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Classification of collagen
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learning and texture-based
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Airway remodeling is present in all stages of asthma severity and has been
linked to reduced lung function, airway hyperresponsiveness and increased
deposition of fibrillar collagens. Traditional histological staining methods
used to visualize the fibrotic response are poorly suited to capture the
morphological traits of extracellular matrix (ECM) proteins in their native
state, hindering our understanding of disease pathology. Conversely, second
harmonic generation (SHG), provides label-free, high-resolution visualization
of fibrillar collagen; a primary ECM protein contributing to the loss of
asthmatic lung elasticity. From a cohort of 13 human lung donors, SHG-
imaged collagen belonging to non-asthmatic (control) and asthmatic donors
was evaluated through a custom textural classification pipeline. Integrated with
supervised machine learning, the pipeline enables the precise quantification
and characterization of collagen, delineating amongst control and remodeled
airways. Collagen distribution is quantified and characterized using 80 textural
features belonging to the Gray Level Cooccurrence Matrix (GLCM), Gray
Level Size Zone Matrix (GLSZM), Gray Level Run Length Matrix (GLRLM),
Gray Level Dependence Matrix (GLDM) and Neighboring Gray Tone Difference
Matrix (NGTDM). To denote an accurate subset of features reflective of
fibrillar collagen formation; filter, wrapper, embedded and novel statistical
methods were applied as feature refinement. Textural feature subsets
of high predictor importance trained a support vector machine model,
achieving an AUC-ROC of 94% ± 0.0001 in the classification of remodeled
airway collagen vs. control lung tissue. Combined with detailed texture
analysis and supervised ML, we demonstrate that morphological variation
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amongst remodeled SHG-imaged collagen in lung tissue can be successfully
characterized.

KEYWORDS

airway remodeling, asthma, collagen, machine learning, second harmonic generation,
texture analysis

1 Introduction

ASTHMA is characterized by chronic airway inflammation (the
target of all current asthma therapeutics) and airway remodeling,
which involves the epithelium, basement membrane, lamina
propria, smooth muscle and vascular structures (Holgate, 2008).
Airway remodeling was first denoted to be present in fatal
asthmatics by Hubert and Kossler in 1922 and since then,
has been documented in all stages of asthma severity (Huber,
1922). Airway remodeling has also been linked to reduced
lung function, airway hyperresponsiveness and greater use of
asthma medications (Bergeron et al., 2010; Boulet et al., 1997;
Elias et al., 1999; James et al., 2002; Zeiger et al., 1999).
Increased deposition of fibrillar collagens-I and III has been
shown within the extracellular matrix (ECM) remodeled airways of
asthmatic patients (Dunnill, 1960).

There is a natural abundance of fibrillar collagen within
the ECM of the lung to retain tensile strength and support
suitable architecture. However, alterations in the concentration
and distribution of collagen fibres can lead to loss of anatomical
structure, compromised cell function, and tissue fibrosis (Buehler,
2006; Engler et al., 2009; Hoshino et al., 2010; Liu L. et al., 2021).

To understand the changes in ECM at a microcellular level,
tissue analysis is conducted ex-vivo. Historically, histological
staining has been the predominant approach for studying the
complexity of airway remodeling and for visualizing alterations
in cell behaviour and tissue structure (Dunnill, 1960; Mostaço-
Guidolin et al., 2021). The abundant proliferation of collagen in
asthmatic airway remodeling was first visualized using Verhoeff-
van Gieson and Masson trichrome staining (Carroll et al., 2000;
Dunnill, 1960; Hogg, 1997). While histological staining remains
the gold standard for assessing tissue alterations, the process
of staining and sample fixation often alters the tissue structure
through protein denaturation and cross-linking (Alturkistani et al.,
2015; Javaeed et al., 2021). Furthermore, the representation of the
collagen fibers are mixed with other extracellular components,
making it difficult to resolve exact collagen proteins within
a sample when applying H&E staining (Keikhosravi et al.,
2020). These traditional staining methods lack specificity for
detailing ECM proteins’ biochemical and structural information,
particularly the fibrillar collagen deposited during airway
remodeling.

A non-centrosymmetric structure in crystallography refers to a
crystal structure that lacks a center of symmetry. In such structures,
there is no point within the crystal through which every part of the
structure has an identical part located symmetrically opposite. This
lack of inversion symmetry often leads to unique physical properties,
such as piezoelectricity, second-harmonic generation, and other
nonlinear optical effects.

Fibrillar collagen lacks a centre of symmetry, demonstrating a
non-centrosymmetric property. This lack of inversion symmetry
leads to its unique physical properties, making it an ideal candidate
for nonlinear optical effects such as second harmonic generation
(SHG) imaging (Bancelin et al., 2014; Chen et al., 2012; Cox et al.,
2003; Han et al., 2005; Poole Mostaço-Guidolin et al., 2021).
Since the first demonstration of the SHG application and its
capabilities in imaging biomolecules, it has been widely used to
monitor fibrillar collagen and its role in remodeling and wound
repair (Deka et al., 2012; Israel et al., 2017; Sun et al., 2008;
Tilbury et al., 2014). SHG allows for label-free tissue structure
assessment without requiring exogenous labelling and/or extensive
sample preparation. Visualizing fibrillar collagen through SHG
imaging has provided insight into the morphological alterations in
asthmatic lung tissue (Mostaço-Guidolin et al., 2019).

With the promise of non-invasive imaging, SHG is capable of
visualizing freshly obtained tissues in their natural physiological
state. With this, the structural information of the samples can
be accessed immediately. Additionally, when combining fixation
methods such as paraffin embedding with SHG microscopy, one
can achieve prolonged storage of tissue, increasing SHGmicroscopy
versatility to image fresh or preserved tissues. Fixation allows for
maintaining and highlighting the integrity of tissue morphology.
Furthermore, paraffin-embedding supports the serial sectioning
of tissues, allowing for detailed cross-sectional analysis of tissues,
inclusive of airways.This routinely adoptedmethod can guide digital
reconstruction of 3D data and visualize the intricate anatomy of
the lungs (the bronchioles, alveoli and alveolar capillary network)
(Baschong et al., 2001; Grothausmann et al., 2017; Monaghan et al.,
2016). Furthermore, paraffin-fixed tissues allow for successful
reinvestigation of archived human tissue. Authors Bredfeldt et al.,
follow a similar approach, where collagenous fibres of cancerous
breast-tissue are evaluated using SHG upon having been paraffin-
embedded and H&E stained (Bredfeldt et al., 2014). Different
groups have explored and tested the feasibility of using paraffin-
embedded tissues for both stained-based microscopy and label-free
imaging (Martin et al., 2013; Sabo et al., 2022; Vijayaraghavan et al.,
2014). Findings support the use of paraffin-guided fixation agents,
countering the common perception that these tissue additives
introduce harmful autofluorescence when imaging. Sabo et al.,
successfully retrieve specialized high-content data from paraffinized
tissue sections when measuring collagen distribution in interstitial
fibrosis with SHG imaging (Sabo et al., 2022).

However, to fully capitalize on the intricate level of detail
offered by SHG imaging, effective pattern recognition tools are
required to appreciate the specific features associated with tissue
remodeling. Gray-level textures represent an advanced statistical
approach for quantifying the spatial distribution of gray-level
pixel intensities within a localized area (Liu Y. et al., 2021;
Song et al., 2022). With the organization of pixel intensities
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into a tabular format, various features detailing the structural
properties of the SHG-imaged tissue can be derived through the
quantitative distribution of pixels. We explore the application of five
primary texture groups: Gray Level Cooccurrence Matrix (GLCM),
Gray Level Size Zone Matrix (GLSZM), Gray Level Run Length
Matrix (GLRLM), Gray Level Dependence Matrix (GLDM), and
Neighboring Gray Tone Difference Matrix (NGTDM) (Amadasun
and king, 1989; Galloway, 1975; Haralick et al., 1973; Sun and
Wee, 1983; Thibault et al., 2014). Through the examination of
pixel arrangement, gray-level textures can help infer the underlying
organization and structure of collagen fibrils (Cicchi et al., 2013;
Hu et al., 2012; Wu et al., 2016). The extracted textural features are
used to train a support vector machine capable of differentiating
between control and remodeled asthmatic airways. In automating
the classification of SHG images based on remodeling status, we
present a quantitative approach for monitoring changes using
gray-level textures. We demonstrate SVM’s robust capabilities as a
powerful classification tool adept at discerning morphology types
within collagen fibrils, while successfully accounting for minute
differences easily missed by the human eye. This method offers
scalability, allowing for its extension across various contexts and
pathologies.

With the interactions between the microenvironment and its
cellular components slowly becoming understood as a driving force
in several chronic diseases, our work presents a methodology
capable of visualizing these imposed structural changes during
the onset of asthma. Our developed pipeline proposes a proof-of-
concept that explores the non-invasive characterization of tissue
remodeling and paves the way to assess detail regarding ECM
structure alterations which are not possible to track using common
staining strategies. An increased understanding of the ECM and
its contribution in chronic lung diseases can support the testing
and development of novel targeted therapies. While leveraging
SHG microscopy and robust image analysis methods, we propose a
novel image-based, reproducible quantitativemethodology pipeline,
capable of exploring diseased microenvironments and tracking
changes associated to tissue structure alterations due to diseases
and/or therapeutic interventions.

2 Materials and methods

2.1 Human lung tissue preparation and
dataset

A total of 12 lungs deemed unsuitable for transplantation were
obtained with informed consent from next-of-kin of donors with
asthma (n = 6) and donor controls (n = 6) through the International
Institute for the Advancement ofMedicine (IIAM, Edison, NJ; www.
iiam.org) and biobanked within the James Hogg Lung Registry
(Ethics protocol number H00-50110). This study was approved by
the Providence Healthcare Research Ethics Board (H13-02173). As
previously described, the lungs were air-inflated to 10 cmH2O,
and frozen over liquid nitrogen vapour. Lungs were then cut into
2 cm thick slices (transaxial plane) (Hogg et al., 2004; Mostaço-
Guidolin et al., 2019) and each slice was uniformly randomly
sampled by using a line grid (225 mm2), superimposed onto
the photographs of each lung slice. Sampled cylindrical tissue

cores (15 × 20 mm) were formalin-fixed and paraffin-embedded.
Sequential 5 μm tissue sections containing airways were used for
SHG imaging, with sectioned counterparts stained with Verhoeff-
vanGieson stain and digitally scanned (ScanScope XT slide scanner;
Aperio Technologies) for reference. Through sequential slicing, the
orientation of the tissue sessions remained consistent throughout
imaging. Of the total dataset of 549 images; 296 are representative of
asthmatic donors and 253 representative of control.The exact image
collection amongst control and asthma is as follows: control (31, 37,
37,43,47, 58) and asthma (43, 55, 38, 39, 56, 65).

2.2 Second harmonic generation (SHG)
imaging

Each unstained tissue section was imaged using a multimodal
Nonlinear Optical microscope (NLOM), housed at the National
Research Council in Winnipeg, Canada. The custom-built system
allowed for the acquisition of correlative two-photon excitation
fluorescence (TPEF),CoherentAnti-StokesRamanScattering (CARS)
and SHG imaging, as previously described (Ko et al., 2009; Ko et al.,
2010).ATi:Sapphireoscillator(Tsunami,Spectra-Physics)operatingat
800 nm with a 100 fs pulse duration and 20 nm bandwidth was used.
The backward SHG signal was collected and transmitted to a non-
descanned PMT detector (H9656 series, Hamamatsu, Bridgewater,
NJ, USA) mounted on the microscope assembly (400 ± 30 nm),
using a 20x, 0.75NA infinity corrected air objective lens (Olympus
Canada, Markham, ON, Canada). The system generated images of
approximately 450 × 450 μmwith a translational resolution of 0.2 μm.
A motor controller (MP-285, Sutter Instrument, Novato, CA, USA)
provided the motorized translational movement of the stage (Sutter
Instrument,Novato,CA,USA). ScanImage (ver.3.5) softwarewasused
for image acquisition and laser scanning control (Pologruto et al.,
2003). The typical pixel dwell time for an average of four scans for a
single frame collection was 21μs.

2.3 SHG image classification pipeline
overview

A total of 549 labelled SHG images of airways were obtained
and used in this study. The differences in signal distribution patterns
associated with collagen fibre deposition were characterized using the
imageclassificationpipelineshowninFigure 1.Thedevelopedpipeline
is comprised of five chronological steps: image preprocessing, feature
extraction, data cleaning, feature refinement and classification. To
support adequate textural analysis, image preprocessing first ensures
the SHG images are of 8-bit bit-depth and TIFF format, preserving
the quality of the graphics. To represent a standardized intensity of
SHG fibrillar collagen signal amongst all included images, the dataset
had to meet a minimum pixel intensity threshold. For each of the
images,5gray-level texturematricesareobtained inparallel, extracting
relevant features capable of capturing the unique pixel arrangement
and characteristics of collagen distribution.The extracted features are
sequentially cleaned, replacingoutlier datawithmedian values.A total
of 80 features were extracted per image and refined using i) ANOVA
F-test, ii) recursive feature elimination, iii) permutation importance
and iv) coefficient of variation strategies. Lastly, the refined features

Frontiers in Bioinformatics 03 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1539936
http://www.iiam.org
http://www.iiam.org
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Kunchur et al. 10.3389/fbinf.2025.1539936

FIGURE 1
Overview of SHG Image Classification Pipeline. Inclusive of five sequential stages: image dataset pre-processing, textural features extraction, data
cleaning, feature refinement and morphology classification using a supervised SVM model. SHG: Second Harmonic Generation. SVM: Support Vector
Machine. FOS: First Order Statistics. GLCM: Gray-level cooccurrence matrix. GLSZM: Gray Level Size Zone Matrix. GLRLM: Gray Level Run Length
Matrix. GLDM: Gray Level Dependence Matrix. NGTDM: Neighbouring Gray Tone Difference Matrix.

weresupplied intotwosupervisedmachine learningmodels inparallel;
testing which framework achieved the highest classification accuracy
when discriminating amongst control and remodelled airway tissue.

2.4 Image preprocessing

In this study, SHG images originally exported as 16-bit TIFF files
were converted to 8-bit in ImageJ (Schneider et al., 2012), for texture
analysis, reducing both computational demands and memory usage
while still preserving the core textural information (Bankfield,
2024). Although this down conversion restricts the dynamic range,
it was deemed acceptable given our focus on relative texture features
rather than absolute intensities. A predefined intensity threshold
(I < 5) was then applied to exclude low-signal images that lacked
sufficient grey-level information for reliable textural analysis. To
address outlier values, we replaced anomalous intensities with
the median value of the dataset; although alternative methods
exist, median replacement was selected for its simplicity and
reproducibility when processing large image sets.

2.5 Feature extraction and data cleaning

To evaluate the textural features of collagen distribution, a
total of 80 gray-level texture features were extracted from each
image, including four first-order statistic (FOS) features, 24 Gray-
level cooccurrence matrix (GLCM) features, 16 Gray Level Size
Zone Matrix (GLSZM) features, 16 Gray Level Run Length
Matrix (GLRLM) features, 15 Gray Level Dependence Matrix
(GLDM) features, and 5 Neighboring Gray Tone Difference Matrix
(NGTDM) features. The matrix operations and the respective
features extracted for each family of texture features are defined in
Supplementary Table S1. Gray-level texture analysis was performed
computationally in two steps: i) base construction of each of the
gray-level texture matrices, and ii) calculation of features from

each of the matrices. For the GLCM and GLRLM, all features
extractedwere averaged from four directionalmatrices at 0°, 45°, 90°
and 135°. To address outlier cases, the interquartile range method
(IQR) was applied due to its simplicity and low susceptibility to
noise (Barbato et al., 2011). While effective for distributions with
high skew, it lacks the adaptability to individual cases that other
outlier rejection methods might possess. Given the inability to
assume that each feature’s distribution is free of high skew, the
IQR method emerged as a suitable choice for outlier rejection.
Rather than outright removal from the dataset, rejected outliers were
substituted with the median value. The median is a robust measure
of central tendency and does not shift significantly with outliers
such as the mean. Bias is minimal when using median values as the
replacement value is independent of skew, preserving the original
data structure. As our data is non-normally distributed, using the
median ensures that the imputed values are representative of the
data. Furthermore, the median value accommodates both small and
large datasets (Maronna et al., 2006). This approach is aimed at
preserving individual data points and not further limit the size of
our dataset. With a comprehensive initial list of 80 texture features
extracted from the SHG dataset, we next focus on dimensionality
reduction and feature refinement to avoid overfitting and ensure
our models capture the most predictive information, as detailed in
Section F. This preserves data quality, integrity and further support
the reproducibility of our methodology. All methods applied to
feature extraction and data cleaning were performed using custom
“in-house” Python scripts.

2.6 Feature refinement

With 80 features, dimensionality reduction and feature
refinement are required to avoid overfitting and to allow adequate
generalizability of our collagen classification models. To ensure
the high predictive power of the supplied features, four feature
refinement methods were investigated: ANOVA F-test (filter
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method), recursive feature elimination (wrapper method),
permutation method (embedded method) and the novel coefficient
of variation (statistical) method. The ANOVA F-Test identifies
features with the highest ratio of variance between different groups
and within the same groups. Distributions that exhibit minimal
overlap amongst features are selected, to provide the model with
distinctive features that can facilitate easier discrimination between
two groups of data (Dissanayake Md Johar, 2021; Remeseiro and
Bolon-canedo, 2019). The top ten features ranked using ANOVA
F-test scores were selected. Recursive Feature Elimination (RFE)
deploys all features initially into a decision tree model, progressively
removing one feature at a time while re-fitting the defined decision
tree model (Guyon et al., 2002). The iterative process continues
until a drop in model accuracy is observed, indicating that the
optimal number of features has been reached. Alternatively,
permutation importance (PI) determines the optimal feature subset
by establishing a baseline score through the training of a random
forest classifier. During training, the model is continuously fitted
to accommodate a feature which has been “permuted/rearranged”.
The random forest classifier is employed to make predictions using
this permuted validation data and re-evaluated (Altmann et al.,
2010). The PI score for a feature is computed as the difference
between the baseline score and the score achieved when the model
predicts using the permuted feature. This permutation process is
repeated for each feature over 100 iterations to determine which
features, on average, cause the most significant changes in accuracy
(Altmann et al., 2010). Lastly, a novel Coefficient of Variation (CV)
method was applied to capture interclass feature variation. The
CV reflects the standard deviation from the mean, where a higher
CV signifies a greater dispersion of the mean. As demonstrated
in a previous application (Kunchur et al., 2022), a CV threshold
of 8% was applied. The detailed methodology of the CV method
can be found elsewhere. The subsets of features extracted from
each refinement technique were independently used to train a
support vector machine model. ANOVA F-test, PI and RFE feature
refinementwere implemented using Scikit Learn packages in Python
(scikit-learn, developers BSD L, 2007a; scikit-learn, developers BSD
L, 2007b; scikit-learn developers, BSD License, 2007; scikit-learn,
developers BSD L, 2007c)

2.7 Supervised machine learning

We trained support vector machine models to delineate SHG
images obtained from non-asthmatic controls from those extracted
from remodeled (asthmatic) airways.Through the optimization of a
hyperplane providing maximal class separation, SVMs have proven
to be powerful binary classification models. The default parameters
of the sklearn.svm model with a linear kernel were used (scikit-
learn, developers BSD L, 2007c). Both linear and RBF kernels
were compared, however, linear presented stronger classification
metrics. With a balanced dataset, the class weight function was
set to a default parameter of one. Linear discriminant analysis was
used to further reduce the dimensionality of the feature set for
each of the feature refinement methods prior to SVM training.
Feature refinementmethods and LDAwere used in unison to reduce
redundant/overlapping features amongst the five textural matrices
employed. Feature refinement methods were leveraged with the

intention to remove similar features; with LDA then identifying
the best discriminative space. When used in combination, higher
classification metrics (the ones presented) were observed. The
accuracy of each model was assessed through Repeated Stratified K-
Fold validation, employing ten splits and conducting three runs per
split. Accuracy scores were computed for each fold, and the mean of
these scores served as the ultimate accuracy metric for the model.
Each model underwent training on a randomized split, utilizing
66% for training data and 33% for test data, with a fixed random
state of one. The split was conducted at the image level, through
the randomization of the samples amongst donors. Precision,
recall, and F1-score were documented, alongside the accuracy from
Repeated Stratified K-Fold validation. This classification process
was repeated for each set of feature subsets determined by the
previously mentioned feature refinement methods, inclusive of a
final aggregation of all selected features. All supervised ML models,
dimensionality reduction, cross-validation andperformance scoring
were implemented using Python3 SciKit Learn ML packages.

3 Experimental results

Representative SHG images depicting the collagen organization
in non-asthmatic control and an asthmatic airway are
depicted in Figure 2.

3.1 Performance using all 80 extracted
features

Though it is not advisable to supply simple supervised
classification models with many more features than positive
(asthmatic) cases available for classification, our initial objective was
to investigate the functionality of using all 80 extracted gray-level
textures. An overall k-fold cross-validation accuracy of 88% ± 1%
in the classification of asthmatic airways vs. control airways was
observed with amacro-averaged ROC-AUC of 0.98 ± 0.0, for k = 10,
as summarized in Supplementary Figure S1. The model exhibited
a higher precision of 0.88 ± 0.0 reflected in the classification of
asthmatic airways in comparison to control airways.

3.2 Performance using refined Feature sets

Four feature refinement methods were tested and four SVM
models were independently trained on the feature subsets identified
by each refinementmethod.The selected features of each refinement
method are shown in Table 1.

The performance achieved by each trained model on the four
feature subsets are shown in Figure 3 and Table 2. Refined features
selected by ANOVA F-Test (Filter Method) and Recursive Feature
Elimination (Wrapper method) demonstrated high predictive
importance, presenting optimal classification metrics of 86% ±
1% and 87% ± 2% accuracies respectively. With a selection of
only seven features in total, RFE was capable of delineating
between remodeled and control airways. SVM trained on RFE
features boasted a k-Fold Cross Validation accuracy of 87% ± 2%
with a Macro-Averaged ROC-AUC of 0.94 ± 0.0. The ANOVA
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FIGURE 2
Representative SHG images of fibrillar collagen deposition in airways from (a) control and (a) asthmatic donors. A more uniform collagen fibre
arrangement is evident in control airways, while a more fragmented structure is typically present in asthmatic cases. (a). Performance using all 80
extracted features.

F-test achieved a similar performance, with k-Fold Cross Validation
accuracy of 86% ± 1% and Macro-Averaged ROC-AUC of 0.94
± 0.0. In comparison, models trained on features selected by PI
and CV achieved lower accuracies, with respective K-Fold Cross
Validation accuracies of 80% ± 1% and 82% ± 1% and ROC-AUCs
of 0.86 ± 0.0 and 0.88 ± 0.0. Confusion matrices for each classifier
are found in Supplementary Figure S2.

3.3 Performance using Pooled set of 33
features

To improve classification accuracy and mitigate the risk of
overfitting, the final subset of tested features comprised a pooling
of all features identified using the four feature refinement methods.
Redundant features common to all methods were eliminated,
establishing a subset of 33 unique gray-level textural features (listed
in Supplementary Tables S4, 5). High classification performance
metrics of asthmatic and control collagen morphologies were
observed, with a k-fold cross-validation accuracy of 86% ± 1% and
Macro-Averaged ROC-AUC of 0.97 ± 0.0. The confusion matrix for
pooled features is shown Supplementary Figure S3. Concerning the
F1 scores in Figure 4, themodel exhibited an F1-score of 0.83 for NA
(control) indicating the model’s difficulty in accurately predicting
the positive instances of NA (control).

4 Discussion

Insight into the structural alterations in ECM is essential to
understanding disease pathology. In this study, we demonstrate the
utility of supervised machine learning coupled with texture-based

analysis in elucidating ECM remodeling in asthma. Specifically, we
highlight that the deposition and morphology of fibrillar collagen
in control and remodeled airways vastly differ. We apply first- and
second-order statistical texture features to quantitatively assess the
variance in collagen morphology between non-asthmatic control
and asthmatic or remodeled airway states. By identifying distinct
traits specific to control and remodeled collagen, we can objectively
track ECM modifications in a diseased environment, specifically in
asthma. Given that the interactions between the microenvironment
and its cellular counterparts are slowly becoming understood as a
driving force between tissue and chronic disease, there is a need
to establish quantitative methodologies capable of tracking said
morphological changes.

Gray-level texture analysis presents an effective approach to
monitoring tissue ECM alterations, especially in the structure and
morphology of the collagen network. In a broader context, the five
textural matrices have been commonly applied independently to
track textural features denoting changes in disease states of varying
imaging modalities such as MRI, CT images, ultrasound, x-ray
microscopic cellular and histopathological images (Alvarenga et al.,
2010; Chabat et al., 2003; Gibbs and Turnbull, 2003; Herlidou et al.,
2004; Moura et al., 2022). Success in the evaluation of collagen
deposition was demonstrated using SHG and GLCM in tracking
the aging of tissues and the onset of pancreatic cancer (Hu et al.,
2012). To provide an exhaustive overview of applicable features,
features derived from five gray-level texture families (GLCM,
GLRLM, GLDM, GLSZM, NGTDM) were evaluated. Though the
operation of some of the matrices is deemed unconventional
for tracking biological systems, the mathematical approach for
feature characterization can easily be extrapolated to evaluate
any convention, providing novelty to the analysis conducted. A
combination of said textural matrices has been applied in examples
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FIGURE 3
(a–d) Performance metrics for each subset of refined features. ROC-AUC obtained for each feature subset: (a) Filter Method–ANOVA F Test, (b)
Wrapper Method–Recursive Feature Elimination, (c) Embedded Method–Permutation Importance and (d) Coefficient of Variation Method.

TABLE 2 Summary of performance metrics of SVM trained on each of the four distinct feature subsets.

Method Status Precision Recall F1-score Best Accuracy

Filter - ANOVA F
Control 0.84 0.83 0.84

86%
Asthmatic 0.88 0.88 0.88

Wrapper – RFE
Control 0.84 0.83 0.84

87%
Asthmatic 0.88 0.88 0.88

Embedded – PI
Control 0.81 0.81 0.81

80%
Asthmatic 0.86 0.86 0.86

CV
Control 0.80 0.79 0.80

82%
Asthmatic 0.85 0.86 0.85

RFE: Recursive Feature Elimination. PI: Permutation Importance. CV: coefficient of variance.
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FIGURE 4
Performance metrics for 33 Pooled Features. Performance metrics of a trained SVM using all 33 Pooled features, showcasing (a) observed
macro-averaged ROC-AUC of 0.9691 ± 0.00 and (b) precision, recall, and f1-scores for both asthmatic and control classes.

of grain classification, dosiomics in radiation therapy and x-ray
imaging (De Moura et al., 2020; Placidi et al., 2021; Robert Singh
and Chaudhury, 2020).

The number of samples relative to the number of features is
crucial. Using a subset of eighty features for a sample size of
549 is justifiable, however, we increase the dimensionality of the
dataset at the cost of computational and classification complexity.
Regardless of the SVM classifiers exhibiting optimal F1, precision,
and recall scores for each class when supplied with all 80 textural
features, a near-perfect macro-averaged ROC of 0.98 is indicative
of poor generalization. Standard approaches to address overfit
models involve tasks such as eliminating outliers from the dataset,
expanding the dataset size, rectifying class imbalances, and/or
enhancing feature refinement. Due to sample limitations, increasing
the size of the dataset is not a feasible option for our study.
Using data engineering methods, such as image mirroring and
stretching to grow the dataset would negatively impact the collagen
morphologies unique to both the remodeled asthmatic airways and
control airways. With an evenly balanced dataset of 296 images of
asthmatic remodeled airways and 253 of control airways, the threat
of class imbalance can be further eliminated.

To better understand the analysis of collagen morphologies
using gray-level textures, it is crucial to identify how the selected
features capture biological changes such as collagen fragmentation,

fiber alignment, and disease progression. As expected, all four FOS
featureswere eliminated by every refinementmethod. FOSprimarily
represents pixel intensity distributions without spatial context and
thus fails to capture the broader structural patterns essential for
distinguishing healthy from asthmatic tissues.

ANOVA F-Test and RFE (our two best-performing subsets)
prioritized GLCM, GLSZM, GLRLM, and NGTDM features
because these metrics reflect organization and continuity (or
fragmentation) of fibrillar collagen bundles. For instance, GLCM
correlation measures the likelihood of repetitive patterns, which
is lower in asthmatic airways where collagen fibers become
disorganized and fragmented. GLSZM features (e.g., large area
emphasis) relate to the size and clustering of fibrotic collagen
bundles—often larger, more irregular, and fragmented in diseased
states. Similarly, GLRLM features capture consecutive pixel runs
along specific directions; higher short-run emphasis, for example,
signifies short segments of collagen indicative of pathological
breakdown.

In line with these findings, other studies using large radiomics
datasets (Moura et al., 2022; Zhang et al., 2023) confirm the necessity
of feature refinement when dealing with high-dimensional feature
spaces. While LASSO regression is common in radiomics, we
compared four different refinement methods (ANOVA, RFE, PI,
and CoV) to ensure an unbiased understanding of feature relevance
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in differentiating remodeling patterns in asthma. RFE’s reliance
on supervised models can risk overfitting, but the final chosen
features still yielded robust classification performance. Conversely,
filter methods like ANOVA directly measure the separation
between classes, selecting features that reflect morphological
distinctions (e.g., fibril alignment vs. disorganized deposition)
without depending on a predictive model.

Our key objective is to explain the observed collagen remodeling
rather than merely optimize classification metrics. Collagen I
and III, which provide tensile strength and regulate cellular
responses, often exhibit fragmented or over-deposited patterns in
asthmatic airways (Burgstaller et al., 2017). Pathologic changes
in collagen fibril formation can negatively impair cell polarity
and alignment (Rozario and DeSimone, 2010). These changes
are strongly associated with the pathogenesis and progression of
airway disease (Liu Y. et al., 2021). Hence, features capturing high
entropy, large fragmented zones, or reduced fiber orientation (e.g.,
run entropy, size zone variance, and busyness) are biologically
meaningful indicators of disease progression.We found thatGLSZM
and GLRLM metrics were particularly sensitive to these changes,
highlighting the thicker, more variably oriented bundles commonly
observed in remodeled airways.

Though deep-learning methods and transfer learning have
proven to be successful at denoting textural variation and
outperforming classical models in accuracy, they often obscure
which specific image features drive predictions. With them aim
of improving classification accuracy, Davydko et al., propose the
aggregation of all five textural matrices using a Feature-Constructor
neural network structure comprised of an encoder, encoded features
aggregator and neural networks (Davydko et al., 2021). The hybrid
classifiers based on CNN, LSOF, GMDH are applied to characterize
pneumonic lesion types of COVID-19. Though a total accuracy
of 0.96 was achieved, the optimal aggregation of the five textural
matrices remains blinded to the user, shielding the contribution of
each specified feature. The authors state that though the application
of all five matrices are powerful textural descriptors, they do not
all necessarily apply in the context of their classification problem.
Hence, insight into the exact feature subsets leveraged for high
classification accuracy is necessitated (Davydko et al., 2021). In
contrast, our approach uses hand-selected gray-level features to
quantitatively link machine-learning outputs to actual collagen
changes in the tissue microenvironment. This transparency helps
validate the findings from a biological standpoint, providing a
clearer picture of how collagen remodeling manifests in the ECM
and influences disease severity.

To conclude, feature refinement was imperative to reduce our
initial set of 80 features to a manageable subset that best reflects
collagen’s structural and morphological alterations. GLSZM and
GLRLM in particular provided strong discriminative power, offering
insight into bundle size, fragmentation, and orientation. While each
texture matrix has limitations—such as GLSZM’s lack of orientation
or GLCM’s reliance on only four directional angles—combining
multiple matrices yields a robust, multifaceted assessment of fibril
arrangement. Ultimately, this approach enables a clearer biological
interpretation of collagen remodeling in asthma and underscores
the necessity of selecting textural features that specifically capture
pathological fiber changes.

Despite the novelty of employing a substantial number of
gray texture features, incorporating local binary pattern textures
or Law’s textures could aid in addressing pertinent information
gaps. Furthermore, the features computed in this study lacked scale
invariance. Hence, alterations in image magnification, variations in
ROI and observation window sizes, pose a threat to the calculated
features. To ensure consistency, a set of images should be captured
at the same magnification, as the impact of differing ROIs or
observation window sizes was evident. The deliberate selection of
ROIs, through either manual intervention or automated methods,
could curb this impact.

All presented models (trained using all 80 features, subsets
of refined features and pooled features) encountered challenges
when classifying the collagen morphology of control airways. In the
applied dataset, significant overlaps in the architecture of collagen in
both remodeled asthmatic and control airways were evident. Even
with the supply of high predictive features, the model presented
challenges to separate amongst disease groups. This demonstrates
the difficulty in the exploration of the cellular microenvironment
when samples are not from tightly controlled sources. Biological
samples display a wider range of differences in collagen network
morphologywithin groups.Theprobability of control collagen being
misclassified as asthmatic airways was more prevalent than the
reverse case. Though it is outside of the scope of this study, it would
be pertinent to explore the relation of collagen distribution amongst
individuals of varying sexes, ages and differing comorbidities. The
lack of standardization of the collagen morphologies amongst our
control donors could lead to added complexity in the classification
task. Ideally, individualistic traits such as age and sex should be
accounted for as they are potential factors driving differences in
the collagen microstructure. However, the current work was limited
in its sample size, curbing the exploration of the aforementioned.
With an expanded dataset, these characteristics will be considered in
future analysis. To better support the generalization of our proposed
pipeline, the employed set of textural features should be tested on an
independent secondary dataset of relevant SHG images.Though it is
not presented in this work, the proposed pipeline has been applied
to characterize collagen-characteristics in varying SHG datasets,
analyzing the role of collagen morphology and structure in age-
related changes of tendons, burn effects in skin, development of
atherosclerosis and infarcted hearts.

The work presented facilitates the extrapolation in assessing the
effectiveness of drug treatments in reversing the fibrotic response
observed during the onset of asthma. With this proof of concept,
clinicians could investigate the impact of these treatments on ECM
remodeling and ascertain their efficacy in redirecting collagen
accumulation in presuming a non-fibrotic environment.

5 Conclusion

Extracting textural features associated with collagen remodeling
in biomedical tissues offers a more comprehensive and objective
analysis of fibrotic responses, especially those related to changes in
airway structures. Such metrics can be used to determine the extent
of airway remodeling in obstructive lung diseases such as asthma
or chronic obstructive pulmonary disease and/or the effects of
potential novel therapies. The combination of label-free microscopy
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imaging and supervised machine learning approaches allowed us
to demonstrate for the first time that gray-level-based textural
variation of the fibrillar collagen can be a promising approach to
identify subtle structural changes in asthmatics compared to non-
asthmatics airways.
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