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Molecular docking is among the fastest andmost readily available computational
tools to explore protein–ligand interactions. However, little effort has been put
into assessing the quality of its results. In this paper, we compared eight free
license docking programs to screen a drug library against the human target,
phosphodiesterase 5A (PDE5A), to evaluate their ability to find its known ligand,
sildenafil, and other ligands that became erectile dysfunction drugs because they
inhibit this target. GNINA was superior at identifying the known target because
it offers a convolutional neural network (CNN) score that ranks the quality of
docking results. Using this CNN score improved the ranking of known positives.
Receiver operating characteristic (ROC) analysis revealed that all docking suites
lack specificity; that is, they often misidentify true negatives. Employing a CNN
score cutoff before ranking by docking affinity raised specificity with a small
loss in sensitivity. After the cutoff, datasets became smaller but of higher quality.
We propose a heuristic to produce relevant docking results, which includes an
overall evaluation of the target on docking performance through ROC and an
improvement of candidate binder selection using a CNN score cutoff of 0.9.

KEYWORDS

docking, GNINA, drug repurposing, virtual screening, convolutional neural network,
UCSF ZINC, Dock6, AutoDock Vina

Introduction

Molecular docking is an ever-growing field of techniques aimed at rapid exploration
of molecular binding interactions to be analyzed with other in silico (molecular dynamics,
alchemical, ADMET, and quantum mechanics) (Kumar et al., 2024) and in vitro (high-
throughput screening versus cellular targets) (Drayman et al., 2021; Chunarkar-Patil et al.,
2024) methods. Search algorithms and scoring functions have evolved, transitioning
from empirical pose evaluation to machine learning, convolutional neural networks, and
generative models (Crampon et al., 2022). Currently, docking packages with free or paid
licenses use different search algorithms, multiple scoring methods, and varied hardware.
Most run in Unix-based operating systems. Some require GPUs (McNutt et al., 2021;
Corso et al., 2022; Solis-Vasquez et al., 2022), and most benefit from high CPUs. RAM
or disk space requirements are moderate. Computer clusters are only required when
screening millions of compounds. GNINA is a newer docking program that uses Vina
scoring functions as well as its own, based on convolutional neural networks (CNN),
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performing better than Vina, even when water molecules are not
explicitly modeled (Hochuli et al., 2018; Francoeur et al., 2020).

As a fast and inexpensive tool to rank potential binders, docking
retains limitations. First, it is based on the “lock and key” hypothesis
(Ehrlich, 1907), where receptor and ligand are rigid bodies (Ferro
and Hermans, 1977; Meng et al., 2011). Ligand flexibility can
be modeled at a computational cost but without an exhaustive
degree of freedom exploration. Second, the energetics calculated
with docking are inaccurate (at least ±3 kcal from experimentally
determined values). Third, there is a limitation on the volume that
can be sampled: as grid sizes increase, sampling becomes inefficient.
Fourth, the systematic evaluation of docking results has not been
solved, and this represents a large gap in the field. Here, we approach
this fourth limitation: evaluation of result quality.

Instead of following a common set of criteria, docking
performance is evaluated with relative parameters put together
on a case-by-case basis. These parameters usually entail affinity
ranking of the poses and/or structural comparisons to known
experimentally determined complexes and/or redocking, which
limits their applicability to de novo complexes without reference.
None of these parameters has a universal accuracy threshold. Any
given docking experiment will return a binding affinity value even
if interactions are unspecific, so ranking based only on the affinity
does not guarantee accuracy. If a docked complex displays a 2 Å root
mean square deviation (RMSD) difference or less to an experimental
complex, docking is usually considered accurate (Zajaček et al.,
2024), but there are no guidelines to distinguish true positive binders
from high affinity negatives, or to define a threshold that is useful to
detect leads to explore further. It is also unclear what quality control
criteria should be included in all docking publications or how a user
should choose a docking program for a specific target.

Receiver operating characteristic (ROC) analysis (Mandrekar,
2010) allows the comparison of binary classifiers. In the case of
docking, ROC characterizes the ability of each method (docking
software) to distinguish between true and false binders, using the
binding energy as the classifying value. The area under the curve
(AUC) of a ROC analysis lets the user of a method distinguish
between a good classifier (AUC ≥0.70) and one that is closer to
a random guess (AUC ≤0.5) and has been used by developers
to evaluate their docking results. RxDock reported AUC results
for their method (Ruiz-Carmona et al., 2014), and UCSF DOCK
publishes ROC curves for representative targets (Brozell et al., 2012;
Allen et al., 2015). The ROC plot displays specificity on the x-axis
(false positive rate) and sensitivity (true positive rate) on the y-axis
and calculates true negative and false negative rates. Allen et al.
(2015) exemplify receptors with good and bad curves. However,
most docking publications do not show an ROC analysis, making
evaluating results beyond the affinities presented difficult.

The current work explores how to discriminate true positives
and grade the quality of docking results. We compared eight
docking suites available with free licenses and attempted to identify
drugs for erectile dysfunction using human phosphodiesterase-
5 (PDE5A). PDE5A hydrolyzes cyclic GMP (cGMP) to 5’-GMP,
and it is the target of the erectile dysfunction drug sildenafil,
which acts as a competitive inhibitor for cGMP degradation
(Sung et al., 2003; Zhang et al., 2004). Sildenafil was originally
developed for pulmonary hypertension; during clinical testing, it
produced penile erections through PDE5A inhibition and was soon

commercialized under the name Viagra. It is a famous example
of drug repurposing. We asked whether current free docking
packages can select binders that inhibit PDE5A from a database of
FDA-approved drugs that includes sildenafil and other compounds
developed for this very target.We evaluated the quality of the results
with ROC analysis and with the CNN score fromGNINA.TheCNN
score was the best evaluator of docking result quality to select true
positives on a virtual screen.

Materials and methods

Software

We evaluated eight docking programs available on a free license,
so our work can be reproduced without monetary expense: ADFR,
v. 1.1 (Ravindranath et al., 2015), AutoDock Vina, v1.1.2 (Trott and
Olson, 2010), UCSFDOCK, v6.9 (Allen et al., 2015), GNINA, v1.0.3
(McNutt et al., 2021), jdock, v2.2.3c (Li et al., 2012), PLANTS, v1.2
(Korb et al., 2009), RxDock, v0.1.0 (Ruiz-Carmona et al., 2014), and
smina, v1.1.2 (Koes et al., 2013).The selection includes the twomost
widely used packages: UCSF DOCK and AutoDock Vina. UCSF
DOCK and RxDock were downloaded as source code and compiled
locally.The other programs are available as precompiled executables.
ADFR, AutoDockVina, jdock, smina, and RxDock return an affinity
in kcal/mol; UCSF DOCK gives a gridscore, while GNINA returns
three values: GNINA affinity in kcal/mol, an adimensional CNN
score (0–1), and a CNN affinity [−log (K)].

Receptor selection and preparation for the
docking screen

The binding target was the human cGMP-specific 3′,5′-cyclic
phosphodiesterase (PDE5A, UNIPROT ID: O76074) (Zhang et al.,
2004), a metalloenzyme containing zinc and magnesium. There
are 38 X-ray diffraction (XRD) PDE5A structures deposited in
RCSB, four crystalized with sildenafil (PDBID: 2H42, 1UDT, 3JWQ,
and 1TBF). An AlphaFold model was obtained using the PDE5A
sequence from UNIPROT through UCSF ChimeraX, v1.7. All 38
PDE5A structures and the AlphaFold model were evaluated, and
structures 1T9R, 1T9S, and the AlphaFold model were tested in a
screen against a ligand database.

Because ADFR, Vina, GNINA, jdock, and smina use pdbqt
receptors and ligands, both sets were prepared using the scripts
included with ADFR (prepare_receptor.py and prepare_ligand.py).
UCSF DOCK and PLANTS require mol2 files; receptors for UCSF
DOCK were prepared with UCSF Chimera (Pettersen et al., 2004).
For PLANTS, receptors were processed with SPORES, v1.3 (Brink
and Exner, 2010).

Ligand preparation for a docking screen

Ligands were obtained from UCSF ZINC 12: a total of 2115
FDA-approved drugs, including stereoisomers (Irwin et al., 2012),
were screened, that is, they were all docked to each of our three
receptors (1T9R, 1T9S, and the AlphaFold model). Other than
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conversion tomol2 or pdbqt, no other preprocessingwas performed.
PLANTS failed with four ligands; jdock failed with 41, and ADFR
failed with one. Failure reasons were not identified or corrected.
A total of 513 experimentally determined binders for PDE5A were
obtained from UCSF ZINC by selecting the results with affinities
better than 10 nM.These were used as true positive results for ROC
calculation.

Ligands were converted into mol2 using Racoon, v1.0f
(Forli et al., 2016). RxDock requires sd files for ligands; these were
prepared with Open Babel, v3.1.0 (O’Boyle et al., 2011), while the
receptor is a mol2 file prepared with UCSF Chimera, v alpha 1.19.
ADFR requires an additional step to create a .trg file.

File formats for the ligands and receptors, as well as instructions
to prepare them, are summarized in Supplementary Table S1.

Docking parameters

The coordinates and size of the search were defined using
the largest cavity in the PDE5A models, found by AGFGRUI
and used for all docking programs except UCSF DOCK and
RxDock. For Dock and RxDock, the search box was generated
using GMP (called 5 GP in the PDB) as a reference. Search
coordinates were the same for all systems, and grid sizes are
specified in Supplementary Table S2. All programs were run with
default values for the number of results and other parameters
(see supplemental material Command Line for specific details).
Running time for docking ranged from 4 h to 18 h for each program.
Only the enhanced searches (using ADFR, Vina, and GNINA)
required longer running times. All docking was conducted without
Zn because only PLANTS can handle Zn atoms. All ligands and
water molecules in XRD structures were removed before docking
experiments.

ADFR, Vina, and PLANTS were executed in the “Laboratorio
Nacional de Supercómputo del Sureste de Mexico” facility; GNINA,
jdock, RxDock, smina, and UCSFDOCKwere run on a workstation
underDebian 11. AnRTX3060GPUwas used forGNINA.Themost
recent GNINA version, v1.3, can be run on CPUs.

Analysis

Most docking programs return several results per input ligand.
For analysis, we used only the one with the highest binding energy.

ROC calculations were performed using R (R Core Team, 2021)
and RStudio (RStudio, 2020) using libraries pROC (Robin et al.,
2011) and cutpointr (Thiele and Hirschfeld, 2021). All relevant
files (initial files and results) are available at figshare with
doi: 10.6084/m9.figshare.24217872. Ligand RMSD was calculated
using DockRMSD (Bell and Zhang, 2019).

Results

PDE5A structures compared through
ensemble docking

First, we compared the 38 available PDE5A XRD structures and
the AlphaFold model through ensemble docking. Four structures

could not be used (1TBF, 3HC8, 3HDZ, and 6L6E) because theywere
not successfully converted to pdbqt or otherwise processed through
agfrgui; this was due to sidechains with multiple occupancies.
No corrections were attempted due to a lack of a clear heuristic,
resulting in 35 target structures. Ensemble docking with sildenafil
was performed for these structures with the docking packages
that allowed it (Figure 1A). UCSF DOCK, PLANTS, and RxDock
were excluded due to command line limitations. ADFR produced
the highest affinities, followed by Vina, smina, and GNINA, with
similar performance, which was expected because the latter two
are based on Vina. jdock returned the same affinity for sildenafil
on every receptor, suggesting that it is not suitable for ensemble
docking (Figure 1A). The ensemble experiment results are shown
in Figure 1B, graphed by the receptor used. The figure shows that
receptor selection impacts docking results. Structures displayed
different binding affinities for sildenafil, with a small standard
deviation of 0.58–0.75 kcal/mol (Figure 1C). The best affinity was
for receptor 2H44 (∗in Figure 1B), a structure determined in the
presence of icarisid II, that displayed high affinity when using smina,
Vina, and ADFR (Figures 1B,C). The three structures crystallized
with sildenafil (vertical lines) also showed high affinities for
sildenafil (Figures 1B,C).

PDE5A structure selection for a virtual
docking screen

To perform a virtual screen against all the FDA-approved
drugs (screen described in the next section), we selected three
PDE5A structures that represent the conformational diversity of
the binding site: 1T9S, a chimeric structure crystalized with the
enzyme’s catalytic product GMP that could bind inhibitors like
sildenafil and similarmolecules; 1T9R crystallizedwith an occluded,
empty binding site; and the AlphaFold model that we created for
PDE5A to simulate a docking study where targets have no previous
crystallographic reference. 1T9R was the most different, with an
RMSD of ∼3.5 Å compared to the other two (Supplemental Table 3)
due to its “H-loop” (residues L672-H685), located over the GMP
binding site (Zhang et al., 2004). We did not select a structure
crystallized with sildenafil because most docking campaigns for
repurposing would not have such a reference available. In the
ensemble experiment, GNINA, smina, Vina, and ADFR docked
sildenafil to 1T9S (†) and to the AlphaFold model (‡) with affinities
close to the ensemble average (Figure 1C). 1T9R, with a closed H-
loop over the binding site, displayed less affinity on all the programs
evaluated (Figures 1B,C).

GNINA calculates not only a “GNINA affinity” but also
a CNN score, which grades the quality of docking results
through network-trained image recognition algorithms. GNINA
also produces a second affinity, based on the CNN model (“CNN
affinity”). In Figure 1D, we graphed each receptor against its CNN
score for sildenafil from the ensemble docking in GNINA. The
three structures crystalized with sildenafil (vertical lines) had higher
scores than an arbitrary CNN score cutoff of 0.9 that we hereby
defined as “high-quality docking.” 1T9S also scored as high quality,
but the CNN score was lower than this threshold for the AlphaFold
model and 11 other structures. Visual examination of receptors
below this 0.9 CNN score cutoff reveals receptors with occluded
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FIGURE 1
Ensemble docking of sildenafil against 35 human PDE5A structures. (A) Sildenafil binding affinity by docking software, with all the PDE5A structures
grouped to compare between the docking packages. (B) Sildenafil docking results for GNINA (blue circles), smina (red squares), Vina (green triangles),
and ADFR (orange diamonds) are displayed by each of the 35 PDE5A receptors (on the x-axis). (C) Average affinity of the ensemble (35 receptors)
compared to that of the specific structures used. (D) Docking results were evaluated using the CNN score from GNINA. The horizontal bold dotted line
indicates a 0.9 cutoff, while the dotted line indicates a 0.5 cutoff. Dashed vertical lines indicate structures crystallized with sildenafil, while∗indicates a
structure with icarisid II, and ★ indicates a structure with tadalafil. The receptors used in this work are labeled +, †, and ‡for 1T9S, 1T9R, and the
AlphaFold model, respectively.

binding sites or missing residues. The worst-scoring was 1T9R,
likely due to its occluded binding site. These results reaffirm our
selection of 1T9S, 1T9R, and the AlphaFold model to represent the
conformational diversity of PDE5A’s binding site.

Docking screen to three PDE5A structures
and result evaluation by rank

Next, we docked a dataset of 2,115 approved drugs on the three
selected PDE5A structures (1T9S, AlphaFold model, and 1T9R)
using each of the eight docking packages. We ranked results by
affinity from highest to lowest, then looked for the known PDE5A
inhibitors: sildenafil and vardenafil, which are chemically similar,
sharing a guanosine-like core with GMP, and tadalafil, avanafil,
and dipyridamole, which diverge structurally (Figure 2).The ordinal
position of these inhibitors in the ranking was compared (Figure 2).
For 1T9S, UCSF DOCK, and RxDock detected sildenafil in the 44th
and 46th place (Figure 2, 1T9S). CNN affinity picked sildenafil at
rank 101, better than rank 143 by GNINA’s affinity. In addition,
vardenafil and tadalafil were ranked in the top 100 best results by
several packages. Tadalafil was 16th by GNINA, 51st by jdock, 69th

byVina, and 88th by smina.Vardenafilwas 51st byUCSFDOCKand
64th by CNN affinity. Cartesian minimization after docking with
UCSF DOCK improved sildenafil’s rank to 39 and vardenafil’s to 48.

When the AlphaFold model was used as a receptor, UCSF
DOCK identified sildenafil as the 58th best ligand. No other
program ranked it better than 115th. Tadalafil ranked remarkably
well, first by JDock, second by GNINA and Vina, and seventh
by smina, while vardenafil was 64th with UCSF DOCK (Figure 2,
AlphaFold). CNN affinity did not improve the ranking of known
ligands in the AlphaFold model.

When docking to 1T9R (closed binding site), the best ranking
for sildenafil was 106, with ADFR (Figure 2, 1T9R). ADFR picked
vardenafil in place 37. Avanafil was 66th by CNN Affinity and 35th
by PLANTS. As expected, 1T9R did not find sildenafil in the top
ligands, and known PDE5A ligands consistently ranked worse than
in the other two target structures.

Up to this point, all programs had been executed usingmoderate
screening settings for exhaustiveness and number of runs. For
1T9S, an additional set of dockings was produced with a ten-fold
increase in runs at high exhaustiveness, with the three programs
that supported it, ADFR, GNINA, and Vina (Figure 2, 1T9S x10).
Generally, rankings for the known PDE5A inhibitors were worse
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FIGURE 2
Ranking of docking results of known PDE5A inhibitors into three PDE5A models (1T9S, AlphaFold model, and 1T9R) represented as heatmaps scaled
from red (highest rank) to blue (lowest rank) among 2115 FDA-approved drugs. Crossed squares indicate that the data are not available. 1T9S x10
indicates that docking was conducted at high exhaustiveness. The structures for the drugs that target PDE5A are shown. The red square is the
ethylpiperazine motif.

with more exhaustiveness, while CNN affinity remained unaffected.
Thus, more computational power and time did not improve the
identification of known binders.

CNN score to screen the best poses

We used the CNN score produced by GNINA to extract the
best poses according to the arbitrary ≥0.90 threshold for high-
quality results presented in Figure 1D. Only the poses that surpassed
this quality threshold were selected and then ranked by regular
GNINA affinity or by CNN affinity. This heuristic, incorporating
the CNN quality score, did not find sildenafil or any other known
PDE5A inhibitors as a hit for the AlphaFold model or for 1T9R
(Figure 2, CNN score). In contrast, for 1T9S, it ranked sildenafil
and vardenafil better than when using docking affinity: sildenafil
was 26th and 101st, while vardenafil was 52nd and 64th using
GNINA’s affinity and CNN affinity, respectively (Figure 2, see row:
“CNN score”). Figure 1D shows that the CNN score reveals a useful
distinction between receptors with poor (1T9R) and high-quality
(1T9S) binding sites. Our AlphaFold model is closer to high quality,
yet critically below the 0.9 CNN score threshold.Thus, when a ligand
that is a known true positive (like sildenafil) is available to evaluate a
receptor, the CNN score is a useful metric to select a receptor to find

other true positives. Once a good receptor is selected, the CNN score
can be used to further filter docking screening results, improving
their ranking.

Docking result evaluation through ROC
curves

Receiver operating characteristic (ROC) curves have been used
to evaluate docking performance, so we used them to compare the
three target structures and eight docking programs analyzed here. To
create the ROC analyses, we docked 513 experimentally determined
binders (all curves are shown in Supplementary Figure S1) and
the set of 2,115 FDA-approved drugs into each structure (1T9S,
AlphaFold model and 1T9R) with each program (eight suites
plus the CNN affinity from GNINA) resulting in 27 initial ROC
curves (Table 1). Overall, the AUC values and Youden’s index were
better for 1T9S (Table 1).ThebestAUCvalueswere foundwithCNN
affinity, PLANTS, and ADFR for all targets. Accuracy, precision, and
sensitivity displayed acceptable performance across all programs.
However, specificity, that is, the portion of true negatives correctly
identified, was low (under 0.5) except when using CNN affinity.
Cutoff points represent the best method of distinguishing true
positives from true negatives, and they were higher for 1T9S, but
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TABLE 1 ROC analysis for docking using 1T9S, the AlphaFold model, and 1T9R.

AUC (95% CI) Accuracy Precision Sensitivity Specificity Youden’s index Cutoff point

1T9S

 ADFR 0.85 (0.83–0.89) 0.82 0.85 0.93 0.39 0.57 −9.3

 DOCK
0.73 (0.70–0.77) 0.71 0.74 0.95 0.02 0.43 −64.98

0.67 (0.66–0.73)∗ 0.72∗ 0.74∗ 0.96∗ 0.00 0.34 −47.34

 GNINA
0.78 (0.74–0.80) 0.79 0.81 0.95 0.15 0.43 −8.1

0.84†(0.78–0.93) 0.90 0.95 0.82 0.97 0.66 −8.1

 CNN affinity+
0.89 (0.88–0.92) 0.86 0.88 0.95 0.53 0.67 6.89

0.96†(0.94–1) 0.92† 0.95† 0.92† 0.92† 0.84† 7.05†

 JDOCK 0.80 (0.77–0.83) 0.81 0.84 0.95 0.25 0.47 −8.82

 PLANTS 0.87 (0.85–0.90) 0.81 0.85 0.92 0.48 0.6 −91.25

 RXDOCK 0.67 (0.60–0.67) 0.71 0.72 0.98 0.11 0.3 −17.97

 SMINA 0.79 (0.76–0.82) 0.79 0.82 0.95 0.20 0.47 −8.40

 VINA 0.80 (0.77–0.84) 0.80 0.83 0.94 0.25 0.48 −8.20

AlphaFold model

 ADFR 0.80 (0.76–0.83) 0.78 0.82 0.95 0.25 0.51 −8.70

 DOCK 0.72 (0.68–0.75) 0.73 0.75 0.95 0.05 0.4 −61.08

 GNINA
0.75 (0.72–0.78) 0.79 0.81 0.96 0.15 0.43 −7.57

0.82 (0.66–0.97) 0.87 0.94 0.77 0.95 0.70 −8.14

 CNN affinity+
0.86 (0.84–0.88) 0.83 0.87 0.94 0.46 0.40 6.72

0.94 (0.87–1) † 0.89† 0.95† 0.81† 0.96† 0.74† 7.05†

 JDOCK 0.78 (0.76–0.82) 0.79 0.82 0.95 0.15 0.49 −8.12

 PLANTS 0.86 (0.84–0.88) 0.80 0.84 0.91 0.47 0.59 −90.82

 RXDOCK 0.73 (0.70–0.76) 0.60 0.69 0.73 0.57 0.41 −16.15

 SMINA 0.78 (0.75–0.82) 0.78 0.80 0.95 0.14 0.49 −8.10

 VINA 0.80 (0.77–0.83) 0.79 0.82 0.95 0.22 0.50 −8.30

1T9R

 ADFR 0.80 (0.76–0.82) 0.78 0.81 0.94 0.23 0.48 −8.60

 DOCK 0.68 (0.66–0.72) 0.72 0.74 0.97 0.00 0.40 −44.25

 GNINA 0.64 (0.57–0.65) 0.79 0.79 0.99 0.00 0.31 −5.64

 CNN affinity+ 0.76 (0.72–0.78) 0.79 0.80 0.98 0.80 0.43 5.47

 JDOCK 0.67 (0.63–0.71) 0.80 0.80 0.99 0.03 0.26 −7.26

(Continued on the following page)

Frontiers in Bioinformatics 06 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1536504
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Domínguez-Ramírez et al. 10.3389/fbinf.2025.1536504

TABLE 1 (Continued) ROC analysis for docking using 1T9S, the AlphaFold model, and 1T9R.

AUC (95% CI) Accuracy Precision Sensitivity Specificity Youden’s index Cutoff point

 PLANTS 0.80 (0.75–0.81) 0.75 0.78 0.93 0.18 0.53 −81.61

 RXDOCK ND ND ND ND ND ND ND

 SMINA 0.68 (0.62–0.70) 0.79 0.79 0.99 0.01 0.31 −7.30

 VINA 0.65 (0.61–0.69) 0.79 0.79 0.99 0.02 0.26 −7.10

∗Indicates ranking after Cartesian minimization. + indicates ranking using CNNaffinity. †Indicates results ranked by affinity after selecting results with a CNNscore ≥0.9.

values are dependent on the scale used by each docking package
and were thus not directly comparable between them. CNN affinity
cutoff values are positive because they correspond to −log(K).

The heuristic described in the previous section, which
incorporated a CNN score threshold of ≥0.9 before affinity ranking,
was used to produce another four ROC analyses, two for 1T9S, and
two for the AlphaFold model, using only the results that passed the
quality threshold.Theuseof this thresholdproduceda large increase in
specificity (0.15–0.97 and0.53–0.92 for 1T9S; 0.15–0.95 and0.46–0.96
for the AlphaFold model) along with a small decrease in sensitivity
(0.95–0.92 and 0.95–0.92 for 1T9S; 0.94–0.81 and 0.94–0.81 for the
AlphaFold model) with GNINA affinity and CNN affinity. Youden’s
index and the AUC also increased. This heuristic, based on the CNN
score, could not be used for 1T9R because no docking results passed
the quality threshold. These results highlight that docking affinities
alone are poor classifiers that can be supplemented with information
about quality, such as the CNN score.

Structural visualization of sildenafil docking
into PDE5A

Superposition of the structures evaluated here (1T9S, 1T9R, and
the AlphaFold model) with a counterpart crystallized with sildenafil
(2H42) shows conformational changes in PDE5A’sH-loop (Figure 3,
black ovals) that explain ligand accessibility.TheH-loop is extended
in the wild-type sildenafil-bound 2H42 (orange) (Figures 3E,J). In
1T9S (green), this region forms two small helices away from the
catalytic site (Figures 3B,G), allowing ligand access; while in 1T9R
(purple), histidine 678 on the extendedH-loop seems to block ligand
access (Figures 3C,H). With GNINA, sildenafil docked into 1T9S
in a pose remarkably like the XRD determined (Figure 3G vs. J),
with a resulting RMSDof 1.04 Åwhen excluding the ethylpiperazine
motif (Figure 2, red square) and 3.07 Å when including it. This
motif is stabilized by the H-loop in 2H24 but is solvent exposed in
our docking to 1T9S. PDE5A contains numerous water molecules,
magnesium, and zinc trapped in the binding site (Figure 3F). Their
removalwas compatiblewith successful dockingwithGNINA, aided
by the CNN score, and produced a sildenafil pose very close to the
crystallographic. The AlphaFold model has an accessible binding
site (Figure 3D) like 1T9S and docks sildenafil in a similar site
(Figure 3I), yet docking resultswere better for 1T9S. In turn, docking
into 1T9R happens at a different site (Figure 3H). By comparing the
parameters displayed in Figures 3G–J, we propose that a high CNN
score identifies correct poses for potential binders that have high
affinity and low RMSD (Figures 3G–J).

Discussion

Docking methods are widely used to quickly screen molecular
interactions with reasonable accuracy. Software availability and
computer power allow the implementation of a docking campaign
in any lab, yet many efforts lack quality parameters, which are
not standardized in the field. The user is then left with a result
of unclear relevance. The PDE5A-sildenafil interaction explored
here exemplifies that two conditions are crucial to achieve relevant
docking results: (1) careful receptor selection to ensure an accessible
binding site and (2) a reliable quality metric to evaluate the results.
We found that the most reliable quality metric was the CNN score
from GNINA, which identified sildenafil at rank 26 and vardenafil
at 52. Thus, using docking-calculated binding affinities alone is not
accurate enough for correct ranking.

The CNN score aided receptor selection (Figure 1D), docking
ranking (Figure 2), and ROC modeling (Table 1). Only GNINA
provides this CNN quality metric. We propose that both result
ranking and ROC must be performed for any given target to select
good drug candidates. Still, the user must be aware of the limitations
of the docking programs, in particular their low specificity, which
entails that false negatives may be included in the top ranked. The
selection of results by CNN score significantly improves the quality
of the results. The real-world consequence is that true positives
were correctly identified within the top-100 ranked molecules of
more than 2,000 FDA-approved drugs when a target with a viable
binding site was used. In the context of drug screening, it is crucial
to consider that relevant docking results will not be only the few
with the best affinity but may be in the top 5–7.5% as ranked by
affinity, even after quality evaluations. This represents 100 or more
ligands to consider for further testing, which is reasonable for most
laboratories.

In our study, GNINA performed better than other programs in
identifying true ligands in a pool of drugs. Thus, GNINA represents
a great advance in docking, mostly because of its CNN score. It
has been previously shown to work better than Vina (Sunseri and
Koes, 2021) on 76% of the targets in the Database of Useful Decoys-
Enhanced (DUD-E) and LIT-PCBA. GNINA captures solvent
contributions to binding implicitly (Hochuli et al., 2018). In the
current work, it increased specificity by reducing false negatives.
These characteristics are likely due to the robustness of its CNN
scoring model as well as the curated datasets used for its training
(Francoeur et al., 2020), designed to avoid bias due to size. At
present, docking is not good at identifying transient interactions and
cryptic binding sites, and extensive ligand conformation sampling
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FIGURE 3
Structure comparison of PDE5A results with docked sildenafil (1T9S in green (B, G); 1T9R in purple (C, H), AlphaFold in deep blue (D,I), and the model
crystallized with sildenafil (2H42 in orange (E,J). (A) Shows the superposition of all four structures. (B–E) show each model in the same orientation as in
A, with an oval emphasizing the H-loop (residues L672-H685 in wild type). Residues 658–671 are missing on 1T9R, and residues 658–681 are chimeric
in 1T9S (oval). (G–J) Display side views to emphasize that the binding location and pose for sildenafil were different between models. (F) Close-up of
GMP bound to 1T9S, with water molecules in red, zinc in gray, and magnesium in green.∗Indicates RMSD to XRD structure after CNN rescoring.

cannot be performed. These challenges may be tackled with stable
diffusion by generating different conformations of the receptor
and ligand. GNINA should be tested against more receptors,
particularly those with bad AUC already described in the literature
(Brozell et al., 2012; Allen et al., 2015).

Structural visualization of docked models should be the last and
most dispensable step because it is harder to systematize and is
subject to human biases. If a “less than 2 Å” metric had been used
to detect binders in our model, even the best sildenafil result would
have been discarded as a poor binder, highlighting that this metric
is arbitrary.

Conclusion

The use of GNINA calculated affinity and CNN score improved
docking for repurposing.

We propose the following heuristic for all docking efforts using
any program:

1. An XRD structure crystalized with a ligand is better than an
AlphaFold model as a docking receptor.

2. Use GNINA to select a receptor that docks against its ligand
with a ≥0.9 CNN score. Otherwise, use the receptor with the
highest CNN score.

3. If the CNN score is not available, create a ROC
analysis to identify the overall quality of the target,
distinguish true vs. false binders, and select the most
suitable docking program. This requires known true
positives.

4. Consider the top 50 or 100 ligands ranked by affinity as
potential binders to evaluate further.

5. Structure comparison and visualization should be the last step
after all quality controls have been exercised, and it is not
crucial to detect a true ligand.

As shown here, our heuristic improves the overall docking
performance when using GNINA by taking advantage of
its CNN score. The combination of in silico and/or in vitro
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techniques, in addition to the use of approved drugs, brings
certainty to the results. Ultimately, all docking programs
will suffer from bias given the data they were trained on;
even affinities taken as correct can be a source of error
(Landrum and Riniker, 2024).

Because docking with GNINA is fast and can be done on a
desktop computer, we hope the scientific community will begin to
use the CNN score to test whether our results can be generalized to
any receptor.

Finally, conclusions from every experiment should be
interpreted based on the technique limitations and in
the context of biochemical, cellular, and organism-level
information.
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