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In 16S-rRNA microbiome studies, cross-contamination and environmental
contamination can obscure true biological signal. This contamination is
particularly problematic in low-biomass studies, which are characterized by
samples with a small amount of microbial DNA. Although multiple methods and
packages for decontaminating microbiome data exist, there is no consensus
on the most appropriate tool for decontamination based on the individual
research study design and how to quantify the impact of removing identified
contaminants to avoid over-filtering. To address these gaps, we introduce
micRoclean, an open-source R package that contains two distinct microbiome
decontamination pipelines with guidance on which to select based on the
downstream goals of the research study and study design. This package
integrates and expands on existing packages for microbiome decontamination
and analysis for convenience of users. Furthermore, micRoclean also
implements a filtering loss statistic to quantify the impact of decontamination
on the overall covariance structure of the data. In this paper, we demonstrate
the utility of micRoclean through implementation on example data, illustrating
that micRoclean effectively and intuitively decontaminates microbiome data.
Further, we demonstrate through a multi-batch simulated microbiome sample
that micRoclean matches or outperforms tools with similar objectives. This
package is freely available from GitHub repository rachelgriffard/micRoclean.

KEYWORDS

microbiome, 16S-rRNA, decontamination, metabolomics, low-biomass, cross-
contamination

1 Introduction

Microbiome profiling through 16S-rRNA sequencing is used commonly to study
the bidirectional relationship between the microbiome and disease status, diet, exercise,
pollution, etc. (Sun, 2023; Riquelme et al., 2019; Luan et al., 2024). These studies
often use high-biomass samples such as stool and saliva; however, in recent years,
interest has increased in profiling low-biomass samples such as blood, plasma, and skin
(Urbaniak et al., 2016; Wang et al., 2022; Mrázek et al., 2019). In these low-biomass
microbiome studies, contaminant bacteria can often obscure true biological signal to
a greater degree when compared to high-biomass studies. This problem arises due to
the inherent lower amount of microbial DNA initially present in low-biomass samples.
Consequently, in these low-biomass samples, a well-noted source of technical variability
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in microbiome data, contaminant bacteria, often represent a
greater proportion of the overall signal (Salter et al., 2014).
These contaminant bacteria arise from two main sources: (1)
cross-contamination between samples and (2) contaminant DNA
from the surrounding environment (Eisenhofer et al., 2019). To
improve the likelihood of identifying true biological signal rather
than this contaminant DNA, it is necessary to remove suspected
contamination prior to the analysis of microbiome data. This
removal step is particularly important for low-biomass samples, as
they are inherently at a higher risk of contamination.

Current methods to decontaminate microbiome data can
broadly be classified into three main categories: blocklist, sample-
based, and control-based (Hülpüsch et al., 2023). Blocklist
methods detect and entirely remove the feature(s) contained in
lists that are previously identified in the literature as common
contaminants. Sample-based methods identify contaminant
features based on their relative abundance, removing features
that are different between batches. Control-based methods
identify contaminant features based on abundance in negative
control samples. Using one or multiple of these methods, current
software packages aim to decontaminate microbiome samples.
For example, GRIMER (Piro and Renard, 2023) implements
the MGnify tool from EMBL-EBI (Richardson et al., 2022) to
identify blocklist contaminants based on their known source
in previous studies within a Graphic User Interface dashboard.
Most existing tools such as these remove entire features that
are identified as contaminants, such as the well-established
decontam package (Davis et al., 2018). The decontam package
combines control- and sample-based contaminant identification
and removes entire features tagged as contaminants. Meanwhile,
other methods aim to remove only the proportion of features
identified as contamination. This partial removal is implemented in
packages such as MicrobIEM (Hülpüsch et al., 2023), microDecon
(McKnight et al., 2019), and SCRuB (Austin et al., 2023).
MicrobIEM, microDecon, and SCRuB packages all leverage a
control-based decontamination method.

While methods for identifying and removing contamination
within microbiome data are plentiful, there is no consensus on:
(i) situationally, which methods and tools are most appropriate to
use and (ii) how to quantify the removal to avoid overfiltering. To
address these gaps, we introduce micRoclean, an open-source R
package housing one function with two pipelines (Figure 1) aimed
at decontaminating low-biomass microbiome data. The Original
Composition Estimation pipeline aims to most closely estimate
the original microbiome composition prior to contamination,
while the Biomarker Identification pipeline aims to strictly
remove all likely contaminant features to minimize the likelihood
downstreambiomarker identification analyses are impacted by these
contaminant features. Within micRoclean, users have flexibility and
guidance to choose the most appropriate decontamination pipeline
based on their primary research goal. Furthermore, micRoclean
provides a measurement of decontamination that quantifies the
impact of feature removal and provides insight into potential
over-filtering through a filtering loss statistic. In what follows,
we describe the architecture of the micRoclean package and
demonstrate the utility of this tool by decontaminating a multi-
batch simulated microbiome dataset and a real-world blood plasma
microbiome dataset.

FIGURE 1
Flowchart for implementation of micRoclean package.

2 Methods

The micRoclean package and function contain two distinct
pipelines for decontaminating 16S-rRNA sequencing samples.

2.1 Input data

The data required as input for the micRoclean package are a
sample (n) by features (p) count matrix generated from 16S-rRNA
sequencing and a metadata matrix with samples (n) rows generated
from 16S-rRNA sequencing data.This metadata defines the samples
in the count matrix and contains columns specifying if the sample is
a control and the group name. Optionally, the user can include batch
and sample well location columns within the metadata.

2.2 Well-to-well contamination

Well-to-well leakage is a common form of contamination where
biological samples leak into controls. For batches where users
do not have well location information, the well2well function is
implemented automatically within the micRoclean function and
assigns pseudo-locations in a 96-well plate. This is accomplished
by assuming a common order of samples vertically or horizontally.
This function then estimates the proportion of each control that
originates from a biological sample to estimate well-to-well leakage
by leveraging the SCRuB package spatial functionality within the
SCRuB function (Austin et al., 2023). The micRoclean package
extracts and reshapes this from the source code of the SCRuB
functionality, which does not include this as output for the general
user. If the level of well-to-well contamination is higher than 0.10,
the function will return a warning message indicating to the user
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that they should obtain the well location information for their data
and run through the Original Composition Estimation pipeline, as
this pipeline can account for well-to-well leakage contamination.

2.3 Filtering loss (FL)

The output from both pipelines includes a filtering loss (FL)
value. This statistic was first introduced by Smirnova et al. (2019) as
a metric for their permutation-based filtering method for removal
of full features. However, as the FL value quantifies the contribution
the filtered features to the overall covariance, we use this statistic to
quantify the impact of suspected contaminant feature removal on
the overall covariance structure of the samples. Furthermore, we use
this statistic in a novel way to quantify the impact on covariance
not only from full feature removal as within the original use case
but partial removal of reads—such as implemented in the Original
Composition Estimation pipeline.

For a count matrix X, ||XTX||2
F
= Σp

j=1(x
T
j xj)

2 +Σi>j(xTi xj)
2

approximates the total covariance. We can compare the covariance
before and after filtering a count matrix to consider the impact of
filtering. FL is defined in Equation 1 as such:

FL(J) = 1−
||YTY||2

F

||XTX||2
F

(1)

where X is the nxp pre-filtering, full count matrix and Y is
the nxq post-filtering count matrix resulting from the partial
removal of reads or whole removal of features after applying the
decontamination method. As full features may or may not be
removed, q ≤ p.

FL(J) is therefore a ratio of the filtered to full covariance
matrices. As Y is a subset of the full count matrix X, FL(J)
represents the contribution of the removed partial or full
features to the overall covariance. Values closer to 0 indicate
low contribution to the overall covariance of X, while values
closer to 1 indicate high contribution and could be a warning
sign of over-filtering. Further discussion and example of the FL
statistic is within Supplementary Appendix SA13.1.

2.4 Original Composition Estimation
pipeline

The first pipeline, research_goal = “orig.composition,” is ideal
for aiming to characterize samples’ original compositions as closely
as possible to the sample composition prior to contamination. The
decontamination step in Original Composition Estimation pipeline
implements the SCRuB method (Austin et al., 2023). The results
from this pipeline include the filtered count matrix from the SCRuB
method and the filtering loss value.

The Original Composition Estimation pipeline expands SCRuB
by directly decontaminating multiple batches within one line of
code. Using SCRuB directly with multiple batches of data, users
must separate the count matrices by batch, run through SCRuB,
and recombine the resulting count matrices. In this process, users
may mistakenly run multiple batches together due to the lack
of functionality support within SCRuB for multiple batches. This

misuse of the method results in incorrect decontamination. Within
the micRoclean Original Composition Estimation pipeline, the tool
automatically runs SCRuB for multiple batches within the same
one line of code by implementing information from the included
metadata: the micRoclean function splits the data to decontaminate
by batch, appends the count matrices back together, returning the
full, properly decontaminated count matrix.

The Original Composition Estimation pipeline is the
most appropriate choice if the user is concerned about well-
to-well contamination and has well location information
as SCRuB decontamination can account for leakage
between samples (Austin et al., 2023). This pipeline is also most
appropriate if there is only one batch of samples, in contrast to the
Biomarker Identification pipeline which requires multiple batches
to decontaminate.

2.5 Biomarker Identification pipeline

Initiated by setting research_goal = “biomarker,” the Biomarker
Identification pipeline derives its underlying architecture from
the four-step pipeline first introduced by Zozaya-Valdés et al.
to decontaminate low-biomass cell-free microbial DNA (Zozaya-
Valdes et al., 2021). The methods within this architecture have
been adjusted to be more appropriate for compositional data from
16S-rRNA sequencing. This function is ideal for (i) users whose
primary research goal downstream of decontamination is to identify
biomarkers, and therefore want stringent removal, and/or (ii) users
who do not have DNA-negative control samples within each of their
batches, which is required for running the Original Composition
Estimation pipeline and other control-based decontamination
methods. This pipeline implements multiple methods to identify
contamination through four separate steps. Through this stringent
removal, users can be more confident that the unfiltered features
are not contamination. Therefore, the decontaminated data matrix
produced by our Biomarker pipeline enables downstream statistical
testing to more confidently identify potential biomarkers, as the
observed differences reflects better true biological conditions rather
than contamination.

The first step is a sample-based decontamination method where
features with different abundance across different batches are tagged
as contaminant features. These are tagged based on significantly
different compositions across batches using the Analysis of
Compositions of Microbiomes with Bias Correction (ANCOM-BC)
method (Lin and Peddada, 2020). The second step is a control-
based method where features higher in negative controls and lower
in samples are tagged as contaminant features. To accomplish this,
the decontam prevalence method is used (Davis et al., 2018).
In the third step, features that have different abundance across
different batches for technical replicates are tagged as contaminant
features. This is a sample-based decontamination method which
uses Cohen’s unweighted kappa statistic to compare the agreement
between technical replicates across batches and remove those with
disagreement (Gamer et al., 2019). In the fourth and final step,
features are tagged as contaminants if they appear on user-defined
blocklists of previously known contaminant features. If users do not
have their own blocklists, it is suggested to use the publicly available
blocklist published from Eisenhofer et al. and available for ease of
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use within the micRoclean package data (Eisenhofer et al., 2019).
The provided blocklist is at the genus level, but users have flexibility
to include multiple levels of taxonomic rank if they choose to define
their own blocklists.

The resulting filtered count matrix removes entire features that
are identified as contaminants based on a user-defined number
of steps in which a feature is identified as a contaminant. The
results include this filtered count matrix, the list of removed
features, a matrix identifying which steps identified each feature as
a contaminant, and the associated filtering loss value.

2.6 Benchmarking micRoclean

2.6.1 Multi-batch simulated microbiome dataset
The multi-batch simulated dataset used for benchmarking

is created by simulating two batches of 16S-rRNA sequencing
samples with known contamination. Batch 1 contains five samples
and two DNA-extraction negative controls; batch 2 contains five
samples—two of which are technical replicates from batch 1—and
two DNA-extraction negative controls. The non-extraction control
samples were further assigned as “Disease” or “Healthy control”
samples, with members of each group represented within the
two batches. Specifically, Batch 1 contains two ‘Healthy control’
samples—S1A, S1B—and three “Disease” samples—S3, S4, S5. Batch
2 contains four “Healthy control” samples—S2A, S2B, S7, S8—and
one “Disease” sample—S6.

The simulated data were created with ten genera which
are commonly identified in the human microbiome simulated
as the true biological signal—Bacteroides, Bifidobacterium,
Roseburia, Butyrivibrio, Parabacteroides, Peptostreptococcus,
Alistipes, Eubacterium, Faecalibacterium and Ruminococcus. These
simulated features were intentionally selected to align with real
genera names to enable direct matching against existing blocklists
utilized by micRoclean and GRIMER methods. Furthermore, the
first five of these non-contaminant genera were simulated to have
differential abundance between the “Disease” and “Healthy control”
simulated samples, while the other five were not.These data contain
10 samples, 4 DNA-negative controls, and 110 ASVs in total.

Technical replicate counts were generated by sampling
from a uniform distribution between 10 and 100 [U(10,100)].
Independent Gaussian noise, reflecting measurement variability,
was subsequently added to each count from a normal distribution
centered at zero with a standard deviation of 10 [N(0,10)]. Similarly,
non-replicates from the first batch were drawn from a uniform
distribution U(20,90) with independent Gaussian noise N(0,10);
and non-replicates from the second batch were drawn from a
uniform distribution U(30,100) with independent Gaussian noise
N(0,10). Contaminant features for the first batch were drawn from
a uniform distribution U(0,20) with independent Gaussian noise
N(0,2). The second batch’s contaminant features were generated
using the same method but with a different random seed.

Contaminant features for the first batch were drawn from
uniform distribution U(0,20) with independent Gaussian noise
N(0,2). The second batch’s contaminant features were generated
using the same method but with a different random seed.

Non-contaminant counts of the features representing an equal
proportion were simulated as follows: technical replicates were

drawn from a uniform distribution U(10,100) with independent
Gaussian noise from a normal distribution N(0,10); non-replicates
from the first batch drawn from a uniform distribution U(20,90)
with independent Gaussian noise N(0,10); and non-replicates from
the second batch were drawn from U(30,100) with independent
Gaussian noise N(0,10).

Five non-contaminant genera—Roseburia, Bacteroides,
Bifidobacterium, Butyrivibrio, and Parabacteroides—were subjected
to group-specific scaling to model differential abundance of
potential biomarker features. The “Disease” group counts were
multiplied by values sampled from a uniform distribution
U(1.5,2.5), the “Healthy control” group were multiplied by values
from a different uniform distribution U(0.5,0.8).

To include contaminants that were dependent between samples
and controls within the same batch, a systematic approach was
applied with random noise. Using separate random seeds for each
batch, this was accomplished by creating a random contamination
vector generated from the negative binomial distribution NB(1,0.5).
This was added to the associated samples contaminants with a
scaling factor from a uniform distribution U(1,1.5) and added to
associated negative controls with a larger scaling factor from another
uniform distribution U(2,3).

To model the zero-inflation characteristic of true 16S-rRNA
microbiome data within our multi-batch simulated dataset, we
implement a probabilistic zeroing mechanism. The probability of a
given count being zeroed was calculated in Equation 2 as such:

pn,p = 1−
xn,p

maxj(xn,j)
(2)

resulting in smaller counts within each sample having a higher
probability of being set to zero. This was relaxed by multiplying the
zero-probability matrix by 0.6. These probabilities are used within a
binomial distribution to determine if a feature is set to zero (1) or
not (0). The resulting distributions for each simulated sample and
DNA-negative control are shown in Figure 2.

For both micRoclean pipelines and the following tools,
performance metrics were calculated for decontamination on this
synthetic dataset, with a positive case indicating a contaminant.
Accuracy, F1, precision, and recall were calculated for all ten samples
across all four methods. These results are visualized within Figure 3
and contained within Table 1.

2.6.2 Real-world blood plasma microbiome
dataset

Real low-biomass cell-free microbial DNA from plasma 16S-
rRNA sequencing samples were used from Zozaya-Valdes et al.
(2021). These data contain two batches of 126 samples, 36 of
which areDNA extraction negative controls initially containing only
nuclease-free water. Full methods for data preparation can be found
in the original manuscript. Briefly, samples were extracted using
the QIAGEN QIAmp Circulating Nucleic Acid Kit. These samples
were analyzed in paired-end sequencing on the Illumina MiSeq
instrument and then processed using QIIME2 (version 2018.11.0)
(Bolyen et al., 2019).TheAmplicon SequencingVariant (ASV) count
table was generated using the Silva database (119 SSU Ref NR
99 515F/806R release) (Quast et al., 2013). Metadata information
such as DNA extraction batch were recorded for bioinformatic
decontamination. The processed count matrix contains 1,792

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1556361
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Griffard-Smith et al. 10.3389/fbinf.2025.1556361

FIGURE 2
Count distribution of features in multi-batch simulated data.

ASVs. This study used the processed count matrix from the
original study (Zozaya-Valdes et al., 2021).

2.6.3 GRIMER
GRIMER is a tool created to facilitate contamination detection

in low-biomass microbiome data through an interactive dashboard
(Piro and Renard, 2023). This tool requires users to input a
count matrix with the option to include metadata and taxonomic
information. GRIMER integrates these data and returns an
interactive dashboard that providesmultiple visual tools tomanually
identify contamination. Users can include information about feature
origin from previous publications from MGnify tool from EMBL-
EBI (Richardson et al., 2022) (e.g., sample, environment, etc.).
Optionally, users can also choose to implement contamination
prediction through the decontam method (Davis et al.,
2018). In our benchmark study, this tool is accessed through
installation in a conda environment and run via command
line interface.

For the multi-batch simulated microbiome data, GRIMER
was initiated by inputting the count matrix, taxonomic
information, and metadata. The MGnify tool from EMBL-EBI
(Richardson et al., 2022) and decontam frequency method with
threshold set to 0.1 (Davis et al., 2018) were implemented.

2.6.4 MicrobIEM
MicrobIEM is a control-based decontamination method run

through a web-based interactive dashboard that focuses on low-
biomass microbiome data (Hülpüsch et al., 2023). A control-based
method, the tool considers the ratio of sequences in negative controls
versus samples as well as the proportion of negative controls which
contain that sequence. Users must manually set the values for these
two parameters when using this tool.

For the multi-batch simulated microbiome dataset, the ratio
hyperparameter was set to 2 for the batches of negative controls
and the span threshold was set to 1. The package default filtering
values for minimum reads were used.
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FIGURE 3
Performance metrics across methods for simulated microbiome data.

3 Results

3.1 Usage examples

The following usage examples are contained within the
micRoclean package vignette to demonstrate basic micRoclean
functionality.

To illustrate the usage within the micRoclean usage vignette
for the Original Composition Estimation pipeline, we first import
one-batch even mock microbial community dilution dataset from
Hülpüsch et al. (2023). Because samples were profiled in one
batch, the batch contains at least one control, and the primary
goal is to characterize the sample prior to contamination, the
most appropriate tool for this analysis is the Original Composition
Estimation pipeline. After running the micRoclean function with
research_goal = “orig.composition,” we return a filtered counts
matrix with partial removal of contaminants identified by the

SCRuBmethod (Austin et al., 2023).The corresponding filtering loss
value is 0.22, indicating that the counts removed account for around
22% of the overall covariance.

Similarly, to illustrate the usage within the micRoclean usage
vignette for the Biomarker Identification pipeline, we first import
the real-world blood plasma dataset from Zozaya-Valdes et al.
(2021). After running the Biomarker Identification pipeline in the
micRoclean function, filtered count matrix is returned with full
removal of features that were tagged as contaminants in the user-
defined threshold number of the four filtering steps, defaulting to
one.Using this default, we find that this removes 1,118 features of the
original 1,795 features.The filtering loss statistic associated with this
is 0.88, indicating that the removed features accounted for 88%of the
overall covariance. Once the user has the Biomarker Identification
pipeline method results, these results can be plugged into the
visualize_pipeline function to return aVenn diagram identifying the
overlapping identification of features as contaminants by step.
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TABLE 1 Performance metrics for micRoclean, GRIMER, and MicrobIEM by sample for multi-batch simulated microbiome dataset.

Metric Method Batch 1 Batch 2 Average

1A 2A 3A 4 5 1B 2B 3B 6 7

Accuracy

micRoclean
Biomarker

Identification

0.6485 0.5321 0.6801 0.7047 0.6755 0.5812 0.4994 0.7772 0.66 0.5303 0.629

micRoclean
Original

Composition
Estimation

0.49 0.3708 0.5319 0.5393 0.5647 0.4744 0.3826 0.6155 0.48 0.2855 0.473

MicrobIEM 0.5037 0.3849 0.4167 0.558 0.5161 0.518 0.394 0.4896 0.4882 0.3497 0.462

GRIMER 0.4984 0.3821 0.5363 0.5504 0.5704 0.4831 0.3826 0.6259 0.4976 0.2855 0.481

Precision

micRoclean
Biomarker

Identification

0.7938 0.7317 1 0.7807 0.7453 0.6775 0.6667 1 0.7647 0.9234 0.808

micRoclean
Original

Composition
Estimation

NaN NaN 1 NaN 1 NaN NaN NaN NaN NaN NA

MicrobIEM 0.7826 0.5676 0.1638 0.6262 0.3209 0.7632 0.5806 0.0754 0.5593 1 0.544

GRIMER 1 1 1 1 1 1 NaN 1 1 NaN 1

Recall

micRoclean
Biomarker

Identification

0.4198 0.4048 0.3177 0.4992 0.3885 0.388 0.3785 0.4205 0.5 0.3736 0.409

micRoclean
Original

Composition
Estimation

0 0 0.0016 0 0.0016 0 0 0 0 0 0

MicrobIEM 0.037 0.0945 0.0595 0.1011 0.0984 0.1203 0.0668 0.0291 0.0747 0.0897 0.077

GRIMER 0.0165 0.018 0.011 0.0241 0.0148 0.0166 0 0.0271 0.0339 0 0.016

F1

micRoclean
Biomarker

Identification

0.5491 0.5212 0.4822 0.609 0.5108 0.4934 0.4828 0.5921 0.6047 0.5319 0.538

micRoclean
Original

Composition
Estimation

0 0 0.0031 0 0.0033 0 0 0 0 0 0.001

MicrobIEM 0.0707 0.162 0.0873 0.174 0.1506 0.2079 0.1198 0.042 0.1317 0.1647 0.131

GRIMER 0.0324 0.0353 0.0217 0.0471 0.0291 0.0327 0 0.0528 0.0656 0 0.032

3.2 Benchmarking micRoclean with
multi-batch simulated dataset

Within the multi-batch simulated microbiome dataset,
all simulated samples display zero-inflated as observed with
microbiome data (Figure 2).

After decontamination, the Biomarker Identification pipeline
retained 62 features, removing 48 whole features tagged as

contaminants in at least one of the filtering steps. The filtering
loss statistic for this removal is 0.133. Of the ten non-contaminant
features, the Biomarker Identification pipeline retained nine.

After decontamination with the Original Composition
Estimation pipeline, this method removed 2 counts and
retained all features. The filtering loss statistic is 3.25× 10−6.
Of the ten non-contaminant features, the Original Composition
Estimation pipeline retained ten.
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After decontamination, the MicrobIEM method removed 1,111
reads from 7 samples and 13 features, fully removing 10 features.
The filtering loss statistic for is 0.161 and indicates that the removed
features account for 16% of the covariance in the full count matrix.
Of the ten non-contaminant features, MicrobIEM retained nine.

For decontamination,GRIMER returns aGraphicUser Interface
report to explore contamination within this dataset. The dashboard
did identify that the ten non-contaminant genera asmost likely host-
associated and that the majority of other contaminant simulated
genera were likely contaminants from theMGnify tool from EMBL-
EBI (Richardson et al., 2022), demonstrating its usefulness for
individual feature analysis. The decontam (Davis et al., 2018) results
provide a prediction on whether the feature is a contaminant. Used
in conjunction with the MGnify results, this information can be
implemented in a line by line, manual decontamination. To compare
this tool, we exported the predictions of the decontam frequency
method and considered the filtered countmatrix as thosewhichwere
not tagged as contaminants at the genus-level. Using this method,
two features were fully removed with a filtering loss of 0.001. Of
the ten non-contaminant features, the GRIMER decontam method
retained all ten.

3.2.1 Method comparison
Performance metrics were calculated with a positive case

indicating a contaminant. Accuracy, F1, precision, and recall were
calculated for all ten samples across all four methods, and these
results are contained within Table 1 and visualized in Figure 3.

Our Biomarker Identification pipeline had the highest accuracy,
F1, and recall on average across the methods. Compared to
existing tools, our Biomarker Identification method demonstrated
higher recall, indicating that it more effectively captures a greater
proportion of true contaminants (fewer false negatives). These
results are visualized in Figure 3.

The Original Composition Estimation pipeline removed
less contaminant reads than other methods but maintained
a comparable accuracy to the MicrobIEM and GRIMER
decontam methods.

3.3 micRoclean performance on real world
blood-plasma dataset

As an example of the usage of micRoclean using a real
data, we analysed a blood-plasma 16S-rRNA sequencing dataset
originating from Zozaya-Valdes et al. using both the Original
Composition Estimation pipeline and the Biomarker Identification
pipeline (Zozaya-Valdes et al., 2021). A comparison figure of the
composition at the Phylum level pre-filtering and post-filtering with
both pipelines is visualized in Figure 4.

When using the Biomarker Identification pipeline with the
threshold set at default of 1, the resulting filtered count matrix
retains 667 features, fully removing 1,118 features as contaminants.
Step 1 identified two features as contaminants, step 2 identified 900
features, step 3 identified 1 feature, and step 4 identified 367 features
based on the default blocklist. The resulting filtering loss for this
method is 0.88, indicating that one or more of the features removed
contributed highly to the covariance of the pre-filtered countmatrix.

When using the Original Composition Estimation pipeline to
analyze these data, the resulting filtered count matrix retains 1,665
partial or full features, fully removing 130 features as contaminants.
The filtering loss from this method is 0.01.

4 Discussion

As low-biomass microbiome samples are more commonly
analyzed and contamination needs to be accounted for, micRoclean
provides clarity and direction on (i) what filtering method is
most appropriate based on the research design and goals and (ii)
implement a filtering loss statistic to provide insight into the impact
of filtering.

4.1 Benchmarking micRoclean with
multi-batch simulated dataset

In binary classification tasks for contaminant removal such as
with this multi-batch simulated dataset, the micRoclean Biomarker
Identification pipeline demonstrated superior performance
compared to the Original Composition Estimation pipeline,
MicrobIEM, and GRIMER decontam. Specifically, micRoclean
achieved higher accuracy—correctly classifying features as
contaminants or not—; F-1 score—balancing contaminant
identification and biological signal in unbalanced, small biological
signal-cases—; and recall—ensuring that contaminant features are
more likely to be identified.

Unless only implementing the decontam method, and while
the GRIMER tool can be useful for initial data exploration or for
exploration by a domain expert, due to (i) the inherent bias of the
personnel completing the manual decontamination, (ii) the bias
towards studied features in MGnify, and (iii) the time intensive
nature of this process of going through each feature at the genera
level by hand, GRIMER tool lacks the replicability and convenience
of a tool such as micRoclean.

MicrobIEM, while providing an interactive tool with a user-
friendly interface, does not outperform either the Original
Composition Estimation or Biomarker Identification pipeline in
decontamination tasks. Furthermore, the online tool can only
handle smaller datasets with the user-friendly interface.

The Original Composition Estimation pipeline is most
appropriate for data that has mixing of contaminant and non-
contaminant counts in the same features, as opposed to this
simulation data that has features that are binary: contaminant or
non-contaminant.

4.2 micRoclean performance on
real-world dataset

The resulting post-filtering count matrix on the same real-world
low-biomass blood plasma microbiome dataset from the Biomarker
Identification pipeline and the Original Composition pipeline
greatly differed.The filtering loss statistic indicates that the Original
Composition pipeline retained nearly all the features contributing
to the covariance of the initial pre-filtering dataset, whereas
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FIGURE 4
Sample Phylum proportions by decontamination pipeline.

the Biomarker Identification pipeline removed full features that
accounted for 88% of the variance. As the Biomarker Identification
pipeline is designed to have more stringent removal, this difference
makes sense.

4.3 Limitations and future directions

For datasets with large batch effect where a feature is high in
all samples of one batch and low in all samples of another batch
or vice versa, then this feature would be incorrectly removed using
the Biomarker Identification pipeline. Similarly, if this pattern of
opposite abundance across batches within the technical replicates
across batches—not due to contamination—then the feature would
be incorrectly removed. Our Biomarker Identification pipeline is
inherently going to cause more stringent removal and full feature
removal, likely including some features that may be partially true
biological signal and partially contamination. This is a limitation
for this pipeline. If this potential removal is a concern, the Original

Composition Estimation pipeline should be used and can parse
out proportions of features expected to be contamination using
partial removal.

Although existing decontamination strategies for 16S
microbiome data that use traditional statistical framework
exist, advanced machine learning approaches are increasingly
implemented across diverse biomedical domains (Camacho et al.,
2018; Namkung, 2020; Jin et al., 2022; Li et al., 2022;
Wang et al., 2022; Zhao et al., 2022; Hyeonseo Hwang et al.,
2024; Przymus et al., 2024; Yue et al., 2024; Zhao et al., 2024;
Wang et al., 2025; Zhao et al., 2025).

For future work, machine learning models as Support Vector
Machines or Neural Networks show promise for identifying likely
contamination in microbiome data. Both machine learning models
have shown promise in identifying and characterizing the underlying
structure of patterns in high-throughput sequencing biological data
(Yang, 2004; Barbero-Aparicio et al., 2023). Incorporating these
advanced machine learning techniques into 16S rRNA-sequencing
decontamination pipelines offers promising avenues for future work.
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4.4 Conclusion

The micRoclean package provides users with two pipelines
for decontaminating 16S-rRNA sequencing data. Furthermore, it
implements a filtering loss statistic originally designed for the
complete removal of species to quantify both full and partial removal
filtering. Finally, through analyses on a simulated microbiome
dataset with known contamination, we have demonstrated that
micRoclean performs as well or outperforms similarly positioned
tools for decontaminating low-biomass microbiome data.

5 Software availability

ThemicRoclean package is available viaGitHub in the repository
https://github.com/rachelgriffard/micRoclean. Information about
installation and usage can be found in the README file and
the vignette contained within this repository. Sample data can
be found in the vignette folder. Users can run this through the
vignette R Markdown tutorial using the data contained within the
vignette folder.
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