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Primer on machine learning
applications in brain
immunology

Niklas Binder, Ashkan Khavaran and Roman Sankowski*

Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany

Single-cell and spatial technologies have transformed our understanding
of brain immunology, providing unprecedented insights into immune cell
heterogeneity and spatial organisation within the central nervous system. These
methods have uncovered complex cellular interactions, rare cell populations,
and the dynamic immune landscape in neurological disorders. This review
highlights recent advances in single-cell “omics” data analysis and discusses
their applicability for brain immunology. Traditional statistical techniques,
adapted for single-cell omics, have been crucial in categorizing cell types
and identifying gene signatures, overcoming challenges posed by increasingly
complex datasets. We explore how machine learning, particularly deep learning
methods like autoencoders and graph neural networks, is addressing these
challenges by enhancing dimensionality reduction, data integration, and feature
extraction. Newly developed foundation models present exciting opportunities
for uncovering gene expression programs and predicting genetic perturbations.
Focusing on brain development, we demonstrate how single-cell analyses have
resolved immune cell heterogeneity, identified temporal maturation trajectories,
and uncovered potential therapeutic links to various pathologies, including brain
malignancies and neurodegeneration. The integration of single-cell and spatial
omics has elucidated the intricate cellular interplay within the developing brain.
This mini-review is intended for wet lab biologists at all career stages, offering
a concise overview of the evolving landscape of single-cell omics in the age of
widely available artificial intelligence.

KEYWORDS

single-cell genomics, data integration, deep learning, multi-omcis, development,
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1 Introduction

The field of brain immunology has undergone a remarkable transformation in
recent years, challenging the traditional view of the brain as an “immune-privileged”
site (Louveau et al., 2015). Researchers are now beginning to appreciate the complex
and dynamic immune cell landscape in the brain that plays crucial roles in both
health and disease (Prinz and Priller, 2017; Castellani et al., 2023). This evolving
understanding has been largely driven by technological advancements, particularly in
single-cell and spatial technologies, which have enabled detailed characterization of immune
cell heterogeneity and spatial organization within the central nervous system (CNS)
(Masuda et al., 2020; Mrdjen et al., 2018).

A large portion of research in the field of brain immunology has focused on
myeloid cells, especially microglia and CNS- or border-associated macrophages (CAMs
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or BAMs), due to their critical role in brain homeostasis and
pathology (Prinz et al., 2021; Van Hove et al., 2019). Single cell
omics has facilitated the discovery of cell types and cell states,
mapping of the dynamic immune landscape, and elucidation of
complex cellular interactions in various neurological disorders
(Sankowski et al., 2019; Jordão et al., 2019; Sankowski et al., 2022).
However, as the complexity of the data generated by these methods
increases, significant computational and analytical challenges arise.
State-of-the-art omics experiments profile tens of thousands up to
millions of cells across multiple modalities–in the tissue context
or cell suspensions–generating datasets of extraordinary scale and
complexity. Traditional statisticalmethods only superficially capture
the intricate structures inherent in these high-dimensional datasets
(Lähnemann et al., 2020; Svensson et al., 2020). In addition, the
immense volume of data often pushes the boundaries of current
hardware, demonstrating the need for novel approaches to data
processing and analysis (Melsted et al., 2021).

In response to these challenges, machine learning, (see glossary
in Table 2) especially deep learning (see glossary in Table 2)
approaches, have emerged as powerful tools for the analysis of
complex single-cell datasets (Eraslan et al., 2019; Li et al., 2020).
For example, machine learning tools can be used to enhance
dimensionality reduction and integration of large datasets, but also
for more sophisticated tasks, such as predictive modeling of gene
perturbations (Xu et al., 2021; Lotfollahi et al., 2022; Roohani et al.,
2024). Machine learning-based methods have shown great potential
in capturing patterns and non-linear relationships within high-
dimensional biological data (Ching et al., 2018).

This review aims to provide a concise overview of recent
advances in single-cell omic data analysis and discuss their
applicability in brain immunology, with a particular focus on
machine learning techniques. We will describe the evolution of
data analysis methods, from conventional approaches to novel deep
learning frameworks, such as variational autoencoders (see glossary
inTable 2), graphneural networks, and emerging foundationmodels
(see glossary in Table 2). With a focus on brain development,
we highlight how single-cell analyses have unveiled immune cell
heterogeneity, identified temporal differentiation trajectories and
uncovered potential therapeutic targets for various pathologies.

2 Conventional analysis methods in
single-cell omics

The advent of single cell technologies has transformed our
understanding of the composition and states of brain immune
cells. Two prominent computational frameworks emerged as
cornerstones of single-cell analysis: Seurat (Stuart and Satija, 2019)
and Scanpy (Wolf et al., 2018). Seurat and Scanpy, developed
for R and Python, respectively, incorporate essential statistical
techniques adapted for single-cell data. The analysis workflows are
consistent between both programs with some notable differences
(Rich et al., 2024). To account for technical variations in sequencing
depth between cells and to stabilize variance, the analysis typically
begins with normalization and log transformation (Hafemeister and
Satija, 2019; LunA. T. et al., 2016). In the feature selection step,
highly variable genes are selected for downstream analysis. Then,
dimensional reduction is applied to simplify the data structure using

deterministic algorithms, like principal component analysis. Next,
cell similaritiesare quantified.

Originally, when datasets were relatively small (typically <5,000
cells), cell similarities were calculated using Euclidean distances.
Since the resulting matrices did not scale well for larger datasets
above 10,000 cells, more recent workflows are based on nearest-
neighbor graphs to quantify cell similarity (see glossary in Table
2). These graphs are underlying downstream analyses, including cell
clustering (see glossary in Table 2) and embedding into euclidean
space with Uniform Manifold Approximation and Projection
(UMAP) (see glossary in Table 2).While Seurat and Scanpy both rely
on this graph-based strategy, their graphs are constructed differently,
leading to marginal different UMAP representations and clustering
results between these two frameworks (Rich et al., 2024). Despite
enabling major biological breakthroughs, several shortcomings
emerged, including dependency on dimensionality reduction and
highly variable gene selection. Crucial biological information may
be lost in the process. To address this bias, advanced machine
learning algorithms have been adopted for single-cell omics.

3 Advanced machine learning
approaches

Deep learning, a subset of machine learning, employs deep
neural networks with multiple layers to learn and represent complex
data patterns. Inspired by the structure and function of the human
brain, these networks consist of interconnected nodes (neurons)
that process and transmit information (LeCun et al., 2015). The
impact of deep learning models on various domains of biological
research has been profound, particularly in single-cell omics, image
analysis, and protein structure prediction (Ching et al., 2018). A
prime example is AlphaFold, developed by DeepMind, which has
revolutionized protein structure prediction (Jumper et al., 2021).
AlphaFold uses attention-based neural networks to predict three-
dimensional protein structures from amino acid sequences with
high accuracy. This breakthrough has had significant implications
for understanding protein function, drug discovery, and disease
mechanisms, which ultimately led to the award of the Nobel Prize
in Chemistry 2024 (Callaway, 2024).

Deep learning models have enhanced single-cell omics by
enabling the identification of complex features directly from raw,
high-dimensional datasets, minimizing the need for extensive pre-
processing (Eraslan et al., 2019). This capability has facilitated
the development of powerful tools for critical tasks such as
dimensionality reduction, batch correction, and data integration. As
the field has evolved, various models have emerged, each addressing
specific challenges in single-cell data analysis (Erfanian et al.,
2023). Among these, one of the most influential is scVI (Single-
cell Variational Inference) (Lopez et al., 2018). scVI, a variational
autoencoder, learns a probabilistic representation of gene expression
data while accounting for technical factors such as batch effects
and library size. Autoencoders have also been adapted to integrate
and jointly represent multiple modalities such as RNA, surface
protein expression, chromatin accessibility, and spatial context
(Gayoso et al., 2021; Lopez et al., 2022; Ashuach et al., 2023). This
is a particularly useful aspect of single-cell omics. By projecting
complementary cell information into a so-called latent space via an
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FIGURE 1
Multi-modal integration of single-cell data using deep learning. Various molecular and clinical information is provided to a deep neural network that is
capable of learning a lower-dimensional representation of the data and performing complex predictions on new data. Created in BioRender.
Sankowski, R. (2025) https://BioRender.com/e37u167.

encoder-decoder architecture, this approach can be used to obtain
unseen information from new datasets, like the reaction to drug
treatments or the prediction of gene perturbations (Figure 1).

These developments in single-cell omics and protein structure
prediction exemplify how deep learning is transforming our ability
to extract meaningful insights from complex biological data. As the
field progresses, researchers are now exploring more generalized
approaches, aiming to create models that can be applied across a
wide range of biological questions and datasets. This shift has led
to the emergence of foundation models in single-cell omics, which
promise to revolutionize our understanding of cellular biology and
gene regulation.

4 Foundation models in single-cell
and spatial omics

A foundation model is a type of artificial intelligence system
(see glossary in Table 2) that is trained on a large collection
of data and can be fine-tuned for a variety of downstream
tasks, such as language processing, computer vision, and speech
recognition (Bommasani et al., 2022; Naveed et al., 2024). These
models leverage self-supervised learning on vast datasets to
develop contextual representations that can be adapted to specific
applications. Foundation models have recently gained traction in
the field of single-cell omics due to their ability to leverage large-
scale datasets and transfer learning capabilities (Schaar et al.,
2024; Boiarsky et al., 2023). These models have shown promise
in various applications within single-cell biology, including cell
type classification, gene expression prediction, and cross-modality
integration (Cui et al., 2024).

Dozens of foundation models have emerged in the single-cell
omics field over the past 3 years. We highlight six representative
dissociated single-cell models selected based on citation impact,
methodological innovation, and demonstrated applications: scBert

(Yang et al., 2022), Geneformer (Theodoris et al., 2023), scGPT
(Cui et al., 2024), Universal Cell Embeddings (Rosen et al.,
2024), scFoundation (Hao et al., 2024) and CellFM (Zeng et al.,
2024), along with two spatial models, Nicheformer (Schaar et al.,
2024) and scGPT-spatial (Wang et al., 2025), which incorporate
spatial information. Table 1 provides a broader overview of current
foundation models, including these highlighted examples and
additional notable contributions to the field.

scBERT (single-cell Bidirectional encoder representations from
transformers) is a pretrained deep neural network-based model. It
addresses the limitations of existing cell type annotationmethods by
leveraging large-scale unlabeled scRNA-seq (see glossary in Table 2)
data to capture gene-gene interactions and subsequently fine-tuning
on specific datasets for cell type annotation. The authors report that
this approach enables scBERT to demonstrate superior performance
in cell type annotation, novel cell type discovery, and robustness
to batch effects, while also offering improved model interpretability
compared to traditional methods (Yang et al., 2022).

Geneformer is a context-aware, attention-based deep learning
model pre-trained on 30 million single-cell transcriptomes. By
transfer learning it can make various predictions in the context of
network biology, even when limited data are available. For instance,
the authors report that the model can be fine-tuned to predict gene
dosage sensitivity and chromatin dynamics. Moreover, the model
enables prediction of changes in network dynamics in response to
gene deletion or treatments in silico (Theodoris et al., 2023).

scGPT (single-cell Generative Pre-trained Transformer) (see
glossary in Table 2) is another foundation model, which has
been pre-trained on 33 million human cells from various tissues.
The model enables the integration of multiple modalities and
predict perturbation responses (Cui et al., 2024). In addition,
the authors claim that the model can be used to infer gene-
interactions and gene regulatory networks. A model like scGPT can
be utilized in two distinct settings: fine-tuned and zero-shot. In the
fine-tuned setting, the pre-trained model is further trained on
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TABLE 1 Overview of selected current foundational models in Single-Cell and Spatial Omics. Models were selected based on citation impact,
methodological innovation, and demonstrated applications. The table includes both models described in detail in the text and additional contributions
to provide broader context of this field.

Model Claims References

scBERT Leverages large-scale unlabeled scRNA-seq data to capture gene-gene interactions and supports fine-tuning on
specific datasets for cell type annotation

Yang et al. (2022)

Geneformer Makes various predictions in the context of network biology, even when limited data is available Theodoris et al. (2023)

scGPT Enables the integration of multiple modalities and predicts perturbation responses and infers gene-interactions
and gene regulatory networks

Cui et al. (2024)

scFoundation Can be fine-tuned to infer gene modules and predict the response of single-cells and tissues to genetic and drug
perturbations

Hao et al. (2024)

Universal Cell Embeddings Trained on multiple species, maps species not in training data without fine-tuning Rosen et al., 2023 (2024)

CellFM Largest model. Predicts gene function, cell type annotation, perturbation effects, and gene networks Zeng et al. (2024)

GeneCompass Predicts cell fate transition and gene homologies across human and murine cells Yang et al. (2024)

tGPT Applied to bulk tissue sequencing samples to extract features associated with genomic alterations and
immunotherapy response

Shen et al. (2023)

CELLama Supports flexible applications ranging from cell typing to the analysis of spatial contexts Choi et al. (2024)

Nicheformer Enables zero-shot analysis of single-cell and spatial data in human and murine cells Schaar et al. (2024)

scGPT-spatial Pretrained on 30 M spatial transcriptomic profiles with protocol-aware decoding and neighborhood-based
training to capture spatial context

Wang et al. (2025)

task-specific data, while in the zero-shot setting, themodel is applied
directly to new tasks without any additional training to make
predictions (Cui et al., 2024).

Universal Cell Embeddings is a model that can analyze gene
expression data across multiple different biological species (such
as human, mouse, and other organisms). The authors claim that it
can process and represent new single-cell RNA sequencing datasets
without requiring additional training or fine-tuning. It converts
RNA sequencing data into protein embeddings, which allows the
model to effectively cluster and classify cells from species that were
not included in its original training data (Rosen et al., 2023; 2024).

scFoundation has been trained on 50 million cells from various
tissues and can be fined-tuned to infer genemodules and predict the
response of single-cell and tissues to genetic and drug perturbations.
Furthermore, the authors report that their model can improve
clustering results by enhancing the read depth of cells in a setting
without any fine-tuning (Hao et al., 2024).

At the moment, the largest model is CellFM trained on 800
million parameters from 100 million cells from various tissues. The
authors of cellFm claim that the model can predict gene function
prediction, cell type annotation, perturbation effect prediction, and
gene network analysis. (Zeng et al., 2024).

While these foundation models have advanced single-cell
analysis capabilities, they primarily focus on transcriptomic data
without incorporating spatial context. More recently, spatially
aware foundation models have emerged. These models leverage
information from both dissociated and spatial transcriptomics data.
Nicheformer (Schaar et al., 2024) is pretrained on an extensive
dataset of over 57 million dissociated cells and 53 million spatially

resolved cells across 73 tissues from both human and mouse.
The model enables novel applications such as predicting the
spatial context of dissociated cells, effectively transferring spatial
information to traditional scRNA-seq datasets (Schaar et al., 2024).

scGPT-spatial (Wang et al., 2025) extends the scGPT model
by including spatial information through continual pretraining
on SpatialHuman30M, a dataset containing 30 million spatial
transcriptomes. Its key innovations include a Mixture of Experts
decoder that automatically handles different data formats and
training methods that recognize how cells physically relate
to each other in tissues. These advances allow the model to
effectively combine different types of spatial data, identify cell
types within mixed samples, and accurately predict gene expression
based on a cell’s location context—all with better results than
previous methods (Wang et al., 2025).

5 Case study brain development

Single-cell studies provide high-resolution information on
cell types and cell states present in a complex system at the
time of measurement. Brain development is a particularly
dynamic period in mammals due to adaptive and rapid processes
that include formation of synapses, cell differentiation and
establishment of neural circuits (Stiles and Jernigan, 2010).
Although it may be challenging to assess the molecular processes
that occur at any given time in a developing human, single-
cell studies of macrophages provide a particularly valuable use
case. Macrophages are found in virtually all organ systems at
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TABLE 2 Glossary of technical terms.

Term Definition

Model A computational system designed to find patterns in data and make predictions or decisions based on those patterns

AI Artificial Intelligence, a field of computer science focused on creating systems that can perform tasks typically requiring human intelligence,
such as pattern recognition, decision making, and prediction. Now widely adopted in medicine and biology

Machine Learning A subset of AI that enables systems to automatically learn and improve from experience without being explicitly programmed, by identifying
patterns in data to make predictions or decisions (Greener et al., 2022)

Deep Learning A specialized form of machine learning using neural networks with multiple layers (deep architectures) to automatically learn hierarchical
representations of data, particularly effective for complex tasks like image recognition and gene expression analysis (LeCun et al., 2015;
Eraslan et al., 2019)

Foundation Model A large artificial intelligence system trained on vast amounts of data that can be adapted for various specific tasks through fine-tuning
Bommasani et al. (2022)

UMAP Uniform Manifold Approximation and Projection, a technique for representing high-dimensional data in a lower-dimensional space while
preserving important relationships between data points (McInnes et al., 2018)

Clustering A computational process that groups cells with similar properties (such as gene expression patterns) into distinct clusters during single-cell
analysis, allowing researchers to identify and characterize different cell populations (Kiselev et al., 2019)

Graph (SNN/KNN Graph) A network structure where nodes (cells) are connected to their most similar neighbors based on gene expression patterns, used to identify cell
relationships

scRNA-seq Single-cell RNA sequencing, a technology that measures the amount of gene activity in individual cells, providing detailed insights into
cellular heterogeneity

Autoencoder A neural network architecture that learns to compress data into a compact representation and then reconstruct it, useful for finding essential
patterns in complex biological data

Transformer A neural network architecture that processes sequential data using self-attention mechanisms, allowing it to capture relationships between
different elements in the sequence regardless of their distance from each other. Originally developed for natural language processing but now
widely used across many domains

any given time in life. As highly dynamic cells, macrophages
are imprinted by the respective tissue they reside in (Guilliams
and Svedberg, 2021). Thus, by mirroring their surroundings,
macrophages are quite informative about the physiology of a
developing human brain.

Several single-cell studies examine the developing human brain,
witha focus on broader aspects of brain development (Eze et al.,
2021; Zeng et al., 2023; Braun et al., 2023), and two studies
specifically focused on brain macrophages (Kracht et al., 2020;
Sankowski et al., 2024). The studies analyze the late embryonal
and early fetal periods between the 5th and 23rd weeks post
conception. They show that human microglia undergo major
maturation steps as the brain tissue around them matures.
During this period, microglia phenotypes evolve to resemble
mature microglia (Figure 2). However, microglia and CAMs
retain a clear distinction from adult brain macrophages. This
distinction is exemplified by an increased expression of the
iron scavenging surface marker CD71 that is encoded by the
TFRC gene (Sankowski et al., 2024). One possible interpretation
is reduced oxygen availability in the fetus, leading to a critical
need for iron for oxygen transport. These findings identify critical
phases during human brain development and explain immune cell
phenotypes in the context of dramatic changes in surrounding
brain tissue.

6 Challenges and outlook

The rapid development of models in the analysis of multi-omics
data in recent years seems promising. While in using conventional
analysis methods the field coalesced around Seurat and Scanpy,
best practices for using the foundational models have as of yet not
been widely adopted. Benchmarks in the field have not yet been
established for a better comparison between models (Ding et al.,
2024; Fu et al., 2024). Current models are often “black boxes”, and
improvements in interpretabilitywill help to deepen understanding of
the underlying biology (Talukder et al., 2021). One potential obstacle
is finding the right hyperparameters for each model, as identifying
optimalconfigurationsrequiresextensiveexperimentation.Evensmall
changes in parameters can lead to significant differences in biological
interpretability (Theodoris, 2024).

Current multi-omics approaches primarily focus on RNA-
seq data, with only a few incorporating proteomics and spatial
sequencing information (Rosen et al., 2023). Further integration
of omics modalities can maximize the number of tokens in the
models. Although there are many models for single cell analysis,
there are relatively few models for spatial sequencing (Schaar et al.,
2024; Choi et al., 2024; Wang et al., 2025). None of the current
models can integrate the aforementioned datasets with imaging and
metabolomic data.

Frontiers in Bioinformatics 05 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1554010
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Binder et al. 10.3389/fbinf.2025.1554010

FIGURE 2
Microglia phenotypes throughtout development. Created in BioRender. Sankowski, R. (2025) https://BioRender.com/r23c965.

Currently, zero-shot foundational models have not been shown
to reliably outperform advanced machine learning methods such
as scVI, or classic logistic regression (Kedzierska et al., 2023;
Boiarsky et al., 2023). With models already offering fine-tuning
(Cui et al., 2024), it is a question of time until robust task-specific
foundation models become available. The short latency between
the wide adoption of large-language models by the end of 2022
and the proposal of single-cell foundation models just months later
is remarkable. Therefore, advances in large-language models are
continuously implemented in single-cell foundation models. One
such advance is the recent introduction of byte latent transformers
that show improved scalability and robustness with respect to
previous tokenization-based models (Pagnoni et al., 2024).

Biological phenomena occur in living systems, making the
interpretation of machine learning results dependent on domain-
specific knowledge and an understanding of the physiological context
during data acquisition, including factors such as species, sex, and age.
Developing truly universal foundationmodels will require addressing
these and other unseen variables, all while demanding extensive
trainingdatasets andsignificantcomputational resources. Just as large-
language models face limitations with underrepresented languages
and cultural contexts, single-cell models will require time to bridge
existing gaps. Until then,machine learning will continue to transform
biology—not always by directly solving complex biological problems,
but often by addressing related challenges. As the mathematician
George Pólya demonstrated (Polya, 2014), tackling adjacent problems
can make seemingly intractable questions solvable, paving the way
for progress in biology.
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