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How can we be sure that there is sufficient data for our model, such that
the predictions remain reliable on unseen data and the conclusions drawn
from the fitted model would not vary significantly when using a different
sample of the same size? We answer these and related questions through
a systematic approach that examines the data size and the corresponding
gains in accuracy. Assuming the sample data are drawn from a data pool
with no data drift, the law of large numbers ensures that a model converges
to its ground truth accuracy. Our approach provides a heuristic method for
investigating the speed of convergence with respect to the size of the data
sample. This relationship is estimated using sampling methods, which introduces
a variation in the convergence speed results across different runs. To stabilize
results—so that conclusions do not depend on the run—and extract the most
reliable information encoded in the available data regarding convergence
speed, the presented method automatically determines a sufficient
number of repetitions to reduce sampling deviations below a predefined
threshold, thereby ensuring the reliability of conclusions about the required
amount of data.

model reliability, data size estimation, stochastic convergence to ground truth
properties, stability of sampling properties, reliable alternative hypothesis formulation

Highlights

« We analyze the convergence speed of accuracies and uncertainties over data sample sizes
for ML and mechanistic models.

o We develope an algorithm that stabilized statistic properties of distributions determined
by repeated sampling.

o The approach is also applicable for estimating the data size at which test statistics exhibit
sufficiently low variability, enabling the formulation of reliable hypotheses that do not
depend on the concrete sampling.

1 Introduction

Assuming that measuring data is equivalent to randomly drawing samples from a data
pool, a key aspect is determining the size of a sample dataset that sufficiently represents
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the properties of the data pool. According to the law of large
numbers, model accuracy—or any other quantity, such as a test
statistic—computed on a sample dataset converges to its ground
truth value as the size of the data sample, which is used for model
generation or calculating a test statistic, increases.

In related work, an optimal model size is investigated for a
given dataset (Friedland et al., 2018). Moreover, how model size
and data size are supposed to scale for a given compute budget is
also analyzed (Hoffmann et al, 2022). Our investigation focuses
on the analysis of how the accuracy of a model increases when
the sample dataset increases while assuming a well-suited model
for each sample set size. Mapping the model accuracy against
the size of the dataset to estimate the dataset size at which a
desired accuracy is achieved is called the learning curve approach
and has already been explained in the following publications.
One can increase the sample data size and monitor the accuracy
of a trained model, and additionally monitor the spread of the
accuracy given several randomly chosen samples from a pool
for each sample size (Cortes et al., 1993; Morgan et al., 2003;
Mukherjee et al., 2003; Figueroa et al., 2012). The presented work
extends these works by introducing a mechanism that adaptively
chooses the number of randomly chosen samples automatically
for each sample size, thus stabilizing the statistical properties
of the accuracy distributions on training and test sets. If the
numbers for repetition are manually set too high, it might waste
computational resources. If they are set too low, the results of
the algorithm, such as the convergence speed and uncertainties,
might change across different runs. By providing tolerances for the
properties of the distributions, we directly control the allowable
uncertainty based on the use case and avoid manually performing
several runs to meet those tolerances. This approach is also
computationally efficient as we perform only as many repetitions
as needed to fulfill the required tolerances. The convergence of
the presented procedure is grounded in mathematical theorems
from probability theory. The convergence speed, which cannot
be directly derived from such theory, might be influenced by the
complexity of the dynamics generating the data, inherent noise
(including that introduced by the measurement process and its
inaccuracies), and model-specific factors such as the architecture
and the training/fitting method. The purpose of our work is to
provide a heuristic method, analogous to that of Mukherjee et al.
(2003), for analyzing the convergence speed of the model with
respect to accuracy as a function of sample size, its uncertainty
decay, and for enabling predictions of these quantities for larger
datasets; this method is extended with stabilized random sampling
to produce reliable estimations of additional data in an automated
and computationally cost-efficient manner. The overall benefit
of using learning curve analysis, particularly in a production
environment, is to obtain a model that meets certain quality and
reliability requirements in terms of accuracy. This approach allows
the prediction of expected accuracy and its associated uncertainty
on unseen data, providing an important tool for ensuring
quality.
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A useful application of the presented framework arises in
scenarios where data annotation in machine learning (ML)
or data measurement in life sciences is expensive, and thus,
the estimation of an optimal cost-to-reliability gain of a
model is of importance, along with balancing its ratio when
necessary.

We emphasize that the presented approach is not limited to
ML models but works for any model, such as a mechanistic
model (Mendoza and Xenarios, 2006; Breitenbach et al., 2021;
Breitenbach et al., 2022), which can be represented by a function
f mapping input variables x to output variables y. While in an
ML scenario, x represents the values of the input features, in
a mechanistic modeling scenario, x can be a vector of time,
optionally space, and values of external stimuli (Breitenbach et al.,
2019). In such a case, depending on the data model, y can
be a measured data point or a best value (e.g., the mean)
resulting from a repetition of the same experiment for the same
values of x (Raue et al., 2013; Raue et al, 2015). An example
of a mechanistic model is a system of ordinary differential
equations (ODEs) where the function f is generated by solving
the corresponding differential equations (Crouch et al., 2024). In
such a case, the parameters of the ODEs have been fitted to
the corresponding sample dataset such that x and y are best fit
by f. These parameters are tested on the test set, consisting of
data not used during model generation, to obtain the accuracy of
the corresponding ODE solution f. Since time or space variables
are often fixed (i.e, when and where to measure), collecting
more data can be achieved by repeating the total experiment
(e.g., to obtain other best values for the same values of x),
measuring over a longer time horizon or at more time steps
or locations, or performing additional experiments with different
external influences represented by the external stimuli, such as
experiments with different intensities of the external influences or
different combinations. In that case, the part of x representing time
or space is fixed, and only the entries of x representing the external
stimuli change.

A concept related to estimating the amount of data is the power
estimation of a statistical test. The power of a statistical test is
the probability of rejecting the null hypothesis if the alternative
hypothesis is true. In the case of model fitting, the null hypothesis
is that the model fits the data; thus, the model deviations from the
data are only caused by random fluctuations, and a corresponding
chi-square test of goodness-of-fit is used to test this hypothesis.
The alternative hypothesis is that the model does not fit the
data, and a non-central chi-square distribution can be used to
calculate the probabilities of the observed chi-square values under
the assumption that the alternative hypothesis is true. However,
we need to know the expected deviation of the test statistic (how
non-central the chi-square distribution should be) in advance. This
estimation is carried out based on the available data and could
vary depending on the specific data sample. Consequently, our
proposed framework can also be used in a general manner to
estimate required data size at which the estimated parameters of
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a statistical method, such as those used in power analysis or in
determining the non-centrality parameter of a non-central chi-
square test, vary sufficiently little; this allows for the formulation of
a quantified alternative hypothesis with reliable parameter values,
indicating that these values are sufficiently close to the ground
truth values.

2 Methods

In this section, we present our method in Algorithm I,
which is based on Mukherjee et al. (2003), and explain it.
A Python implementation of Algorithm1 is provided in
Supplementary Material.

In the following paragraphs, we explain Algorithm 1. In the first
step, we set certain parameters. The parameter ¢ determines how a
data sample set is split into training and test sets. Analogous to the
ML scenarios, a mechanistic model is fit on the training dataset, and
its accuracy is also validated on the unseen test dataset. To obtain
increasing data subsets sampled from the data pool D, which is the
maximum data currently available, we randomly sample each subset
of D according to some percentage numbers defined in the ordered
set S where the percent values are in ascending order. The number
m provides the number of parallel samplings to test whether the
repetition numbers are large enough to ensure statistically stable
properties. The larger the values of m, the more certain we can be
that repeating the framework would yield the same result; however,
the computational effort increases accordingly. The minimum value
is 2 to compare at least two distributions of two different samples
for a given sample size. The number ° is the minimum number of
the repetitions of the sub-samplings drawn from D. This parameter
should be large enough to ensure that the tests in Step 2.(d) are
well-defined but not so large that the given tolerances are already
satisfied as this could result in unnecessary computational effort.
This second aspect is particularly important when model training is
computationally expensive. The parameter k,, is the corresponding
repetition number for each n. The number #, is set higher than
any number in S and represents the percentage of the data at which
reasonable model learning starts, i.e., the point where the test set
accuracy exceeds that of a model trained on a dataset where the
output data is shuffled before training. Please see the explanation of
the optional part of Step 2 later.

The main idea of Step 2 is that we consider the dataset
D as a pool from which we sample a corresponding neS
percentage of data. Sampling only a percentage simulates the
data collection process, where a measurement can be considered
a random process, selecting a particular data sample from the
ground truth data pool. Consequently, analogous to repeating the
measurement process, our randomly repeated sampling from D
results in different data subsets, which we use for model training and
testing. The repetition is supposed to reveal the variance between
different realizations of the sampling process. Depending on the
sampling and the corresponding varying statistical properties of
such randomly drawn sub-samplings, the model parameters and
accuracy might be different. We know from theoretical results
such as the Glivenko-Cantelli theorem or Donsker’s theorem
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Set the training and test data split @<c<1, an
ordered set S=:{seR|0<s<100}, k,—k?€eN, neS,
N>ng>100, and 2<meN.
For each neS, do:

Repeat until BREAK, but at least mk® times:

(a) Randomly draw n percent of samples from
the pool dataset D, where the number
of randomly drawn samples is denoted
by d,eN.
Split the randomly drawn data into

—
o
—

training data with cd, samples and test
data with (1-c)d, samples.
Generate the model and obtain the

—
o
~

accuracies on the training set a;rl’jEIR
and the test set a;i’jelR, where
ie{l,....,k,} and je{l,...,m} if no model

has been created yet for the

current 1i,j.

IF for each pe{tr,te} and for all
JiJoe{l,....my, ji<j,, the distributions
{0, 1iel ko) and a2, 1ie(l, .. k,}}
pass statistical similarity tests, then:

—
Q
—

BREAK the loop for the corresponding n.
ELSE:
Increase k,eN and continue the loop
getting the missing accuracies.
Optionally:
For each neS, if n<ng:
Repeat steps 2.(a) to 2.(d) with the
following changes:

e For Step 2.(c), generate a model on the
training data where the ground truth
output is shuffled, and obtain the
accuracies on the training set b;yriyje]R
and the test set b;f‘i,je]R, ie{l,....k,},
and je{1,....m} if no model
has been created yet for
current 1,j.

e Step 2.(d) is analog.

If fars 1 i€l k) and {bfS 1ie{l,... ko)) are
significantly distinct based on a
statistical test for all je{l,...m} and the
model on the non-shuffled data is more
accurate, set ng«n.
For training and test sets, pef{tr,te}, fit a
function fP:R—R, dw— f(d), with d representing
the number of samples each mapping to model
accuracy (or any other statistical property
such as the percentile) based on the data
points {(cd,al}.)IneS,ie{l,....k,}} or

n1,j

{(a —c)dn,aﬁi’j)l neS,ie{l,...k,}}, respectively,
for each je{l,....m}.

Optionally: Exclude all data points with nx>n,.
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4. Based on the fitted functions in Step 3 for the
training and test sets, extrapolate the number
of data points for the desired model accuracy

or a desired tolerance of uncertainties.

Algorithm 1. This algorithm identifies stable statistical properties of
samples of different sizes to identify sufficiently large datasets on which
a model has reliable properties.

(Billingsley, 2013; Durrett, 2019; Dudley, 2018) that the empirical
cumulative density functions (CDFs) of D or any sub-sample of it
converge to the corresponding ground truth CDFs as the number of
measurements or dataset sizes increases, respectively. Analogously,
we have the convergence of the probability density functions (PDFs)
under certain conditions, such as in the kernel density estimator
framework (Van der Vaart, 2000). Consequently, since the statistical
properties of the sub-sampled datasets converge as their sizes
increase, the properties of the subsets sampled from the data, such
as the accuracy on the training and test sets, also converge under the
assumption that models are continuous mappings with respect to
their inputs and outputs. Identically, we have the convergence of the
statistical properties of the m samples, meaning that they become
more similar when increasing k, for each size of data subsets.
Although we know about the existence of the convergence, we do
not know how fast the convergence of the statistical properties of the
datasets and the corresponding model properties takes place when
increasing the number of samples in the data subsets. In Step 2.(c),
we generate distributions of accuracies. In Step 2.(d), we compare the
similarity of the statistical properties of these distributions. In our
implementation, we test whether the corresponding pairs of mean,
median, 25th percentile, and 75th percentile differ by less than a
specified tolerance. These tests can be extended by any characteristic
property of distributions, such as any stochastic moment, that allows
defining a similarity measure of two distributions. Using statistical
tests for defining significant similarity might be challenging as we
need to execute them several times while increasing k,,, and since it
is not clear a priori how often we need to increase, a corresponding
p-value adaptation to lower the error of the first kind upon many
repetitions of the same test might not be possible. At the same
time, introducing a tolerance parameter might be computationally
beneficial as it eliminates the need to repeat sampling until the
differences fall within the magnitude of random fluctuations but
are small enough based on the use case requirements. In case
the distributions are similar enough, we break. Otherwise, we
repeat and extend the data foundation of the accuracy distribution
for each j e {1,...,m} while ensuring computational efficiency by
keeping previous calculations. In our implementation, we increase
k, by k°. However, any other strategy is possible, and increasing
by a constant factor might be computationally more beneficial
than a percentage increase, as, especially for bigger numbers, the
increment scales exponentially, leading to large increments, which
are not needed any more to achieve the desired tolerances. The
model training in Step 2.(c) can (but does not have to) include
hyperparameter tuning or any other operation to obtain a best fit
of the model to the data. However, the method is equally valid
when using fixed hyperparameters to investigate the corresponding
convergence, and in a second run of the whole algorithm for a

Frontiers in Bioinformatics

10.3389/fbinf.2025.1528515

different set of fixed hyperparameters, one can examine whether and
how these hyperparameters influence the convergence rate and the
best achievable accuracy with large amounts of data. Particularly
for mechanistic models, it can even be possible to change the ODE
system and use a model that passes a chi-square goodness-of-fit
test (Raue et al., 2013; Raue et al., 2015) for each fixed sample size.
However, we can also use the same ODE system for all dataset sizes
and just use some accuracy measure normalized to the number of
data points, such as the R*-score.

The optional part of Step 2 is from Mukherjee et al. (2003) and
is used to find the minimum sample size where the relations in the
training data also hold mainly true on the test data. The core concept
is to train a model on the training data, where the output is shuffled,
and then to compare its prediction capability on a non-shuffled test
set with a model trained on a non-shuffled training dataset. The
aim of this procedure is to identify the minimum sample size at
which relationships observed in the training set are also present
in the test dataset, thereby ensuring a basic level of comparability
in the statistical properties of the training and test data samples.
We make sure that all distributions of accuracies are sufficiently
stable before we compare the accuracies from the model trained
on shuffled data with those of the model trained on non-shuffled
data. In our implementation, we use the Mann-Whitney U test
(scipy.stats.mannwhitneyu) to investigate the null hypothesis that
both samples are drawn from the same distribution, where the p-
value is calculated with regard to the alternative hypothesis that the
model trained on the non-shuffled data has better accuracies on test
data than the model trained on shuffled data. If the model cannot
achieve better performance for larger sample sizes than the model
based on shuffled data, it might be worth checking if the target is
predictable at all given the input data (Zadeh et al., 2025).

In Step 3, for each je{l,...
models the convergence of the model accuracy vs data size
on the training set {(cdn,a:{i,j)l neSjeil,... ,kn}} and the
test set {((1 —c)d,,,afzi)l neSiell,....k,
monotonic convergence. However, in general, which model best

,m}, we fit a function that

}} each. We assume a

fits the convergence behavior is a model selection problem, as
described by Figueroa et al. (2012). According to corresponding
metrics, such as the Akaike information criterion (AIC) or the
Bayesian information criterion (BIC), the model best fitting the
data points can be chosen. There are different curve-fitting models
available, as mentioned by Vianna et al. (2024); Curve fitting. In
our case, as in the work of (Cortes et al.,1993; Morgan et al., 2003;
Mukherjee et al., 2003, Cho et al., 2015), we choose a function based
on the power law as follows:

fd): = adf +y,

where o,f3,y € R are the optimization variables that are each fit
for the training and test sets. We note that while the convergence
of stochastic properties with increasing sample sizes is guaranteed
to exist, there is generally no rule governing the specific behavior
or rate of this convergence. In particular, it means that the
convergence might not necessarily be a monotonic convergence.
Consequently, just in case the convergence is (approximately)
monotonic, the power law might be a good estimator for the
limit of the convergence. However, in case of a non-monotonic
convergence, plotting the accuracies with their uncertainties might
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provide helpful information about further potential of more data,
the current state of uncertainty, or what function might be a good
fit for the curve to make a well-fitting estimation regarding the limit
accuracies and uncertainties. To maintain focus on how to adaptively
and efficiently obtain stabilized distributions and thus stabilized
optimization variables that ensure conclusions are not influenced by
unfortunate sampling and remain comparable across different runs,
we do not further discuss our model selection. We note that y is the
limit accuracy of d — co, which is the model accuracy the model
approaches when increasing the data size of the data foundation,
called the ground truth accuracy. In our implementation, for
each n, we calculate the median and the mean as the best
values and the 25th percentile and 75th percentile as measures
of the variability in how the accuracies are distributed for the
corresponding n. The calculations are based on { a lie{l ,kn}}
for each neS, je{l,...,m}, and p € {tr,te}. We note that since
these distributions might not be Gaussian, we instead use the
percentiles as measures of the spread within {aﬁ ,i,j| ie{l,... ,kn}}
instead of the standard deviation. Based on the best values,
we fit the curves according to {(cdn,mean {a;’r’i’j| i= 1""’k})}nes
and {((1 -¢)d,, mean {aif,i,j| ie{l,... ’k”}})}nes' Analogously, we
calculate the data points for the median, 25th percentile, and 75th
percentile. For the fitting, we weigh the residuals between the model
and data points equally. The reason is that the uncertainties of all data
points are, by construction, the same. In our implementation, we use
a predefined tolerance for the absolute value of the corresponding
differences between each pair of different j € {1,...,m} for neS
during the similarity test. With that model, we can extrapolate
to a data size that fulfills the requirements with respect to a
sufficiently small uncertainty represented by the difference between
the 75th and 25th percentiles or when the expected accuracy has
sufficiently well-approached the ground truth accuracy. To fit the
parameters, we use the curve_fit method from scipy.optimize in our
implementation.

In step 4, we use the inverse of the fitted functions to extrapolate
the amount of data that results in the desired accuracy and
uncertainty requirements.

As already mentioned in the introduction, we can use
Algorithm 1 to estimate the data size to obtain test statistics with a
sufficiently small uncertainty, such as the non-centrality of the chi-
square test or the effect of a therapy on shifting a distribution of a
parameter in contrast to untreated patients. In case no model needs
to be trained or parameters need to be fitted, such as the shift of a
certain parameter under treatment, we modify Step 2.(b) in such
a way that we split the randomly drawn data into m equally large
sub-samples. Instead of the accuracy in Step 2.(c), we calculate the
corresponding test statistic on each of the m sub-samples, such as the
mean of a corresponding quantity, which then serves as the value
of the parameters a,,;; in this case, data are not split into training
and testing subsets. By following the algorithm, we obtain a mean
test statistic that accounts for the expected uncertainty and allows
extrapolation to a dataset size where the uncertainty is sufficiently
small. For example, in the case of treated and untreated patients,
we need to perform the procedure for both populations. From the
stabilized differences of the means of the test statistic, we can then
calculate the effect strength for the hypothesis of the power analysis.
Similarly, in an optimal experimental design, the sample size can be
determined as the point at which the results of the corresponding
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analysis vary sufficiently little. Algorithm 1 can be used in cases
where, instead of training a model in Step 2.(c), a corresponding
analysis is performed and evaluated accordingly in Step 2.(d).

3 Results—showcasing the application
of Algorithm 1

In this section, we showcase the application of Algorithm 1
based on the diabetes dataset from sklearn. The models are linear
regression and the KNeighbors model from sklearn. To evaluate
the success of the models, the R*-score for regression tasks from
sklearn.metrics is utilized. sklearn’s standard scaler is fit on the
training dataset and used to normalize the training and the test
sets before each model training. For the split in Algorithm I,
the parameter ¢ = 0.7. The hyperparameter n_neighbors = 25 for
the KNeighborsRegressor if not otherwise stated. Furthermore, we
choose m = 2 and k° = 300.

Figure 1 shows the fitted curves for the mean, median, and
25th and 75th percentiles for a tolerance of 0.001 for the absolute
value of the difference between two means, medians, and 25th
and 75th percentiles that we use to test similarity in Step 2.(d) of
Algorithm 1 and the optional part of Step 2. The corresponding
figures appear identical, demonstrating the function of the adaptive
sampling mechanism. The limit accuracies are provided in Table 1.

The accuracy distributions underlying the graphs of Figure 2 are
calculated according to the method described by Mukherjee et al.
(2003) with a sampling number of 50 data points per distribution.
We observe a higher variation in the statistical characteristics of
the distributions for each sampling size compared to Figure 1. A
larger number of data points will provide less variation; however,
it is challenging to estimate a fitting number a priori. Our method
automatically finds a suitable number of data points such that the
variation is below a certain tolerance, which is even adaptive to each
sampling size.

In Table 1, we compare the limit accuracy of the curves fitted
to the four statistical characteristics of the accuracy distributions
over the sample size with respect to their variation across different
runs of our algorithm. To illustrate this, we choose to calculate the
mean and standard deviation (square root of the standard variance)
based on three runs of Algorithm 1 to observe how this variation
decreases if tolerances for the differences of statistical characteristics
decrease. Since m =2, there is one repetition of the sampling of
the accuracy distributions such that there are two instances of the
four characteristics for each sample size, numbered j=1 and j=
2; see Algorithm 1 for a definition of j. We note that the parameters
of the fitted curves become more reliable as the tolerance decreases,
showcasing that our proposed method for adaptively determining
repetition parameters to achieve stable results works as expected.

Since the model with its architecture and hyperparameter
setting is a part of the convergence process and thus influences
the amount of data needed for stable and reliable results, we
demonstrate in Table 2 how our proposed method can reveal that
overfitting might be due to an unfortunate hyperparameter setting (k
representing n_neighbors of the KNeighborsRegressor) rather than
an unfortunate sampling run. An unfortunate parameter setting
occurs when the limiting accuracies are stable across different j
instances, which numbers the repetitions used to generate accuracy
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FIGURE 1

Results for the liner regression (top two figure rows) and the KNeighborsRegressor (bottom two figure rows) based on a tolerance of 0.001 for the
absolute value of the difference between the mean, median, 25th percentile, and 75th percentile of each pair of accuracy distributions for each sample
size. In this case, there are two instances of each accuracy distribution whose statistical characteristics are compared with respect to the tolerance,

numbered by j =1 and

Jj=2; see Algorithm 1 for the definition of j.
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TABLE 1 Mean value and standard deviation of the limit accuracy of the curves fitted to the means, medians, 25th percentile (25%-p), and 75th
percentile (75%-p) of the accuracy distributions for all sub-sampling sizes. The first three rows are based on the training set, and the next three rows are
based on the test set. The tolerance is the maximum number for the absolute value of the difference between two means, medians, and 25th and 75th
percentiles. To calculate the mean and standard deviation for the limit accuracies, the results of three runs of Algorithm 1 are considered with m =2;
thus, in total, six limit accuracies each are available. To put the numbers from the first six rows into perspective, we provide the results from the
algorithms presented by Mukherjee et al. (2003) in the last two rows; this method uses a constant repetition number of 50 for each sample size to
generate the accuracy distributions, which may appear intuitive, in the last two rows. In the second-to-last row, we provide the results based on the
training dataset, and in the last row, the results are based on the test set. We note that the standard deviation is an order of magnitude larger as there is
no control over the uncertainties in the sample distributions for each sample size.

Tolerance Linear regression KNeighborsRegressor
Median 25%-p Median 25%-p

0.025 0.5125 + 0.5128 + 0.5061 + 04951 + 0.4992 + 0.4982 + 0.5060 + 0.5014 +
0.0025 0.0024 0.0012 0.0142 0.0049 0.0055 0.0110 0.0032

0.005 05092 + 0.5083 + 0.5060 + 0.4908 + 0.4985 + 0.4972 + 0.5097 + 0.5000 +
0.0009 0.0018 0.0005 0.0059 0.0013 0.0013 0.0040 0.0005

0.001 0.5084 + 0.5076 = 0.5057 + 0.4902 + 0.4984 = 0.4976 + 0.5084 + 0.4992 =
0.0007 0.0008 0.0002 0.0011 0.0004 0.0005 0.0011 0.0002

0.025 0.5037 + 0.5011 = 0.4887 + 0.5270 + 04543 + 0.4573 + 0.4547 + 0.4675 =
0.0081 0.0069 0.0100 0.0071 0.0073 0.0049 0.0197 0.0039

0.005 0.4993 + 0.5008 = 0.4860 + 05222+ 04531 = 0.4554 + 0.4536 + 0.4661 =
0.0022 0.0022 0.0035 0.0010 0.0026 0.0031 0.0061 0.0023

0.001 0.5006 + 0.5045 + 0.4890 + 0.5223 + 04544 + 0.4549 + 0.4540 + 0.4663 +
0.0007 0.0011 0.0021 0.0002 0.0004 0.0006 0.0014 0.0003

- 0.5110 + 0.5044 + 0.5057 + 0.4510 + 0.4951 + 0.4922 + 05123 + 0.4995 +
0.0076 0.0148 0.0033 0.0894 0.0097 0.0104 0.0334 0.0053

- 05116 + 0.5172 + 05153 + 0.5218 + 0.4737 + 04517 + 04932 + 0.4745 +
0.0283 0.0271 0.0530 0.0049 0.0431 0.0182 0.0853 0.0163

distributions to test for statistical stability, yet a gap between the
training and test limiting accuracies remains. If the limit accuracies
from fitted curves based on stable statistical properties differ up
to a degree that is considered too much, it is a hint that more
data in the current model configuration might not resolve the
overfitting but rather a hyperparameter change as we observe that
a higher k lowers the gap. For such experiments to make such
investigations in a reliable manner, the control over the uncertainty
of the important characteristics of the samples is very helpful.
The presented adaptive schema ensures reliability with a tailored
repetition number. However, with respect to overfitting, linear
regression might be a good choice in the presented example as it
has a higher limit accuracy and a smaller gap between the training
and test limitaccuracy (Table 1). Another effect regarding overfitting
can be observed in Figure 1. As the number of weights of the linear
regression model is fixed for any sample size, we observe the effect of
overfitting, indicating that the model adapts too much to the training
dataset if the number of data points of the training data is smaller
than the number of weights. Since the weights allow the model to
closely fit its output to the small number of data points, including the
noise, it leads to high accuracy on the training dataset. However, due
to potential variance between the training and test sets, caused either
by the small sample size or the presence of noise, the relationships
learned from the training set do not generalize in detail to the test
dataset, leading to poor accuracy on the test set. By increasing the
sample size, the training and test sets converge in their statistical
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properties, and if the number of data points gets bigger than the
number of weights, the model cannot adapt to any small variance
in the training dataset but has to focus on the main relations (which
means being supported by many data samples where a specific noise
relation would only hold for a specific data point) that generally also
apply on the test set. The result is that the accuracy gap between
the training and the test sets decreases as the data size increases.
Consequently, in case of linear regression, the accuracy on the
training data decreases with the sample size, as it cannot adapt to any
specific relation on the training data. At the same time, as the sample
size increases, more of the relations in the training data are likely
contained in the test data as well, while the model is not deflected
by learned relations that only hold on the training set, causing
increasing accuracy.

In the next experiment, we fit the curves only to the first seven
data points and compare how the model predicts the ones not fitted
to. Figure 3 shows the results. The points not used for fitting the
power law can be used as a measure of goodness-of-fit and can
also be used for model selection, helping identify which model best
predicts the limit convergence behavior. This experiment is intended
to show that the power law might only be an approximation for
the convergence behavior. For example, the fitted parameters might
only be valid up to a certain sample size. When using the curve to
estimate the additional amount of data to reach certain accuracy
gains or levels of uncertainty, we can use sanity checks to determine
whether the model might still be valid for the sample size we predict.
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FIGURE 2
KNeighborsRegressor model.

Results similar to Figure 2; however, the accuracy distributions for each sample size are generated according to Mukherjee et al. (2003) with a sampling
number of 50 per distribution. In the first row, we see the result for the linear regression model, and in the second row, we see the result for the
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TABLE 2 Limit accuracy on the training (Train) and test (Test) sets of the
curves, each fitted for the mean and median. The difference between the
training and test limit accuracy is provided in the column named "Diff"
for different k, modeling the number of neighbors (n_neighbors), and j,
which numbers the instances of accuracy distributions; curves are fitted
to the characteristics (mean and median) of these distributions, from
which limit values are derived.

Diff ’ Train

Mean | 05603 | 04709 | 0.0894 | 05605 = 04718 | 0.0887

10
Median = 05572 = 04773 | 0.0799 | 0.5581 | 0.4787 | 0.0794
Mean | 04906 | 04547 @ 0.0359 = 04910 04557 | 0.0353

30
Median | 0.4899 = 04564 | 0.0335 | 04895 | 04558 | 0.0337
Mean | 04849 | 04615 | 0.0234 | 04847 = 04617 & 0.0230

50
Median = 0.4854 = 04671 | 0.0183 | 04850 | 0.4672 0.0178

For example, if the curves for the 25th and 75th percentiles already
intersect before the estimated data size. An intersection occurs for
the example shown in Table 1 because the limit accuracy for the 25th
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percentile is higher than that for the 75th percentile on the training
set. However, on the test set, the limit accuracies are in the right
order. At the latest, after the intersection of the two curves, we would
know that we are outside the area where such fitted curves might
reliably be used. If our data requirements are not fulfilled before
that point and other models do not fit better, meaning that they do
not exhibit the same issue, this would be a strong indication that
more data must be collected before repeating the analysis. With our
proposed method, we can ensure that the identified area where the
model is no longer reliable is not due to an unfortunate sampling
but is a stable pattern from which we can draw corresponding
conclusions.

4 Discussion

This work aims to provide a heuristic method to analyze the
convergence speed of a model to the achievable ground truth
accuracy when increasing the size of the data, reducing the
effects of sampling variations by introducing tolerances for the
corresponding distribution differences. By repeatedly sampling from
the available data pool—starting with small amounts of data and
gradually increasing the sample size, where each set represents one
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Test Accuracy vs. Sample Size (j=1)

| -
0501~ |
0.451 Eea = - -
& 0.40 1 / ,//’
5 /
[} 4
[} 7
< /
0.351 / —
—— Test best fit median
—-=~ Test best fit mean
0.30 —— Test lower percentile fit
—— Test upper percentile fit
Test mean accuracy
0.25 1 ¢ Test median accuracy * percentile error
40 60 80 100 120
Sample Size
Test Accuracy vs. Sample Size (j=1)
0.45 A
0.40 -
>
o
© 0.35
=}
o
Q
<
0.30 A —— Test best fit median
~~~ Test best fit mean
—— Test lower percentile fit
0.25 - —— Test upper percentile fit
Test mean accuracy
¢ Test median accuracy + percentile error
40 60 80 100 120
Sample Size

Results for the linear regression (top) and the KNeighborsRegressor (bottom) based on a tolerance of 0.001 for the absolute value of the difference
between the mean, median, and 25th and 75th percentiles of the accuracy distribution for each sampling size compared pairwise. In this case, there are
two accuracy distributions for each sampling size, each denoted with j =1 andj = 2; see Algorithm 1 for the definition of j. The curves are fitted only on
the first seven data points. For the linear regression, the limit accuracies (train/test) are 0.5101/0.4966 for the median, 0.5118/0.4966 for the mean,
0.5038/0.4780 for the 25th percentile, and 0.5038/0.5243 for the 75th percentile. For the KNeighborsRegressor, the limit accuracies (train/test) are
0.5023/0.4690 for the median, 0.5004/0.4683 for the mean, 0.5057/0.4778 for the 25th percentile, and 0.5053/0.4842 for the 75th percentile.

realization of a potential measurement of that size—we can observe
the convergence behavior. Furthermore, we can observe how the
uncertainty of the accuracy decreases to a certain range. This is
particularly relevant when the reliability of a model in production
is important as we can estimate how the accuracy might vary
on the unseen data and, thus, whether the model is applicable
at all or what amount of training data might still be needed. An
example might be personalized medicine. The presented method
is general and applicable to all types of models, whether ML or
mechanistic.

Increasing the size of the dataset captures more of the underlying
dynamics involved in data generation. If the dataset is large
enough, there is a high probability that it contains a sufficient
number of instances to learn all relevant aspects of these dynamics,
regardless of the sampling. By providing broad information
about the process to be modeled, we ensure that modeling is
not overly specific to a dataset and that the model captures
the ground truth dynamics, allowing it to perform reliably in
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real-world use cases. To apply the presented framework and deal
with the many model trainings/fittings that are needed, the total
process of model training/fitting needs to be automated to lower
the costs of this procedure, e.g., for manual work. We need to
run our presented method initially from a data pool D that is
large enough to sample smaller subsets where the models can
be properly trained/fitted. Additionally, the data pool D should
already be diverse enough to capture different effects of the
underlying dynamics; otherwise, consistently high accuracy might
be observed across all sizes of sub-samplings, which would be
misleading.

Estimating when reaching a certain degree of reliability in
the accuracy is particularly important when data acquisition
involves high costs. Examples are in life sciences when working
with samples from patients or other samples whose preparation
needs a lot of manual work or when there are costly annotation
processes such as in ML scenarios, e.g., in natural language
processing. With the suggested framework, realistic budgets for
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data acquisition can be estimated to bring a project to production.
Having a clear view of the required data after a proof-of-
concept might be crucial to estimating the remaining costs to
bring a model to the desired reliability and quality required for
production.

One limitation of the framework is that a model needs
to be trained several times, which can become an issue in
terms of computational costs for large models, such as language
models. However, we note that training from scratch might
not always be needed as a trained/fitted model from previous
data samplings can be used, and the parameters can just be
fine-tuned on other datasets to the corresponding parameters
optimal for the specific sampled dataset. We note that an
implementation of Algorithm 1 can be highly parallelized, e.g.,
for each n calculating batches of model training for different
splittings in Step 2.(c). When a model is computationally too
costly to execute the proposed method for different splittings for
different n, we can validate the given data by training and testing
a model on different splittings (cross-validation) of the whole data
to obtain a distribution of accuracies on the training and test
data. Then, we can see the corresponding uncertainties of the
accuracies and report them or decide whether the uncertainty is
sufficiently small.

Furthermore, in the case of estimating whether the collection
of new data for an existing dataset is required to provide greater
model reliability, we assume that the data quality stays the same
over time. In particular, we assume that there is no drift in the data
as the achievable ground truth accuracy might change because of
more noise or data drift. In such a case where the ground truth
dynamic changes rapidly compared to the data collection speed,
an overall convergence is not guaranteed. An example of changing
dynamics can be found in time-series prediction, particularly
in predicting pandemic evolution (Vianna et al., 2024), where
abrupt and unpredictable changes—such as new rules established
by governments—can significantly impact outcomes. For time-
series prediction, due to the issue that we cannot interchange data
between the training and test sets (it would represent bringing
information from the future to the present and thus obscure an
ongoing dynamic change), we cannot directly apply our proposed
method. As proposed by Vianna et al. (2024) (Figure 1), we can
extend the time horizon defining the present to simulate obtaining
more historical data for training while keeping the future data
regarding the current present (or only a fixed period into the
future) for validation to monitor the convergence of the model.
However, if we assume that there is no dynamic change, such as
in data from a periodic process (like the orbits of planets), then
our method can be applied to estimate the convergence of the
model with respect to the data sampling size. Although it is a
time-series prediction, as there is no dynamic change, the system
is closed without absolute time, and the temporal order is only
important within the features of a model but not between different
data points.

Our framework can be applied in cases where studies claim that
an insufficient amount of data is a limiting factor (Hwang et al.,
2024; Rodrigues, 2019; Sapoval et al.,, 2022; Ching et al., 2018).
It can be used to estimate the approximate amount of additional
data needed, allowing for more accurate planning of the costs of
further studies, particularly the costs for data acquisition. This is
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similar to the approach of Valeri et al. (2023), where it was tested a
posteriori whether less amount of data generation would be sufficient
in subsequent experiments. Another application of our framework
is where models are used to approximate computationally costly
functions, such as mutual information between many random
variables (Franzese et al., 2024). Mutual information describes
how much knowing the value of one random variable reduces the
uncertainty about another, i.e., how dependent the variables are on
each other in their value distributions. Although such functions
might be approximations themselves, which might cause a deviation
from the ground truth mutual information, our method deals with
estimating the amount of data needed to avoid additional variation
in accuracy caused by an insufficiently small data sample. In this
case, the approximated value does not depend on the size of the
data but only on the mechanism of the approximation. However,
in the case of convergence of the approximation to the ground
truth mutual information for increasing data, our framework also
includes an estimation of the speed of this convergence as our
framework considers all components involved in the modeling of
the data. Furthermore, with our presented framework, we can study
models differing in the hyperparameter setting and test which model
converges to a better limit accuracy or which is faster in convergence,
similar to Valeri et al. (2023) (Supplementary Figure S1), where
different models perform differently well for small datasets. One
example can be a model with more layers or free parameters,
which tests whether the smaller model is too small, and the
other bigger model can store more of the information, which
might be the case if the model with more free parameters leads
to better limit accuracies on the training and test sets. In case
both models converge to the same limiting accuracy, the smaller
model is preferable and seems sufficient to represent the data and
underlying dynamic.
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