiple feature
selection methods (Barrera et al., 2007; Bolón-Canedo and Alonso-
Betanzos, 2019). In the last few years, this approach has been
found to be effective in cancer gene expression data analysis, and

in the identification of key genes as the most relevant features
(Koul and Manvi, 2020; Khatun et al., 2023). In this study, after
selecting and preprocessing microarray datasets, seven machine-
learning techniques such as DISCR (Discriminant Analysis), NB
(Naive Bayes), RF (Random Forest), DT (Decision Tree), KNN
(K-Nearest Neighbors), SVM (Support Vector Machine), and
ANN (Artificial Neural Network) were applied for disease stage
classification. The method with the highest classification accuracy
was selected using a 10-fold cross-validation for further analysis.
Next, twelve feature selection strategies were utilized to identify
the most significant genes. Among these twelve techniques, CIFE
(Conditional Informative Feature Extraction), JMI(Joint Mutual
Information), and MIM(Mutual information maximization) were
based on mutual information, which selects features based on
their relevance and dependency on the target variable, aiming
to capture the most informative attributes for classification or
analysis purposes (Gao et al., 2018). The Kendall Tau, Pearson, and
Spearman methods selected the features based on their correlation
or association with the target variable, focusing on measuring
the strength and direction of the relationship between variables
(El-Hashash and Shiekh, 2022). The other embedded methods,
LASSO (Least Absolute Shrinkage and Selection Operator), Ridge,
and gradient boosting utilize regularization techniques to penalize
the complexity of the model, encouraging simpler models that
generalize well to new data (Li Y. et al., 2022; Bhandari et al.,
2022). These methods aim to prevent overfitting by constraining
the coefficients of the features, thus promoting sparsity and
improving the model’s interpretability and predictive performance.
This study enhances feature selection, model regularization, and
generalization by integrating various methods. This ensemble
approach leverages diverse insights enhancing robustness and
stability while revealing complex data patterns. (Castellanos-
Garzón et al., 2017). This approach of feature selection helps in
identifying the key genes as features that are subsequently evaluated
for their prognostic potential as biomarkers in HCC applying
the Cox proportional hazards model (Mohammed et al., 2021).
Furthermore, it incorporates a biomarker-driven drug repurposing
approach using identified biomarker genes as targets to screen out
suitable drug candidates from the library of existing drugs. Drug
repurposing has gained attention identification of novel uses of
existing drugs, either through new combinations or in the treatment
of different diseases (Krishnamurthy et al., 2022). Potential drugs
were identified using connectivity map analysis, text mining, drug-
gene interaction data, etc. These drug candidates were further
assessed through molecular docking to evaluate their binding
affinity with target proteins and to explore the therapeutic potential
of these existing drugs against new targets.
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FIGURE 1
Schematic diagram depicting methodology.

2 Materials and methods

2.1 Data collection and preparation

The microarray data and clinical information for Control,
Healthy obese, NAFLD, NASH, and HCC samples were obtained
from the NCBI Gene Expression Omnibus (GEO) (Barrett et al.,
2013) and Array Express (Parkinson et al., 2007) database.
This dataset comprised a total of 132 samples with GEO
accession numbers: GSE48452 with platform ID - GPL11532
(Affymetrix Human Gene 1.1 ST Array); GSE25097 with platform
ID - GPL10687 (Rosetta/Merck Human RSTA Affymetrix 1.0
microarray). Details of datasets and respective sample information
were provided as Supplementary Material S1. Following the
merging of data, the R package “imputeTS” (version 3.3) (Moritz
and Bartz-Beielstein, 2017) was utilized to impute missing values.
This imputation process was only carried out on less than 5%
of randomly missing values. Afterward, the “Limma” (version
3.57.3) package (Ritchie et al., 2015) was utilized to remove
batch effects specific to each study, and data normalization was
performed utilizing the robust multichip averaging (RMA) method
(Bioconductor, 2023). Figure 1 presents a schematic diagram
representing the methodology.

2.2 Disease state classification using
machine learning

The entire dataset, encompassing samples from various disease
stages ranging from NAFLD to HCC, is utilized to identify a
suitable machine-learning technique with the primary objective
of effectively categorizing the data into distinct groups based
on disease stages. Each of the following machine learning (ML)

models is applied individually to the entire pre-processed dataset
using 10-fold cross-validation: DISCR (Discriminant Analysis), NB
(Naive Bayes), RF (Random Forest), DT (Decision Tree), KNN (K-
Nearest Neighbors), SVM (Support Vector Machine), and ANN
(Artificial Neural Network). This procedure guarantees a thorough
assessment and reduces the risk of overfitting by training and
verifying the models on distinct subsets of the data. Through this
screening, the ML technique with the highest accuracy values
and other pertinent performance indicators is chosen for further
investigation.

2.3 Ensemble feature selection approach
for identification of genes involved in
disease progression

Twelve different feature selection methods are applied to the
entire dataset. Each of these methods individually selects subsets of
genes interactively, comprising varying quantities, such as the top
20, 30, 40, 50, and beyond. Subsequently, each subset generated by
the different methods is utilized in the chosen machine learning
technique, employing 10-fold cross-validation to calculate the
classification accuracy. This guarantees that the performance of the
chosen characteristics is comprehensively assessed. Furthermore,
each feature selection method yields a subset of genes based on
the highest level of accuracy attained. This technique enables the
identification of the most pertinent genes that make a major
contribution to classification, ensuring a strong and dependable
selection of features. Among the feature selection techniques used,
the ReliefF algorithm evaluates each feature’s significance based on
its ability to distinguish between similar cases. It iteratively selects
a sample, comparing it with the nearest samples from both the
same and different classes. Features that effectively differentiate
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between classes receive higher weights, while those that distinguish
within the same class receive lower weights (Urbanowicz et al.,
2018). The process is repeated across multiple instances to reliably
estimate feature importance, making ReliefF effective for noisy,
multi-class datasets. The basic equation for updating the feature
weights in ReliefF is:

W[A] =W[A] − 1
m

k

∑
i=1

diff(A,R,Hiti) +
1
m
∑

C≠class(R)

P(C)
1− P(class(R))

k

∑
i=1

diff(A,R,MissCi )

Where,
W [A] This represents the updated weight or importance score

of feature AAA.
W[A] on the right-hand side: This term indicates the current

weight of feature A.
1
m

k
∑
i=1

diff(A,R,Hiti)This part calculates the average difference in
feature A values between the Randomly decided on instance R and
its K nearest neighbors that belong to the same class as R (denoted
as Hiti).

Cramér’s V is a filter-based technique that measures the
correlation between two nominal variables. It involves creating
a contingency table to compute the Chi-Squared statistic,
which quantifies the strength of the association between the
variables (Kearney, 2017). To account for the bias, the Chi-Squared
estimate is reformulated as a Phi-Squared value. The degrees of
freedom are subtracted from both the row and column counts to
obtain the denominator of the Cramér’s V formula. Taking the
square root of the quotient resulting from dividing the corrected
Phi-Squared value by the denominator yields Cramér’s V in the
range from 0 for no association up to 1 for the perfect association.
This measure helps determine categorical data as it offers an idea
of the strength with which variables are correlated without the
assumption of any linear relation.

Chi-Squared Statistic (χ2):

χ2 =∑
(Oi −Ei)2

Ei
where Oi is the observed frequency and Ei is the expected frequency.

Phi-Squared (ϕ2):

ϕ2 =
χ2

n
where n is the total number of observations.

Corrected Phi-Squared (ϕ2
corr):

ϕ2
corr =max(0,ϕ2 −

(k− 1)(r− 1)
n− 1

)

where r and k are the number of rows and columns in the
contingency table.

Corrected Row and Column Counts

rcorr = r−
(r− 1)2

n− 1

kcorr = k−
(k− 1)2

n− 1

Denominator:

denominator =min(kcorr − 1, rcorr − 1)

Cramér’s V:

V = √
ϕ2
corr

denominator

Pearson’s correlation coefficient (r) quantifies the strength and
direction of a linear relationship between two variables (Nasir et al.,
2020), ranging from −1 to +1. A value of +1 indicates a perfect
positive correlation, where both variables increase together; −1
signifies a perfect negative correlation, where one variable increases
as the other decreases; and 0 denotes no linear correlation.

Pearson’s correlation coefficient (r) is defined as:

r =
n(∑xy) − (∑x)(∑y)

√[n∑x2 − (∑x)2][n∑y2 − (∑y)2]

Where:

• n is the number of data points.
• x and y are the two variables being compared.
• ∑xy is the sum of the product of x and y.
• ∑x is the sum of x.
• ∑y is the sum of y.
• ∑x2 is the sum of the squares of x.
• ∑y2 is the sum of the squares of y.

Kendall’s Tau is a non-parametricmeasure that quantifies the ordinal
correlation between two variables (Valencia et al., 2019), focusing
on the direction andmagnitude of their association.While Pearson’s
correlation coefficient measures only linear relationships, Kendall’s
Tau is a measure that is very useful in cases where observations
do not meet the assumptions of normality or linearity. It counts
concordant and discordant pairs of observations for its calculation.
Values range from −1 (perfect inverse correlation) up to +1 for
perfect direct correlation. A value of 0 indicates no association.

Kendall’s Tau (τ) can be defined as:

τ =
(Numberofconcordantpairs) − (Numberofdiscordantpairs)

(
n

2
)

Where:

• Concordant pairs: For any two pairs of observations (xi,yi) and
(xj,yj) the pairs are concordant if the order of the elements is
the same, i.e., (xi < xj andyi < yj)or(xi > xj andyi > yj).

• Discordant pairs: For any two pairs of observations (xi,yi) and
(xj,yj), the pairs are discordant if the order of the elements is
opposite, i.e., (xi < xj andyi > yj)or(xi > xj andyi < yj).

• (
n

2
) is the total number of pairs, calculated as n(n−1)

2
.

Another method, Spearman’s rank correlation coefficient (ρ) is a
statistical measure that quantifies the degree and direction of the
relationship between two variables that have been ranked (Schober
and Schwarte, 2018). It measures how well the relationship
between two variables can be represented as a monotonic
function. This means that the Spearman rank correlation

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1522401
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Ghosh et al. 10.3389/fbinf.2025.1522401

varies from Pearson’s correlation, as it considers the variables’
ranks while trying to figure out their relationship and not
the variable’s actual values. Hence, it is applicable in assessing
ordinal data that deviate from the assumptions of linearity and
normalcy.

Spearman’s rank correlation coefficient (ρ) is defined as:

ρ = 1−
6∑d2i

n(n2 − 1)

Where:

• n is the number of data points.
• di is the difference between the ranks of corresponding
variables.

On the other hand, Conditional Infomax Feature Extraction
(CIFE) selects features by maximizing a score J(S) (Lin and
Tang, 2006). Features are incrementally added to the set S based
on their significance and redundancy relative to already chosen
features. In this way, the algorithm continues till it gets some
pre-defined features or threshold scores. CIFE intends to offer
an informative feature set that is concise in length, by managing
relevance and redundancy towards better facilitation of subsequent
ML models.

The CIFE can be expressed as

J(S) = ∑
Xi∈S

I(Xi;Y) − β ∑
Xi,Xj∈S

I(Xi;Xj ∣ Y)

Where:

• S is the set of selected features.
• I(Xi;Y) is the mutual information between feature Xi and the
target variable Y.

• I(Xi;Xj ∣ Y) is the conditional mutual information between
features Xi and Xj given the target variable Y.

• β is a parameter that controls the trade-off between relevance
and redundancy.

Among mutual information-based feature selection methods,
the Joint Mutual Information (JMI) criterion is used to identify
the most relevant features for a specific task. JMI selects
features based on their high mutual information with the target
variable while considering the combined information among
selected features (Bennasar et al., 2015). This way of approaching
features ensures that they are individually relevant and also
collectively informative to reduce redundancy while enhancing
the predictive capability of the model. JMI helps build an efficient
and effective feature set, resulting in balancing relevance with
redundancy.

The JMI criterion can be defined as:

J(Xi;Y,S) = I(Xi;Y) + ∑
Xj∈S

I(Xi;Xj ∣ Y)

Where:

• I(Xi;Y) is the mutual information between feature Xi and the
target variable Y.

• I(Xi;Xj ∣ Y) is the conditional mutual information between
feature Xi and an already-selected feature Xj given the target
variable Y.

• S is the set of already selected features.

The goal is to maximize J(Xi;Y,S) to select features that contribute
themost information about the target variable while considering the
redundancy with already selected features.

Another mutual information-based method, The Maximum
Relevance (MIM) criterion is a technique for selecting features that
have themostmutual informationwith the target variable (Che et al.,
2017). The main objective of MIM is to identify those attributes
with the highest relevance to predict the outcome, such that
it improves the performance of the machine learning models.
This technique lessens the dimensionality of the data without
losing the most informative attributes. MIM especially comes
in handy in applications where the dataset comprises several
features, and the identification of the most relevant ones can greatly
enhance model efficiency and accuracy. The MIM criterion can be
mathematically defined as:

MIM(Xi,Y) = I(Xi;Y)

Where:

• I(Xi; Y) is the mutual information between feature Xi and the
target variable Y.

Mutual information I(X; Y) measures the amount of information
obtained about one variable through another variable and
is defined as:

I(Xi;Y) = ∑
xi∈Xi

∑
y∈Y

p(xi,y) log
p(xi,y)
p(xi)p(y)

where:

• p(x,y) is the joint probability distribution function of X and Y.
• p(x) and p(y) are themarginal probability distribution functions
of X and Y respectively.

Normalized Mutual Information Feature Selection (NMIFS) is a
feature selection technique that aims to find and rank features
based on their normalized mutual information in relation to
the target variable (Estévez et al., 2009). Mutual information
quantifies interdependence between variables, showing how much
one can inform about another. By standardizing this metric, NMIFS
accounts for variable scales and distributions, helping to identify
the most informative features for predicting the target variable
and enhancing the effectiveness and precision of machine learning
models. The NMIFS score for a feature Xi with respect to the target
variable Y can be defined as:

NMIFS(Xi,Y) =
I(Xi;Y)

H(Xi) +H(Y)

Where:

• I(Xi; Y) is the mutual information between feature Xi and the
target variable Y.
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• H(Xi) is the entropy of the feature (Xi).
• H(Y) is the entropy of the target variable Y.

Lasso, or Least Absolute Shrinkage and Selection Operator, is
a regularization technique in linear regression that enhances
feature selection and controls model complexity (Muthukrishnan
and Rohini, 2017). By adding a penalty based on the absolute
values of coefficients, Lasso reduces the coefficients of less
important features to zero, promoting simpler models and
avoiding overfitting. It is widely used in data science and
machine learning to streamline models and focus on the most
relevant features. The objective function minimized by Lasso
is given by:

min
β
{ 1
2N

N

∑
i=1
(yi −

p

∑
j=1

xijβj)
2

+ α
p

∑
j=1
|βj|}

Where:

• N is the number of samples.
• p is the number of features.
• yi is the target variable for sample i.
• xij is the value of feature j for sample i.
• βj is the coefficient of feature j.
• α is the regularization parameter that controls the strength of
the penalty term ∑pj=1|βj|.

Ridge regression is a regularization method employed in
linear regression models to mitigate overfitting and enhance
generalization (Paul and Drineas, 2016). Ridge regression employs
a (L2) penalty on the regression coefficients, in contrast to
Lasso regression which utilizes a (L1) penalty. The penalty
term is determined by a regularization parameter (α), which
determines the trade-off between accurately fitting the data
and punishing big coefficients.

min
β
{ 1
2N

N

∑
i=1
(yi −

p

∑
j=1

xijβj)
2

+ α
p

∑
j=1

β2j}

N is the number of samples.
p is the number of features.
yi is the target variable for sample i.
xij is the value of feature j e for sample i.
βj is the coefficient of feature j.
α is the regularization parameter that controls the strength of the

penalty term ∑pj=1β
2
j

Gradient Boosting is an advanced ensemble learning method
that iteratively combines decision trees. Unlike Random Forests,
which build trees independently, Gradient Boosting constructs
trees sequentially, with each tree correcting errors made by its
predecessors (Otchere et al., 2022). It uses feature importance
to identify significant features, revealing how much each feature
contributes to accurate predictions. High feature importances
allow for more contribution toward the overall impact of model
performance while allowing some form of implicit feature selection,
especially with complex datasets, making the model perform
better and be more interpretable. The method includes several
steps, such as -

Initialization of the model with a Constant:
Initialization of the model with a constant value, typically the

mean of the target values for a regression problem. This can be
represented as: F0(x) = argmin

c
∑ni=1L(yi,c)

Where L(y,c) is the loss function, yi are the true target values,
and c is a constant.

Iterative tree building:
Form = 1 toM (whereM is the number of trees to be built):

a. Computing the Pseudo-Residuals: rim = − [
∂L(yi,Fm−1(xi))

∂Fm−1(xi)
]

where rim are the pseudo-residuals for each instance i at iteration
m, and Fm−1(x) is the prediction from the previous iteration.

b. Fitting a Base Learner: Fit a decision tree (base learner) hm(x)
c. to the pseudo-residuals rim:hm = argmin

h
∑ni=1(rim − h(xi))

2

d. Updating the Model: Updating the model by adding the newly
fitted tree, scaled by a learning rate η:Fm(x) = Fm−1(x) + ηhm(x)

Combining the Trees:
The final model F(x) after M iterations is: F(x) = F0(x) +
∑Mm=1ηhm(x)

Next, Feature selection in Gradient Boosting is typically
achieved by examining feature importances derived from themodel.
Each feature’s importance is calculated based on its contribution to
reducing the model’s prediction error. Feature importance can be
computed as follows:

• Calculating the total reduction in the loss function due to splits
involving each feature across all trees.

• Aggregating these reductions to assign an importance score to
each feature.

Mathematically, the importance of the feature j can be
represented as:

Importance(j) =
M

∑
m=1

Tm

∑
t=1
ΔLj,mt

Where, Tm is the number of nodes in the tree, and is the
reduction in the loss function due to the split on feature j at node
t in treem.

2.4 Categorization of features using an
ensemble of different subsets of features

The genes obtained from different feature selection approaches
are used as subsets. These subsets were then used to create an
ensemble by categorizing the genes by assigning values 12 to
1. A gene is classified as 12 if it appears in all twelve subsets,
11 if it is present in eleven of the twelve subsets, and so on.
Subsequently, genes that fell into at least 6 subsets were selected
for Cox regression-based survival analysis. This decision guarantees
that aminimumof 50%of the feature selectionmethodswill support
the inclusion of these genes, hence strengthening the reliability
subsequent to analysis.
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2.5 GO and KEGG enrichment analysis

The ensemble approach yielded a consolidated list of genes, then
annotated using DAVID tool version 6.8 (https://david.ncifcrf.gov/)
(Sherman et al., 2022). The criteria for conducting Gene Ontology
(GO) and KEGG pathway enrichment analysis were set as a p-value
below 0.05 and a false discovery rate (FDR) below 0.05. The GO
enrichment analysis was utilized to ascertain the biological activities
of these genes. GO ontologies are divided into three categories:
molecular function (MF), cellular component (CC), and biological
process (BP). The KEGG pathway enrichment analysis identified
metabolic pathways that showed a significant enrichment of genes,
as compared to the total genome background. The SRPlot online
toolkit (http://www.bioinformatics.com.cn/srplot) (Tang et al.,
2023) was used to display the findings of the Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment studies.

2.6 Survival analysis

Survival analysis was performed using the TCGA-LIHC (Liver
Hepatocellular Carcinoma) dataset to investigate the association
between the expression level of the genes and overall survival.
First, clinical data and gene expression data were retrieved
from the TCGA-LIHC cohort using the “TCGAbiolinks” package
(Colaprico et al., 2016). The gene expression data is preprocessed,
and a Variance Stabilizing Transformation (VST) is applied using
DESeq2 (Love et al., 2014). The expression levels of the genes
were extracted, and a median value was calculated to stratify
the samples into “HIGH” and “LOW” expression groups. Next,
the clinical data is merged with the gene expression data, and a
Cox proportional hazards regression model is fitted to estimate
the hazard ratio (HR) and its 95% confidence interval (CI)
using the survival package (Therneau, 2021). Finally, a Kaplan-
Meier survival curve is plotted using the “survminer” package
(Pawar et al., 2022).

2.7 Screening of possible drug candidates
for repurposing

The biomarkers identified through survival analysis were
used as input in two separate databases i.e., DGIdb (The Drug
Gene Interaction Database) (Cannon et al., 2024) and Drug
repurposing encyclopedia (Li et al., 2023). Additionally, clue.io
COMMAND app web tool (Xie et al., 2022) was utilized to screen
potential drug candidates. The DGIdb database uses a combination
of expert curation and text-mining approaches to mine drug-
gene interactions mined from DrugBank, PharmGKB, ChEMBL,
Drug Target Commons, and others. On the other hand, The
Drug Repurposing Encyclopedia utilizes the Molecular Signatures
Database (MSigDB, https://www.gsea-msigdb.org/gsea/msigdb/),
and consensus drug profiles from DREIMT (http://www.dreimt.
org/), which are derived from the Connectivity Map (CMap)
LINCS gene expression dataset (https://clue.io/). The command
app also utilizes connectivity map (CMap) analysis to screen
possible drugs.

2.8 Molecular docking and MMGBSA
analysis

2.8.1 Structure retrieval
The potential drugs screened through drug repurposing were

used as ligands in the docking analysis against the targets implicated
in disease progression. The chemical structures of the drugs were
obtained from the PubChem database (https://pubchem.ncbi.nlm.
nih.gov/) (Wang et al., 2009). The structures of the targets, namely,
ABAT (PDB ID: 1OHW), ABCB11 (PDB ID: 6LRO), C8B (PDB
ID: 3OJY), and FBX23 (PDB ID: 416J), were obtained from the
RCSB database (https://www.rcsb.org/) (Deshpande et al., 2005)
in PDB format. The RCSB-PDB database (https://www.rcsb.org/)
(Deshpande et al., 2005) lacked monomeric structures for the
proteins APOF, CENPV, MBTPS1, and ZFP1.Therefore, the protein
sequences were obtained from the NCBI database, and a BLAST
search was conducted in the SWISS-MODEL template library
to identify structurally comparable homologous structures. The
structures exhibiting similarity were subsequently acquired via the
SWISS-MODEL tool (Kiefer et al., 2009).

2.8.2 Protein and ligand preparation
The proteins were prepared using the Schrödinger software

(Maestro Version 12.5.139, Schrödinger, LLC, New York) with the
OPLS3 force field (Harder et al., 2016) to ensure precise depiction.
Similarly, the ligands were produced using the OPLS3 force field in
LigPrep (Maestro Version 12.5.139, Schrödinger, LLC, New York).
This preparatory step aimed to ensure that the docking analysis was
consistent and reliable.

2.8.3 Docking procedure
Before docking analysis, receptor grids were created for each

protein using Glide (Maestro Version 12.5.139, Schrödinger, LLC,
New York) to ensure precise accommodation. The grids were
constructed with accurate coordinates based on binding pocket
predictions from PrankWeb (https://prankweb.cz/) (Jendele et al.,
2019). After generating the grids, the docking scores were calculated
systematically using Glide’s Extra-precision (XP) docking model.
The scores provided measurable data on the binding affinities
between each ligand and its respective protein target.

2.8.4 Binding energy calculations using
Prime/MM GBSA analysis

The binding free energies of the protein-ligand complex are
evaluated using theMolecularMechanics-Generalized Born Surface
Area (MM-GBSA) approach, implemented in the Prime module of
the Schrödinger suite (Maestro Version 12.5.139, Schrödinger, LLC,
New York). The calculations utilize the OPLS 2005 force field and
the VSGB solvation model for accurate energy estimations.

3 Results

3.1 Key features selected by the ensemble
feature selection approach

After data preparation, seven well-known machine learning
techniques such as DISCR, NB, RF, DT, KNN, SVM, and ANN, were
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FIGURE 2
Box plot comparing the performance of different classifiers in terms of Accuracy (green) and F1 Score (yellow).

tested on the entire dataset. Figure 2 illustrates the accuracy scores of
these machine learning techniques, each conducted independently
on the whole preprocessed dataset using 10-fold cross-validation.
Based on the accuracy values, DISCR outperformed other machine
learning techniques, achieving the highest accuracy score of 0.90.

After selecting DISCR as the optimal classification method,
twelve feature selection models were applied to identify the most
significant gene subsets. These models included ReliefF, Cramér’s
V, Kendall’s Tau, Pearson’s correlation, Spearman’s correlation
coefficient, CIFE, JMI,MIM,NMIFS, LASSO, RIDGE, andGradient
Boosting. Iteratively, each of the twelve methods separately selects
different subsets of genes like top 30, 40, 50, and so on. DISCR
with 10-fold cross-validation is used for each subset of the
different methods separately to check the classification accuracy.
The accuracy details for different subsets of the genes, such as
30, 40, 50 to 150 genes, are reported in Table 1. Out of all the
filter-based strategies, Relief F achieved the greatest accuracy of
0.70297 using a set of 30 characteristics. Similarly, the accuracy
reached by Cramér’s V, Kendall Tau, Pearson’s correlation, and
Spearman’s correlation coefficientwas 0.623762, 0.683168, 0.722772,
and 0.673267, respectively. These accuracies were obtained using
40, 20, 20, and 10 features. Among the approaches that use
mutual information, CIFE, JMI, MIM, and NMIFS achieved
accuracies of 0.643564, 0.752475, 0.475248, and 0.712871 using
40, 30, 70, and 20 features, respectively. Within the set of
embedded methods, the LASSO algorithm achieved the highest
accuracy score of 1 while using 40 features. Ridge and elastic-
net algorithms achieved an accuracy of 0.752475 and 0.712871,
respectively, using a total of 30 features. Figure 3 illustrates the
performance matrices of different feature selection models (A-D)
(Performance metrics for different feature selection models (E-L)
were provided as Supplementary Material S2).

The subsets of genes obtained from different feature selection
approaches are subsequently merged to create an ensemble
set of genes. These genes are then categorized from 12 to 1
using a consensus approach with those scoring at least 6 being
considered as most important features. Through this ensemble
approach a set of ten genes were identified. These genes include
C8B (Complement C8 Beta Chain), APOF (Apolipoprotein F),
FBXL3 (F-Box and Leucine Rich Repeat Protein 3), ABAT (4-
Aminobutyrate Aminotransferase), ZFP1 (ZFP1 Zinc Finger
Protein), MBTPS1(Membrane Bound Transcription Factor
Peptidase, Site 1), CENPV (Centromere Protein V), METTL23
(Methyltransferase 23, Arginine), RPL9 (Ribosomal Protein L9),
and ABCB11 (ATP Binding Cassette Subfamily B Member 11).

3.2 Evaluating the biomarker potential
through survival analysis

Kaplan-Meier survival analysis was used to evaluate the
predicted survival probability over time in liver cancer patients,
comparing normal and HCC samples based on the expression levels
of key genes identified through an ensemble approach. Out of the
ten identified genes, eight genes were found to have the worst overall
survival rate for HCC. The identified genes were ABAT (HR: 1.69),
C8B (HR: 1.69), FBXL3 (HR: 1.43), ZFP1 (HR: 1.35), ABCB11(HR:
1.33),MBTPS1(HR: 1.21), CENPV (HR: 1.2) and APOF (HR: 1.18).
In the case of ABAT gene, the average hazard ratio stands at
1.69. This suggests that individuals with high gene expression face
a 69% elevated risk of death compared to those with low gene
expression, regardless of the circumstance as depicted in Figure 4.
Similarly, for C8B and FBXL3, high expression corresponds to a
69% and 43% increased risk of death, respectively, in comparison to
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FIGURE 3
Performance metrics for different feature selection models, (A) Relief F, (B) Cammers V, (C) Kendall Tau, and (D) Pearson Correlation. Metrics for the
rest of the feature selection models (E-L) were provided as supplementary file 2. Here X-axis represents the numbers of features, and the Y-axis
represents performance metrics.

scenarios with low expression of these genes. HR value greater than
1 indicates a higher hazard rate in the reference group compared to
the comparison group, suggesting that genes with higher expression
in the comparison group are associated with an increased risk of
death. Therefore, these genes could serve as predictive markers for
poor prognosis. Survival analysis results of the rest of the genes are
provided in Supplementary Material S3.

3.3 GO term enrichment analyses and
KEGG pathway analyses

The gene ontology analysis using the ten identified genes
from feature selection and based on the selected identifier -
“OFFICIAL GENE SYMBOL,” and p-value < 0.05 and FDR <0.05
cut-offs yielded significant GO terms, depicted in Figure 5, for
the marker genes. The enriched GO terms related to biological
processes found to be negative regulation of gamma-aminobutyric
acid secretion (GO:0014053), histone H3-R17 methylation
(GO:0034971), gamma-aminobutyric acid biosynthetic process
(GO:0009449), positive regulation of catecholamine metabolic
process (GO:0045915), regulation of cholesterol biosynthetic
process (GO:0045540), regulation of sterol biosynthetic process
(GO:0106118), etc. The results suggest the involvement of

metabolism and epigenetic processes, indicating dynamic changes
in the disease progression. The top GO terms associated with
cellular components terms identified as membrane attack complex
(GO:0005579), low-density lipoprotein particle (GO:0034362), pore
complex (GO:0046930), plasma lipoprotein particle (GO:0034358),
etc; suggesting the involvement of membrane structure changes,
lipid transport, etc, that are key characteristics of changes
due to lipid accumulation and oxidative damage in hepatic
cells in cellular dysfunction. The GO terms associated with
molecular functions are histone-arginine N-methyltransferase
activity (GO:0008469), carbon-sulfur lyase activity (GO:0016846),
cholesterol binding (GO:0015485), pyridoxal phosphate
binding (GO:0030170), etc., indicating lipid interaction and
metabolic processes as important factors in this disease
progression.

The genes were also subjected to KEGG pathway analysis to
determine their association with their corresponding biological
pathways. A total of 13 pathways-related KEGG terms were
obtained from the database. The criteria of p-value less than
0.05 and FDR less than 0.05 were used for analysis. The
top enriched pathways and the respective gene counts are
depicted in Figure 6. The KEGG analysis results showed that the
genes are enriched inButanoatemetabolism (hsa00650), Propanoate
metabolism (hsa00640), Alanine aspartate and glutamate
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FIGURE 4
Survival curve analysis results of three hub genes (A)- ABAT, (B)- C8B, (C)- FBXL3 and (D)- ZFP1. X-axis represents time in months and Y-axis represents
denotes survival probability, survival curve for other genes (E-J) are provided in supplementary file 3.

metabolism (hsa00250), Complement and coagulation cascades
(hsa04610), Protein processing in the endoplasmic reticulum
(hsa04141), etc.

3.4 Multiphase drug repurposing strategy
based on identified biomarkers

The integrated approach of drug repurposing, which utilized
connectivity map analysis and drug-gene interaction text-mining,
etc, facilitated the creation of a library of potential repurposed

drugs. This resulted in the identification of 81 potential candidate
drugs. All these candidates have been utilized for molecular
docking to analyze further interactions (details of the drugs
are given in Supplementary Material S4). Among these 81 drugs,
DGIdb (The Drug Gene Interaction Database) based screening
identified a total of 19 drugs. The drugs with the highest interaction
scores (IS) were Vigabatrin (IS- 11.79601078), Divalproex sodium
(IS- 8.847008084), and Pyruvic Acid (IS-5.89800539). Screening
using the Drug Repurposing Encyclopedia (DRE) database
identified a total of 55 drugs, with Scopolamine (Enrichment
score (ES) - 0.973), Amiloride (ES - 0.971), Damnacanthal
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FIGURE 5
The results of the Gene Ontology (GO) enrichment analysis, visualized
through a bubble chart, (A)-GO terms related to Biological Processes,
(B)-GO terms associated with Cellular Components, and (C)-GO terms
related to Molecular Functions. Each bubble on the Y-axis represents a
different GO term, while the X-axis displays the enrichment score. The
size of each bubble corresponds to the gene counts associated with
the term. The colour of the bubbles reflects the P-value for each GO
term, with the intensity of red indicating higher corrected P-values.

(ES - 0.967), and Esculin (ES - 0.962) showing the highest
enrichment scores. In addition, the search conducted by the
Command app revealed a total of 6 drugs, including Glibenclamide,
Phenelzine, etc.

3.5 Drug-target interaction analysis
through molecular docking and MM-GBSA
calculations

Docking results showed good interaction between
ZFP1, C8B, MBPTS1, CENPV, ABCB11, and Diosmin
with docking scores of −11.6821 kcal/mol, −11.134 kcal/mol,
10.4712 kcal/mol, −10.2391 kcal/mol, and −9.85606 kcal/mol
respectively (Figures 7A–E). There are three hydrogen bonds
between ZFP1 and Diosmin at THR112, ASN116 and GLU133
positions (Figure 7A) and eight hydrogen bonds between C8B
and Diosmin at positions–ARG82, GLN65, CYS79, THR423,
ASP424, LEU259, TYR166 and TYR141 (Figure 7B). The hydrogen
bond interactions between MBPTS1 and Diosmin found at
VAL54, TRP556, MET353, ARG386, and ASN515 (Figure 7C)
and the interactions between CENPV and Diosmin included
Hydrogen bonds at HIS210, ARG225, SER254 positions and PI-
PI interactions at TYR561 and TRP256 positions (Figure 7D).
The details about the interactions between top protein-ligand
complexes are provided in Supplementary Material S5. ABAT and
Esculin with a docking score of −4.30418 kcal/mol (Figure 7H).
APOF and Lapatinib with a docking score of −6.90333 kcal/mol
(Figure 7G), indicating a strong interaction between the protein and
ligand. A satisfactory interaction has also been observed between
FBX23 and Phenelzine with a docking score of −6.30952 kcal/mol
(Figure 7F). The MM-GBSA analysis supported the docking
results, showing strong binding affinities. CENPV-Diosmin had
a binding free energy of −100.71 kcal/mol, with Van der Waals
and electrostatic contributions of −49.50 and −46.93 kcal/mol,
respectively. Similarly, C8B-Diosmin exhibited a binding free
energy of −74.58 kcal/mol, with Van der Waals and electrostatic
contributions of −37.40 and −52.24 kcal/mol (The detailed result
of MM-GBSA analysis of the top ligand-protein complexes were
provided as Supplementary Material S6). These results highlight
a significant binding affinity driven by a balanced interplay of
electrostatic, van der Waals, and lipophilic interactions.

4 Discussion

Identification of biomarkers associated with NAFLD-driven
HCC through conventional genomics-based methods is not an
easy task, as the disease progresses through several stages over
a prolonged period of time (Xu et al., 2023). The present work
highlights the implementation of machine learning methods over
conventional strategies in prognostic biomarker identification. The
selection of an appropriate classifier for disease stage classification
was the first step of this study, as different data types respond
differently to various classifiers (de Amorim et al., 2023). It is
essential to choose a classifier that is well-suited to the specific
characteristics of the data to achieve optimal performance. Factors
such as the distribution of the data, the presence of noise, and the
complexity of the relationships between features can all influence
the effectiveness of a given classifier (Saseendran et al., 2019). DISCR
emerged as themost appropriate classifier in this analysis, exhibiting
superior performance and reliability compared to other classifiers.
The advantage of DISCR is that it can model intricate decision
boundaries by discriminating between classes in a diverse set of data
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FIGURE 6
(A)- A chord plot represents pathways and genes’ relationship. The size of the pathway bubbles increases with the number of connected genes. (B)-
The left side displays a Sankey plot, illustrating the genes within each pathway. The right side features a dot plot, where the dot sizes represent the
number of genes, and the dot colours indicate P values.

(Meyer-Baese and Schmid, 2014). Consequently, it was chosen for
the subsequent steps of this study. Given that the primary objective
of this work is to identify the key genes involved in the stage-wise
progression of NAFLD to HCC, the main focus was on finding
genes that are consistently expressed across all stages of the disease.
While mutual information-based feature selection methods (such
as JMI, MIM, and NMIFS) can effectively capture dependencies
between variables, they also have potential disadvantages, such
as high computational complexity and sensitivity to noise. To
overcome these limitations, a variety of alternative feature selection
methodswere employed, including filter-basedmethods like ReliefF,
Cramér’s V, Kendall’s Tau, Pearson correlation, and Spearman

correlation coefficient, as well as embedded methods like LASSO,
Ridge regression, and gradient boosting techniques. These methods
help in addressing different aspects of feature selection. For
example, filter-based methods assess the individual importance of
each feature, without considering how they relate to each other
(Bellotti et al., 2014), while embedded methods integrate feature
selection into the model training process, simultaneously selecting
the most relevant features, enabling more flexible and refined
selection by considering how features interact with each other
and influence the target variable (Bouchlaghem et al., 2022). This
ensemble method enhances feature importance, improving model
performance and identifying a robust set of ten co-expressed
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FIGURE 7
(A) ZFP1 with Diosmin, (B) C8B with Diosmin, (C) MBTPS1 with
Diosmin, (D) CENPV with Diosmin, (E) ABCB11 with Diosmin, (F) FBXL3
with Phenelzine, (G) APOF with Lapatinib, and (H) ABAT with Esculin.

genes linked to disease progression. These genes include C8B,
APOF, FBXL3, ABAT, ZFP1, MBTPS1, CENPV, METTL23, RPL9,
and ABCB11. The pathway enrichment analysis results suggest
that these genes are primarily involved in various pathways,
including metabolism-related pathways such as Alanine, Aspartate,
and Glutamate Metabolism, Propanoate Metabolism, Butanoate
Metabolism, and Valine, Leucine, and Isoleucine Degradation.
They are also involved in protein processing pathways like protein
processing in the Endoplasmic Reticulum and Ribosome, as well
as inflammation and immunological pathways like Complement
and Coagulation Cascades and Systemic Lupus Erythematosus.
These results indicate the involvement of both protein and lipid
metabolism and inflammation in disease progression. Metabolic

events specifically protein and lipid metabolism as well as ER-
Mitochondrial dysregulation due to high metabolic stress is a long-
suspected event for NAFLD to HCC progression (Zheng et al.,
2023; Léveillé and Estall, 2019). Metabolic dysregulation in this
disease progression is likely linked to inflammation and oxidative
damage, which contribute to the onset of cirrhosis and the
eventual development of liver cancer. This significant involvement
of metabolism-related pathways also suggests that this evaluated
energy production is possibly required for the rapid growth
and division of cancer cells, a primary feature of cancer cells
(Phan et al., 2014). Furthermore, out of the ten identified genes,
eight genes ABAT, C8B, FBXL3, ZFP1, ABCB11, MBTPS1, CENPV,
and APOF showed a strong association with lower overall survival
rates in patients with HCC. The high hazard ratios (HR) for
these genes indicate that patients with higher expression levels of
these genes tend to have a poorer prognosis, such as a shorter
overall survival time.The ABAT gene encodes the 4-Aminobutyrate
Aminotransferase which is crucial for the catabolism of inhibitory
neurotransmitters like GABA-transaminase (Besse et al., 2015).
Altered expression of this gene has been observed in breast
cancer (Chen et al., 2019), and its involvement in tumorigenesis
and tumor immunity in HCC is a recent finding (Gao et al.,
2022). The C8B gene encodes the beta subunit of complement
complex 8 (Zhang Y. et al., 2021), which has recently been found
to have predictive potential in hepatocellular carcinoma (HCC)
development (Xiao et al., 2022). FBXL3 encodes for an F-box and
leucine-rich repeat protein 3, which plays a vital role in regulating
circadian rhythm (Fagiani et al., 2022). It works together with
CRY2 to degrade the C-MYC protein, which helps prevent tumor
growth (Huber et al., 2016b). FBXL3 has been previously reported
as an important cancer marker (Huber et al., 2016a). The ZFP1
gene encodes zinc finger motif proteins, which play a crucial
role in several transcriptional activation and repression processes
(Li X. et al., 2022). ABCB11 encodes the primary ABC transporter,
which is called the bile salt export pump (BSEP), in hepatic cells
(Sohail et al., 2021). Malfunctioning BSEP is particularly significant
in liver malignancies (Lagana et al., 2015).MBTPS1, which encodes
the Membrane-Bound Transcription Factor Peptidase protein, has
been implicated in the process of cancer cell proliferation (Hartal-
Benishay et al., 2022). CENPV encodes Centromere Protein V, a
vital component involved in the process of mitosis and exhibiting
significant upregulation in several cancer types (Zhang S. et al.,
2021).The APOF gene encodes Apolipoprotein F, which plays a role
in lipid metabolism by binding to LDL and VLDL (Deprince et al.,
2023). While its exact mechanism in HCC is not completely
understood, it has been shown to act as a tumor suppressor
and could be a promising target for therapeutic development
in HCC. Subsequently, as these genes were identified as key
modulators involved in this progression, they were further screened
as targets to identify potential drug candidates utilizing DGIdb,
Drug Repurposing Encyclopedia, and the COMMAND app. These
databases utilize several data sources including gene expression data
and approaches, such as expert curation, text-mining, etc to discover
possible therapeutic interventions. The resulting combined list of
81 potential drugs was further screened through molecular docking
and MM-GBSA analysis. The analysis revealed a strong interaction
between the drugDiosmin and targets such as ZFP1, C8B,MBPTS1,
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CENPV, and ABCB11, characterized by numerous hydrogen
bonds and pi-pi interactions. Diosmin is reported to have anti-
inflammatory, antioxidative, insulin-sensitizing, antimutagenic, and
antiulcer properties, and is widely being used for the improvement
of blood-related insufficiencies (Huwait andMobashir, 2022). ABAT
had a robust interaction with Esculin, whilst APOF and FBX23
demonstrated notable interactions with Lapatinib and Phenelzine,
respectively. Esculin is known to have anti-inflammatory properties
and is used in multiple disorders like arthritis, ulcerative colitis,
etc (Cai and Cai, 2023). Whereas, Lapatinib is reportedly used
in breast cancer treatment (Opdam et al., 2012) and Phenelzine
is a widely used drug in panic disorders, Chronic resistant
depression, etc (Blanco et al., 2010). Since there are no direct
medications available for idiopathic HCC, including those induced
by NAFLD, and given that the pathogenesis of non-idiopathic HCC
differs from idiopathic HCC, drug repurposing to target these
mechanisms can significantly reduce the development time and
cost of new treatments. This also ensures better patient outcomes
using already approved drugs with known safety profiles. These
findings indicate promising therapeutic paths that should be further
investigated in clinical settings by experts.

5 Conclusion

In conclusion, ensemble feature selection framework used in
this study improves the discrimination and stability of the final
selected features. Using an ensemble feature selection approach,
this study successfully identified key biomarkers, including ABAT,
C8B, FBXL3, and ZFP1, providing valuable insights into NAFLD to
HCC disease progression. A drug repurposing approach identified
therapeutic agents, including Diosmin, Esculin, and Lapatinib,
that were found to be effective against these marker genes. These
findings offer a strong foundation for future research and therapeutic
development in the treatment of NAFLD-mediated HCC. The
integration of biomarker prediction with drug repurposing could
enhance precision medicine approaches, paving the way for more
effective and targeted treatments.
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Glossary

NAFLD Non-Alcoholic Fatty Liver Disease

NASH Non-Alcoholic Steatohepatitis

HCC Hepatocellular Carcinoma

ML Machine Learning

SVM Support Vector Machine

ANN Artificial Neural Network

KNN k-Nearest Neighbors

DISCR Discriminant Analysis

RF Random Forest

DT Decision Tree

NB Naive Bayes

CIFE Conditional Informative Feature Extraction

JMI Joint Mutual Information

MIM Mutual Information Maximization/Maximum Relevance

LASSO Least Absolute Shrinkage and Selection Operator

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

ER Endoplasmic Reticulum

GEO Gene Expression Omnibus

NCBI National Center for Biotechnology Information

RMA Robust Multichip Averaging

RMR Relevant Mutual Redundancy

DISR Double Input Symmetrical Relevance

NMIFS Normalized Mutual Information Feature Selection

DAVID Database for Annotation, Visualization, and

Integrated Discovery

FDR False Discovery Rate

TCGA-LIHC The Cancer Genome AtlasLiver Hepatocellular Carcinoma

HR Hazard Ratio

CI Confidence Interval

DGIdb The Drug Gene Interaction Database

MSigDB Molecular Signatures Database

DREIMT Drug Response Element Interactions Modelling Tool

CMap Connectivity Map

PDB Protein Data Bank

RCSB Research Collaboratory for Structural Bioinformatics

BLAST Basic Local Alignment Search Tool

OPLS Optimized Potentials for Liquid Simulations
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