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Introduction: The accurate clustering of cell subpopulations is a crucial
aspect of single-cell RNA sequencing. The ability to correctly subdivide cell
subpopulations hinges on the efficacy of unsupervised clustering. Despite the
advancements and numerous adaptations of clustering algorithms, the correct
clustering of cells remains a challenging endeavor that is dependent on the data
in question and on the parameters selected for the clustering process. In this
context, the present study aimed to predict the accuracy of clustering methods
when varying different parameters by exploiting the intrinsic goodness metrics.

Methods: This study utilized three datasets, each originating from a distinct
anatomical district and with a ground truth cell annotation. Moreover, the
investigation employed two clustering methods: the Leiden and the Deep
Embedding for Single-cell Clustering (DESC) algorithm. Firstly, a robust linear
mixed regressionmodel has been implemented in order to analyze the impact of
clustering parameters on the accuracy. Consequently, fifteen intrinsic measures
have been calculated and used to train an ElasticNet regression model in both
intra- and cross-dataset approaches to evaluate the possibility of predicting the
clustering accuracy.

Results and discussion: The first-order interactions demonstrated that the use
of the UMAP method for the generation of the neighborhood graph and an
increase in resolution has a beneficial impact on accuracy. The impact of
the resolution parameter is accentuated by the reduced number of nearest
neighbors, resulting in sparser and more locally sensitive graphs, which better
preserve fine-grained cellular relationships. Furthermore, it is advisable to test
different numbers of principal components, given that this parameter is highly
affected by data complexity. This procedure has enabled the effective prediction
of clustering accuracy through the utilization of intrinsic metrics. The findings
demonstrated that the within-cluster dispersion and the Banfield-Raftery index
could be effectively used as proxies for accuracy, for an immediate comparison
of different clustering parameter configurations.
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1 Introduction

Single-cell RNA sequencing (scRNA-seq) captures the gene
expression profiles of individual cells, enabling the identification
and characterization of different cell populations within a
sample through transcriptomics (Jovic et al., 2022). Accurate cell
subpopulations identification is essential for many downstream
analyses, and the ability to break down cell subpopulations relies
on unsupervised clustering. The most widely used clustering
methods for analyzing single-cell data are Louvain and Leiden
algorithms. These methodologies depict cellular structures as
neighborhood graphs, wherein densely connected modules are
designated as clusters. However, the accuracy of such approaches
may be constrained by the quality of the underlying graph,
potentially leading to the inadvertent identification of spurious
structures that do not align with the intrinsic characteristics of
the data (Quah and Hemberg, 2022). Other algorithms that are
frequently employed are those based on k-means. The K-means
algorithm is inherently susceptible to local minima due to the
sensitivity of the centroid estimation process to the initialization.
The SC3 package addresses this issue by integrating additional
results after running K-means repeatedly (Kiselev et al., 2017).
However, its current implementation is optimized for smaller data
sets and cannot be easily used with other methods outside the
SC3 package (Patterson-Cross et al., 2021).

Deep learning has led to the introduction of numerous
methodologies for the purpose of clustering scRNA-seq data.
According to the nature of the neural network they are based on,
these methods can be grouped in self-optimization-based methods,
generative adversarial network-basedmethods, subspace clustering-
based, Gaussian mixture model-based methods, spectral clustering-
based methods (Liu et al., 2024). A recent comparison of these
methods has revealed that the Deep Embedding for Single-cell
Clusteringmethod (DESC) has demonstrated superior performance
in terms of clustering specific celltypes and capturing celltype
heterogeneity (Liang et al., 2024).

A number of disadvantages were observed with both classical
clustering and deep learning based methods. The inefficiency
of classical clustering methods is attributable to the sparsity
and high dimensionality of scRNA-seq data (Vasighizaker et al.,
2022). Furthermore, deep learning methods demonstrated sub-
optimal efficiency when accurately characterising cell relationships
in heterogeneous populations, due to distortion in gene expression
induced by biological variability and technical errors (Yao et al.,
2024). To address these challenges, manifold based approaches
have been recently proposed (Vasighizaker et al., 2022). Methods
like scAMF (Single-cell Analysis via Manifold Fitting) fits a low-
dimensional manifold within the ambient space and unfolds the
data accordingly, compared to the traditional methods based on
low-dimensional data representation (Yao et al., 2024).

Despite the numerous advances and adaptations of clustering
algorithms, the optimal choice of the number of clusters remains
a challenging and data-dependent process (Duò et al., 2018).
Furthermore, all these algorithms require the input of parameters by
the user, whose selection has a considerable impact on the resulting
outcomes. For instance, the number of neighbors and the resolution
influence the construction of the proximity graph and the scale
at which clusters of cells are defined during the actual clustering

process, respectively. In addition, the choice of dimensionality
reduction approach affects the outcome of the clustering process by
altering the distance between cells and reducing information.

Alongside the methodological considerations, the nature of the
data itself requires examination. It is frequently the case that the
number of cells present in a given sample is not fully known.
Consequently, in the absence of knowledge regarding which specific
types of cells are present, it is only possible to estimate the quality
of the clusters obtained based on hypothesis and prior knowledge,
with a tendency to underestimate the presence of unconventional,
new, or rare cells (Jindal et al., 2018). A substantial proportion of
publicly available droplet-based datasets contain cell type labels,
which are typically inferred by clustering cells using scRNA-seq
data. Consequently, any evaluation based on these labels is likely
to be biased in favor of methods that are similar to the one used
to derive the labels in the first place (Duò et al., 2018). To ensure
the reliability of the cell labels, it is essential to utilize as ground
truth those derived through biologically reliable methods e.g., FACS
sorting, which have been manually curated and are independent of
the annotation algorithms utilized for scRNA-seq analysis.

In the absence of prior knowledge regarding the specific cell
type, it is possible to evaluate the quality of the cluster by employing
intrinsic metrics alone. In contrast to extrinsicmetrics, which utilize
information pertaining to the known true split, intrinsic metrics do
not make use of any external information and assess the goodness
of clusters based solely on the initial data and the quality of the
split (Han et al., 2012). These metrics have been used to evaluate
various clustering methodologies, including the Silhouette index for
scLCA (Cheng et al., 2019), the Calinski-Harabasz index for CIRD
(Lin et al., 2017), and the Gap statistic for RaceID (Grün et al.,
2015). However, these tools have been developed with the specific
aim of identifying cells belonging to specific cell types. For instance,
RaceID was developed to identify rare enteroendocrine cells in
murine intestinal samples (Jindal et al., 2018). While these tools
can be applied to any sample type, the context in which they were
developed may influence their capacity to handle the complexities
of different samples.

In this context, the present study sought to predict the accuracy
of the clustering method when varying different parameters.
In order to accomplish this objective, the following steps were
taken. Firstly, the impact of various clustering parameters on the
accuracy of cell clustering was assessed. Secondly, the accuracy
of cell clustering was predicted through the intrinsic metrics. To
this end, three reference datasets have been selected from those
available for download as models in the CellTypist organ atlas
(Domínguez Conde et al., 2022; Xu et al., 2023).

The significance of this work lies in its capacity to facilitate
a more nuanced comprehension of the utilization of clustering
parameters for the identification of discrete cell populations
within the context of single-cell RNA-seq data, particularly in
situations where no supervisory input is available. In the absence
of information regarding the cell types under investigation,
this analysis can assist in obtaining a cluster’s structure in a
manner that is as truthful as possible. This prevents the lack of
data from leading to the misuse of clustering parameters. The
increased appropriateness of the analysis may facilitate the detection
of complex and sometimes unknown cellular structures, thus
promoting the discovery of new biological insights.
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FIGURE 1
Workflow of clustering parameter analysis. Datasets were collected from the CellTypist database with their manually curated annotations (green).
These data were subsampled, preprocessed and clustered using different methods and parameters (blue). The CellTypist method was used to predict
the labels of the clustered dataset, and these predicted annotations were compared with the ground truth annotations from the CellTypist database to
obtain the accuracy. These values were used to analyse how different parameters affect the accuracy (orange) and to predict the accuracy of the
clustering method when different parameters are varied (purple).

2 Materials and methods

In order to achieve the objective of this work, a simulation study
was performed, as illustrated in Figure 1.

2.1 Datasets

The ground-truth annotations were downloaded from the
CellTypist organ atlas (https://www.celltypist.org/organs). This
ensures the utilization of a meticulously curated annotation for each
viable cell, i.e., cells that have undergone death or damage have been
filtered a priori. The employment of well-annotated viable cells also
permits the circumvention of any bias that may be introduced by
quality control procedures. In particular, the following datasets have
been selected because they encompass diverse biological districts,
thus representing different cell subpopulations, and because the
non-normalized count matrices have been made available for
subsequent analysis.

1. Liver organ from MacParland model (GSE115469).
MacParland et al. identified 20 hepatic cell populations,
from the transcriptional profiling of 8,444 cells obtained
from liver grafts of five healthy donors, by flow cytometry,
immunohistochemical examinations of human liver, analysis
of differentially expressed genes, and examination of
marker genes (MacParland et al., 2018). The 20 clusters
have been identified with eight cell populations: six distinct
hepatocyte populations, three endothelial cell populations,
one as cholangiocytes, one as hepatic stellate cells, two as
macrophages, three as T-cells, one as NK cell cluster, two as
B-cells, and one as erythroid cells. The cell-type identities for

each cluster were determinedmanually using a compiled panel
of available known hepatocyte/immune cell transcripts.

2. Skeletal muscle from De Micheli Model (GSE143704).
The authors collected the scRNA-Seq from surgically
discarded tissue from 10 healthy donors undergoing
reconstructive procedures and originating from different
anatomical sites (De Micheli et al., 2020). A total of 22.058
cells were manually annotated and classified into 16 clusters
comprising immune, vascular, stromal origin, myosatellite,
and myofiber cells.

3. Kidney Cortex obtained from normal region of tumor-
nephrectomy samples (https://explore.data.humancellatlas.
org/projects/29ed827b-c539-4f4c-bb6b-ce8f9173dfb7). This
data has been collected from the cortex of the kidneys of
18 donors. It consisted of 48.772 cells distributed among 47
clusters detailed in the reference.

2.2 Preprocessing

From each dataset, 20% of cells respecting the proportion
of the original dataset (i.e., stratified subsampling) have been
subsampled 100 times. For each subsampling, a standard single-
cell analysis has been performed in Python environment through
the Scanpy toolkit (Wolf et al., 2018). The preprocessing of scRNA-
seq data usually starts with the assessment of its quality, removing
low-quality cells (Luecken and Theis, 2019). However, since for
the selected datasets good cells have already been filtered, this
step has been skipped. Genes have been filtered when present
in at least three cells according to common practice in the field.
Data have been normalized by library size and log transformed,
to rectify technical inconsistencies within the data set, such as
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disparities in sequencing depth between cells. Highly variable
genes likely to be informative for further analysis have been
selected and dimensionality reduction has been performed through
principal component analysis. The scRNA-seq data are high-
dimensional, with expression measured for thousands of genes.
Dimensionality reduction is a pivotal step that transforms this high-
dimensional data into a low-dimensional representation, facilitating
the visualization and downstream analysis of the data.

2.3 Clustering algorithms

Two distinct algorithms have been used for the purpose
of clustering single-cell data: the Leiden algorithm and Deep
Embedding for Single-cell Clustering (DESC) (Li et al., 2020).
The Leiden algorithm has been chosen since methods based on
community detection have been shown to outperform scRNA-seq
data clustering algorithms and it is the core strategy of widely
used methods like Monocle3 and Seurat (Yu et al., 2022). It allows
the detection of communities in the k-nearest-neighbor graph
whose nodes reflect the cells in the dataset. In a low-dimensional
space obtained through principal component analysis, the distance
between cells has been computed and then the k most similar are
connected (Wolf et al., 2019). In contrast, the DESC algorithm
employs a deep neural network to construct a non-linear map from
the original scRNA-seq data to a low-dimensional feature space
where each cell is iteratively relocated to its nearest cluster.

2.4 Simulation parameters

A simulation study has been implemented in order to assess the
effects of varying clustering parameters on accuracy. For each sample
obtained by performing a stratified subsampling, both clustering
algorithms have been executed, varying the following parameters for
a total of 192 combinations.

• Number of principal components: PC = [10, 20, 30, 50]. Size
reduction through principal component analysis (PCA) aims
to capture the underlying trends and structures in the data by
projecting observations into a reduced space that preserves as
much variance as possible. In this case, it aims to systematically
evaluate how variation in the number of PCs affects the quality
of clustering, aiming to identify a configuration that effectively
balances the reduction of dimensionality with the preservation
of essential biological structure.

• Number of neighbors: NN = [10, 20, 30]. This parameter plays
a key role in identifying the local environment of each cell
within the reduced multidimensional space, i.e., constructing
the graph structure on which clusters of cells are then identified
by community identification algorithms.

• Resolution: Res = [0.5, 0.8, 1, 2]. Resolution plays a crucial role
in determining the granularity of the identified clusters.

• Neighbor definition methods: Method = [Gauss, UMAP].
Depending on the method considered, the way of defining the
global and local structure of the cells on which the clustering
algorithms will be implemented changes. In Scanpy, the nearest
neighbors distance matrix and a neighborhood graph of

observations are computed using the UMAP (McInnes et al.,
2018) or the Gauss method (Haghverdi et al., 2015).

• Distance metrics: Metric = [Cosine, Euclidean]. The choice of
distance metric in methods such as Gauss or UMAP, used to
identify nearest neighbors, is crucial because it defines how
the 'proximity’ between points in the dataset is calculated,
i.e., the distance of cells in gene expression space reduced by
PCA. Different metrics, such as Euclidean distance or cosine,
interpret proximity in different ways, directly influencingwhich
points are considered neighbors. This has an impact on cluster
formation, as the structure of the resulting groups depends on
the perceived similarity between the data.

2.5 Accuracy computation

The clusters have been annotated using the CellTypist method.
Therefore the accuracy has been computed comparing the labels
obtained from the CellTypist method with those coming from
the CellTypist database, which represents the ground truth. On
the one hand, this choice guarantees the use of a well-curated
annotation, against which the pipelines developed with the Scanpy
toolkit have been tested. On the other hand, the use of CellTypist
for both training and testing avoids the introduction biases due to
labelling method.

2.6 Robust linear mixed regression model

A linear model with random effects, to take into account the
effect of the subsampling, was applied to previously described
data including Method, Metric, NN, PC, Res as categorical
variables. The accuracy has been used as a dependent variable.
To account for outliers in accuracy distribution, a Robust Linear
Mixed regression model was implemented, using the function
rlmer in the R package robustlmm, allowing for weighting
observations that deviate significantly from the expected value
of the distribution (Koller, 2016). A graphical summary of the
robust linear mixed model is depicted in Supplementary Figure S1.
The first-order interactions model has been analyzed to correctly
interpret the effect of parameters on accuracy by removing
possible bias effects. Theoretical and methodological details are
described in Supplementary Material.

2.7 Intrinsic goodness metrics

The intrinsic goodness metrics evaluate a clustering procedure
by examining how well the clusters are separated and how compact
the clusters are without knowing the true labels. A total of 15
intrinsic measures were calculated, based on dispersion measures
and intra- and inter-cluster pairwise distances.

The metrics based on dispersion measures are calculated from
the total scatter matrix measuring the dispersion around the
barycenter of the data matrix. In particular, the following have been
calculated:
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• Total sum of square (TSS) (Edwards and Cavalli-Sforza, 1965):
The trace of the total scatter matrix is the sum of all the squared
Euclidean distances from the data barycenter.

• Within cluster dispersion (WC_Dispersion) (Marriot, 1971): It
has been one of the most common validity indices in clustering
applications. The trace of the within-group scatter matrix, that
is the sum of the squared distances between the observations
and the barycenter of the cluster.

• Ball-Hall (Ball andHall, 1965):This is the average version of the
previous measure, that is the mean, through all the clusters, of
their mean dispersion.

• Banfield-Raftery (Banfield and Raftery, 1993): This index is
the weighted sum of the logarithms of the traces of the
within-group scatter matrix of each cluster. Compared to other
previous dispersion measures performing well when all the
clusters have the same dispersion, this index is based on the
cluster variances, therefore it tends to bemore appropriatewhen
the clusters are hyperspherical but of different sizes.

• Pakhira–Bandyopadhyay–Maulik PBM index (PBM) (Malay et al.,
2004):This index considers both the total scatter matrix and the
within-cluster dispersion, and is calculated using the distances
between the points and their barycenters and the distances
between the barycenters themselves.This ratio is normalized by
the number of clusters, whichwas introduced to compensate for
the growth of the dispersion ratiowith further data partitioning.

• Wemmert-Gancarski (Bandyopadhyay and Saha, 2008): This
index is defined as the weighted mean, for all the clusters, of
the mean in each cluster of the quotient between the distance
of this point to the barycenter of the cluster it belongs to and
the smallest distance of this point to the barycenters of all the
other clusters. It is based on a cluster score that accounts for the
number of objects that are closer to their cluster centroid than
to the centroids of other clusters.

• Xie-Beni (Xie and Beni, 1991): It is defined as the quotient
between the mean squared distances of all the points
concerning the barycenter of the cluster they belong to and
the minimum of the minimal squared distances between the
points in the clusters.

• Ray-Tury (Ray and Turi, 1999): It is defined as a quotient
between the mean of the squared distances of all the points
concerning the barycenter of the cluster they belong to and
the minimum of the squared distances between all the cluster
centroids.

The computedmetrics based on intra- and inter-cluster pairwise
distances, i.e., the measure of cluster cohesion and separation
respectively, have been the following:

• Mclain-Rao (McClain and Rao, 1975): It is the ratio of the
average intra-cluster to the average inter-cluster distance.

• C-index (Hubert and Schultz, 1976): It is a normalized
sum of the distances between all the pairs of objects that
belong to the same cluster; the normalization scheme is
based on the minimum and maximum distance sums in
the dataset.

• Dunn (Dunn, 1974): In contrast with the other indexes based
on cluster pairwise distance, the Dunn index has the smallest
distance between two objects from different clusters in the

numerator and the maximum intra-cluster distance, in the
denominator.

• Silhouette (Peter, 1987): It is among the most used indexes for
cluster evaluation since it is easily interpretable in the range
[-1,1]. It is based on the normalized difference between the
smallest average distance of the object to the objects belonging
to any other cluster and its average distance to the other objects
of the same cluster. The silhouette of a sample is a mean value
of silhouette values from this sample. Therefore, the silhouette
distance shows to which extent the distance between the objects
of the same class differs from the mean distance between the
objects from different clusters. Values close to −1 correspond to
bad clustering results, while values closer to one correspond to
well-defined clusters. Finally, the global silhouette index is the
mean of the mean silhouettes through all the clusters.

• Point-Biserial (Milligan, 1981): this index represents the point-
biserial correlation between the pairwise distance matrix and a
binary matrix consisting of 0/1 entries that indicate whether or
not two objects are in the same cluster.

• SD (SD_Scattering and SD_Separation) (Halkidi et al., 2001):
The SD index is finally defined as the weighted sum of average
scattering (S) and total separation between clusters (D). The
weight is equal to the value of D obtained for the partition
with the greatest number of clusters. In this case, there are no
different numbers of clusters, therefore S and D are considered
separately as two different indexes.

To analyze the interrelationships between the intrinsic goodness
metrics, we computed the Spearman correlation and performed the
hierarchical clustering analysis. The results of these calculations are
illustrated bymeans of the clustermap function containedwithin the
Seaborn package.

2.8 ElasticNet model for accuracy
prediction

The goodness metrics have been used to predict the accuracy
of identification of each cell type. Since some goodness metrics are
intrinsically correlated to each other, encounteringmulticollinearity,
ElasticNet has been chosen as a linear regression model. In
fact, the ElasticNet model exploits both l1 and l2 norm directly
applied to the regularization coefficients (Zou and Hastie, 2005).
It is a linear combination of both Ridge and LASSO regression
where the former exploits the l2-norm to shrink the parameters
toward zero, while the latter relies on the l1-norm to introduce
sparsity among them (Antonacci et al., 2024). This combination
allows for learning a sparse model where few of the weights
are non-zero like Lasso, while still maintaining the regularization
properties of Ridge (Pedregosa et al., 2011). The dataset has been
normalized and the ElasticNet model has been trained twice: in
leave-one-out cross-validation (i.e., intra-dataset) and in cross-
dataset validation to analyze the stability of the relevant metrics.
The alpha parameter, that is the constant that multiplies the penalty
terms, has been optimized through 5-fold cross-validation. The l1
ratio parameter has been set to 0.5 as default. The performance of
themodel has been assessed by computing the R2 score and the Root
Mean Squared Error (RMSE).
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The intrinsic metrics most capable of generalising the results
of the model, will be compared with two extrinsic metrics to
assess their consistency with measures aware of ground truth
labels.The ARI (Adjusted Rand Index) computes similarity between
predicted and ground-truth clusters (Hubert and Arabic, 1985).
The Normalized mutual information (NMI) is a measure of the
similarity between twopartitions (Danon et al., 2005). It is calculated
by determining the mutual information of the two partitions, and
then normalising this by the respective entropies of the partitions.
Both metrics range from 0 to 1, with higher values indicating better
agreement.

3 Results

3.1 The impact of clustering parameters on
clustering accuracy

A robust linear mixed regression model was initially computed
over five categorical variables (i.e. Method, Metric, Number
of neighbors, Number of components, Resolution) for Leiden
algorithm and on Number of neighbors and Resolution for DESC
algorithm. The accuracy distribution for each dataset comprises
19.200 values, which are representative of the 100 subsampling
for each of the 192 parameter combination remaining from
Leiden algorithm, and 1.200 values for DESC, corresponding to
100 subsamples for each of the 12 parameter configurations.
Figure 2 illustrates these distributions obtained through the two
different clustering algorithms, demonstrating that there is a dataset
effect, with the DeMicheli dataset exhibiting the highest accuracy
compared to the other two datasets. Indeed, a comparison of
the accuracy distributions of the three datasets using the non-
parametric Kruskal–Wallis test revealed a significant difference
between the distributions (p-value <2.2e-16). Subsequently, aDunn’s
post-hoc test with Bonferroni correction was conducted to identify
specific differences between pairs of datasets. This revealed that
significant differences were present in all compared pairs, as
illustrated in Table 1.

To determine the specific influence of each parameter on
accuracy, while simultaneously accounting for potential biases
or confounding effects resulting from interactions, a first-order
interaction model was constructed for each dataset and the results
are described hereby for each clustering method.

3.1.1 Leiden algorithm
The residual plot and quantile-quantile (QQ) plot of the models

are presented in Supplementary Figure S2. A visual inspection of
the residuals indicated that they were normally distributed, with
only minor anomalies present on the left tail. An exploratory
analysis indicated that these values are primarily attributable to the
utilization of the Gauss method, with Euclidean metric, resolution
equal to 0.5 and number of neighbors equal to 30. This difference
is more pronounced in DeMicheli dataset, where this configuration
of parameters, combined with 50 principal components, causes
anomalies in the left tail of the residuals. This observation justifies
the use of a robust linear regression model. The normality test
results, as presented in Table 2, corroborate the presence of these
anomalies. However, the results also demonstrate that the first-order

interactionmodels are an excellent fit for the datasets, with the linear
predictors effectively explaining the observed variations in accuracy,
as evidenced by the R2 values of 0.8891 for MacParland, 0.8190 for
DeMicheli, and 0.9336 for HCA. The low bias and RMSE values
provide further evidence of the model’s precision.

The outcomes of the first-order interaction model, as
derived through robust linear mixed regression for each dataset,
are detailed in Supplementary Tables S1–S3 and have been
summarized in Figure 3, employing a network representation.

The Method variable coefficient (UMAP vs. Gauss) is
significantly positive only for HCA and DeMicheli. Interactions
involving UMAP indicate further significant effects:

• UMAP interacting with the Euclidean metric significantly
increases accuracy across all datasets.

• Increasing resolution in combination with UMAP negatively
impacts accuracy, contrasting with its positive effect when
considered independently.

• UMAP interaction with principal components significantly
enhances accuracy for MacParland and HCA datasets. In
contrast, these interactions are weak or even detrimental in the
DeMicheli dataset.

• UMAP interaction with nearest neighbors significantly boosts
accuracy across all datasets.

Considering the magnitude of the coefficients, it is clear that
using UMAP is preferable to Gauss across all three datasets.
The overall effect of UMAP—driven by its strong positive
interactions with metric, number of neighbors, and principal
components—consistently outweighs the negative impact of
its interaction with resolution, making it the most effective
method overall.

Resolution coefficients are positively significant for all datasets,
indicating improved accuracy when increasing clustering resolution
from 0.5 to 0.8, 1, and 2. Interactions reveal more nuanced effects:

• Increasing resolution combined with the Euclidean metric
further enhances accuracy, confirming a synergistic effect
between these two parameters.

• Interactions between clustering resolution and the number of
principal components significantly improve accuracy in the
MacParland dataset. Similarly, for the DeMicheli dataset, the
effect is consistently positive and increases with the number
of components. In the HCA dataset, positive effects are only
observed when combining higher resolution with a large
number of components (e.g., 50), whereas interactions with 20
or 30 components show a negative or marginal contribution.

• Interactions between clustering resolution and the number
of nearest neighbors consistently improve accuracy across all
datasets, confirming the robustness of this relationship.

Considering the magnitude of the coefficients, the use of higher
resolution levels—especially equal to 2—emerges as consistently
beneficial across all datasets. The strong positive main effects,
together with several substantial positive interactions, clearly
outweigh the isolated negative effects found in interactions with
UMAP.This confirms that increasing resolution enhances the ability
to recover meaningful substructure in the data.
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FIGURE 2
Boxplot of accuracy computed with all combinations of parameters for each dataset and both clustering algorithms. Statistics performed by
Kruskal–Wallis test with Dunn’s post-hoc test, ∗∗∗p-value <2∗10−16, ∗p-value <10−05.

TABLE 1 Results of Kruskal–Wallis test between the MacParland, DeMicheli, and HCA for both algorithms. Pairwise comparisons have been performed
through Dunn’s post-hoc test (Bonferroni corrected).

Dataset Comparison Kruskal–wallis leiden: χ2 = 31,700, p-value <2.2e-16
Kruskal–wallis DESC: χ2 = 2,898, p-value <2.2e-16

Algorithm Z-Value P.unadj P.adj

DeMicheli - HCA
Leiden 156.50 2.2e-16 2.2e-16

DESC 29.83 2.2e-16 2.2e-16

DeMicheli - MacParland
Leiden 151.77 2.2e-16 2.2e-16

DESC 53.72 2.2e-16 2.2e-16

HCA - MacParland
Leiden −4.73 2.212e-06 6.637e-06

DESC 23.89 2.2e-16 2.2e-16

TABLE 2 Model evaluation metrics and results of normality tests. Model evaluation metrics (Bias, RMSE, and R2) and normality test results
(Kolmogorov-Smirnov and Anderson-Darling) on the residuals of the first-order interaction model for the MacParland, DeMicheli, and HCA datasets for
both clustering algorithms.

Alg Dataset Bias RMSE R2 Kolmogorov-smirnov
statistic (D)

p-value Anderson-darling
statistic (A)

p-value

Leiden

MacParland 5.31e-05 0.0229 0.8891 0.011699 0.01044 3.5122 8.976e-09

DeMicheli 0.00059 0.0164 0.8190 0.051781 <2.2e-16 117.82 <2.2e-16

HCA 0.00012 0.0145 0.9336 0.011468 0.01282 5.2528 5.761e-13

DESC

MacParland 0.00054 0.0151 0.8320 0.04912 0.006112 4.5603 2.607e-11

DeMicheli 0.00153 0.0186 0.8085 0.10584 4.212e-12 30.092 <2.2e-16

HCA 0.00007 0.0108 0.7900 0.031748 0.1779 1.2395 0.003157
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FIGURE 3
First-order robust linear mixed regression coefficients. Each network reports significant coefficients of robust linear mixed regression on accuracy for a
given dataset. The nodes represent the different levels of categorical variables. The node dimension is proportional to the node degree, that is the sum
of the significant interactions involving that node. In the absence of a link, it can be inferred that this parameter is not significant for that particular
dataset. The green edges indicate that the parameter has a positive effect on accuracy in comparison to the reference values. Conversely, the red
edges indicate that the parameter has a negative effect on accuracy in comparison to the reference values. The thickness of the edges is proportional
to the magnitude of the effect. The reference values are: Method = Gauss; Resolution = 0.5; Number of Principal Components (PC) = 10; Number of
Nearest Neighbors (NN) = 10; Metric = Cosine.
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The number of principal components significantly increases
accuracy for all datasets, with the strongest effect in HCA. However,
for MacParland, the benefit declines beyond 30 components, and
for DeMicheli, the improvement is minimal with 50 components.
Interactions further illustrate complexity:

• Principal components interaction with the Euclidean metric
increases accuracy for DeMicheli and HCA but decreases
accuracy for MacParland.

• Principal components interaction with the number of nearest
neighbors decreases accuracy in MacParland and HCA.
In DeMicheli, the interaction effect is mostly neutral or
slightly positive.

This complexity is also reflected in the magnitude of the
coefficients. While the marginal effect of using 20 principal
components is consistently strong—particularly in HCA—the
overall benefit of increasing the number of components becomes
clearer when accounting for interaction effects. Summing positive
and negative contributions shows that a higher number of
components enhances the clustering space and supports improved
accuracy. However, while 50 components are optimal for both
McParland and HCA (as shown by the highest cumulative positive
coefficients), for DeMicheli the benefit plateaus at 30 components,
with limited further improvement beyond that point.

The number of nearest neighbors negatively affects accuracy
significantly across datasets. Further negative impact is observed
when increasing the number of neighbors in combination with the
Euclidean metric, suggesting that larger neighborhood sizes reduce
clustering precision when Euclidean distances are used.

This interpretation is supported by the magnitude of the
coefficients: since the baseline corresponds to 10 neighbors, the
negative estimates for 20 and especially 30 neighbors indicate a
consistent decline in performance in McParland and HCA. In
DeMicheli, the difference is less pronounced—when summing
marginal and interaction effects, the configuration with 30
neighbors appears slightly more favorable than 10. Nevertheless,
the overall trend supports the use of smaller neighborhood sizes, as
they tend to yieldmore accurate and localized neighborhood graphs,
which in turn enhance the identification of cellular subpopulations.

The Euclidean metric coefficient is significantly negative across
all datasets. Interactions indicate:

• UMAP combined with the Euclidean metric significantly
enhances accuracy.

• Resolution increases paired with the Euclidean metric
significantly boost accuracy.

• Euclidean metric combined with principal components has
dataset-specific effects: positively for DeMicheli and HCA,
negatively for MacParland.

• Increased nearest neighbors with the Euclidean metric further
reduce accuracy across all datasets.

As with the number of neighbors, the marginal effect would
suggest that the cosine metric is generally preferable. However,
in DeMicheli and HCA, the negative baseline impact of the
Euclidean metric is largely offset by its positive interactions
with increased resolution and the use of UMAP, making it a

reasonable choice in these contexts. The same cannot be said
for MacParland, where—despite similar interaction patterns—the
combination of parameters does not sufficiently counterbalance
the negative marginal effect, ultimately favoring the cosine metric.
Looking at the configuration of parameters to obtain the highest
accuracy when all cells are used (Table 3), it can be seen that the
cosine metric is preferable to Euclidean.

3.1.2 DESC algorithm
Residual diagnostics reveal moderate deviations from

normality and homoscedasticity, especially for MacParland and
DeMicheli (Supplementary Figure S3). In both datasets, the Q-Q
plots show pronounced left-tail deviations, and residuals versus
fitted values indicate asymmetric spread, particularly for lower fitted
values. These patterns are most prominent under the combination
of 30 neighbors and resolution 0.5.

Normality test results confirm these observations. Kolmogorov-
Smirnov and Anderson-Darling tests are significant for MacParland
and DeMicheli, and partially for HCA, indicating deviations from
normal residuals (Table 2). Despite this, model fit remains strong,
with R2 values of 0.8320 for MacParland, 0.8085 for DeMicheli, and
0.7900 for HCA, thanks to the weighted fit. Bias and RMSE values
are low across all models, supporting the overall reliability of the
regression estimates.

Full model summaries are reported in Supplementary Tables
S4–S6 and have been summarized in Figure 3, employing a
network representation. Increasing resolution significantly improves
accuracy across all datasets, with accuracy consistently rising
as resolution moves from 0.5 to 2. The number of nearest
neighbors negatively impacts accuracy across all datasets when
considered alone, with the worst performance observed at 30
nearest neighbors. Interaction effects between resolution and
nearest neighbors are generally positive for MacParland and
DeMicheli datasets, highlighting enhanced performance when
these parameters increase simultaneously. In the HCA dataset,
however, interactions show mixed effects: negative or neutral at
moderate resolutions (0.8 and 1) and positive only at the highest
resolution level (2).

This analysis enables the selection of the optimal and suboptimal
parameter configurations for both Leiden and DESC algorithm, as
illustrated in Table 3 and 4. The best and worst configuration (i.e.,
those configurations that allow for the prediction of the maximum
and minimum mean accuracies, respectively) have been utilised
to plot the whole datasets in UMAP space. The results of the
Leiden algorithm are presented in Figure 4. It was observed that
the optimal parameter configuration permitted the delineation of
all 20 clusters for the MacParland dataset, all 16 clusters for the
DeMicheli dataset, and 31 out of 47 clusters for the HCA dataset.
Conversely, the most unfavourable configuration proved incapable
of detecting all clusters. It is evident that a total of 6, 2 and 33
clusters have been missed for each dataset, respectively. The results
of DESC algorithm (Figure 5) showed that the optimal parameter
configuration permitted the delineation of 17 out 20 clusters for the
MacParland dataset, all 16 clusters for the DeMicheli dataset, and
24 out of 47 clusters for the HCA dataset. Conversely, the worst
configuration permitted the delineation of 14 out 20 clusters for the
MacParland dataset, 15 out 16 clusters for theDeMicheli dataset, and
19 out of 47 clusters for the HCA dataset.
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TABLE 3 Best and worst configurations for Leiden algorithm. For each dataset the configuration of parameters to obtain the highest value of accuracy
using the whole number of cells has been also reported as All cells Type.

Dataset Type Metric Method PC NN Res Predicted
Accuracy (mean ± std)

Observed
Accuracy

MacParland

Best cosine umap 50 10 2 0.823 ± 0.012

Worst euclidean gauss 50 30 0.5 0.503 ± 0.012

All cells cosine umap 30 10 2 0.839

DeMicheli

Best euclidean umap 30 30 2 0.864 ± 0.001

Worst euclidean gauss 10 30 0.5 0.698 ± 0.001

All cells cosine umap 30 10 2 0.882

HCA

Best euclidean umap 50 10 2 0.792 ± 4.4e−4

Worst euclidean gauss 10 30 0.5 0.540 ± 4.4e−4

All cells cosine umap 30 10 2 0.791

TABLE 4 Best and worst configurations for DESC algorithm.

Dataset Type NN Res Predicted
Accuracy (mean ± std)

MacParland
Best 30 2 0.655 ± 0.02

Worst 30 0.5 0.541 ± 0.02

DeMicheli
Best 10 2 0.849 ± 0.01

Worst 30 0.5 0.725 ± 0.04

HCA
Best 10 2 0.691 ± 0.01

Worst 30 0.5 0.628 ± 0.01

3.2 Prediction of clustering accuracy
through intrinsic goodness metrics

For each parameter combination, a total of fifteen intrinsic
goodness metrics has been calculated. Figure 6 illustrates the
interrelationships between the intrinsic goodness metrics through
correlation and hierarchical clustering analysis. The heatmap
of the correlation matrix demonstrates the existence of robust
correlations between variables, exhibiting both positive and negative
associations, which vary across datasets. The resulting dendrogram
from the hierarchical clustering analysis reveals the existence ofmost
of the clusters between variable are shared between the datasets
and methods. In particular the following variables form a clear
individual sub-cluster in all cases:

• C-index and Mclain-Rao are strongly (R > 0.95) positively
correlated

• Silhouette index and the Wemmert-Gancarski are positively (R
> 0.79) correlated

• Ball-Hall and PBM are positively (R > 0.71) correlated

• Banfield-Raftery and WC_Dispersion are positively (R > 0.66)
correlated

• Point-Biserial, Ray-Turi and SD_Separation are positively (R >
0.49) correlated

• TSS is poorly correlated with other variables (R < 0.18).

In contrast, the remaining three intrinsic measures (SD_
Scattering, Dunn, Xie-Beni) did not demonstrate a consistent
pattern across the dataset and methods, and instead exhibited a
tendency to join various sub-clusters. In every case Dunn and Xie-
Bien are strongly anticorrelated (R > −0.66).

It is important to note that the observed association between
these subclusters is contingent upon the specific dataset and
methodological approach employed.

The 15 intrinsic metrics have been employed as features in
the training of an ElasticNet regression model for the purpose of
predicting accuracy values. The model has been trained using two
approaches: an intra-dataset, i.e., leave-one-out cross-validation,
and a cross-dataset approach. The resulting performances are
presented in Table 5 in terms of R2 and RMSE values. With regard
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FIGURE 4
UMAP representation of Leiden results. For each dataset (in rows) the best (left column) and the worst (right column) configuration of parameters has
been represented.

FIGURE 5
UMAP representation of DESC results. For each dataset (in rows) the best (left column) and the worst (right column) configuration of parameters has
been represented.
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FIGURE 6
Feature correlation analysis. For each dataset (in columns) and for both clustering algorithms (in rows), each figure shows the correlation matrix
heatmap calculated from the Spearman correlation and the dendrograms representing associations among the metrics. The length of the dendrogram
branches represents the distance between metrics.

TABLE 5 Performance of the ElasticNet regression model for both clustering algorithms. Intra-Dataset performances have been reported in terms of
mean ± standard deviation for R2 and Root Mean Squared Error (RMSE) for each dataset. Cross-dataset performances have a unique value for
R2 and RMSE.

Algorithm MacParland DeMicheli HCA

R2 RMSE R2 RMSE R2 RMSE

Leiden
Intra-Dataset 0.82 ± 0.08 0.0008 ± 0.0003 0.64 ± 0.07 0.0005 ± 0.0001 0.90 ± 0.03 0.0002 ± 0.0001

Cross-Dataset 0.72 0.1 0.54 0.18 0.71 0.14

DESC
Intra-Dataset 0.76 ± 0.04 0.0002 ± 0.0002 0.73 ± 0.02 0.0002 ± 0.0002 0.64 ± 0.03 0.0003 ± 0.0002

Cross-Dataset 0.61 0.13 0.53 0.23 0.57 0.13

to the intra-dataset approach for Leiden algorithm,MacParland and
HCA demonstrate the highest value in terms of R2, at 0.82 and 0.90,
respectively. In comparison, DeMicheli exhibits a comparatively
lower performance, with an R2 value of 0.64. In contrast, the RMSE
values are comparable between the datasets with values lower than
0.0008. With regard to the cross-dataset approach, the results for
MacParland and HCA are once again comparable, albeit with lower
values for both R2 (0.72 and 0.71, respectively) and RMSE (0.1 and
0.14, respectively). DeMicheli results exhibit inferior performance
(R2 = 0.54, RMSE = 0.18).

The results obtained using the DESC algorithm are considerably
lower than those obtained with Leiden algorithm. In relation to
the intra-dataset approach, MacParland demonstrated the highest
level of significance (R2 = 0.76). Conversely, DeMicheli exhibited
comparatively diminished performance, with an R2 value of 0.73,
while HCA exhibited the least efficient outcome, with an R2

value of 0.64. In contrast, the RMSE values are comparable
between the datasets, with values lower than 0.0003. In relation
to the cross-dataset approach, the outcomes of the model are
low, with R2 equaling 0.61, 0.53, 0.57 and RMSE equaling
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FIGURE 7
Feature selection results. Barplots show the value of ElasticNet coefficients in the case of the intra-dataset approach (first row) and cross-dataset
approach (second row). Leiden results are depicted in the first column, DESC results in the second.

0.13, 0.23, 0.13, respectively, for the MacParland, DeMicheli and
HCA dataset.

Figure 7 illustrates the ElasticNet coefficients estimated
through both intra- and cross-dataset approaches. The bar charts
demonstrate that, in the intra-dataset analysis, four out 15 intrinsic
metrics were found to have ElasticNet coefficients different from
zero and coherent among datasets and clustering algorithms:
PBM, Banfield-Raftery, WC_dispersion, and SD_Scattering. The
aforementioned features exhibited negative ElasticNet weights. The
cross-dataset results corroborated the observation that Banfield-
Raftery and WC_dispersion exhibited coherent behavior across
datasets and algorithm.

To validate the consistency of those intrinsic metrics, the
distribution of the Banfield-Raftery and WC_dispersion as a
function of accuracy, alongside the respective deviation from
linearity of each intrinsic measure, has been compared with two
extrinsic measures (i.e., ARI and NMI), and with the Silhouette
index, as the most commonly used intrinsic metric. The results in
Figure 8 obtained from Leiden outcomes showed that, while the
linear tendency of Banfield-Raftery and WC_dispersion is evident,
the Silhouette index demonstrates a higher degree of divergence
from linearity. Moreover, those intrinsic metrics are anticorrelated
with extrinsic metrics. As demonstrated in Figure 9, the intrinsic
metrics for DESC outcomes exhibited a heightened propensity of
divergence from linearity, with varying extents observed across the
diverse datasets.

4 Discussion

The primary objective of this study was to evaluate the impact of
diverse clustering parameters, including themethodology employed
for computing the neighborhood graph, distance metric, resolution,
number of nearest neighbors, number of principal components,
on the accuracy of the clustering process. The Leiden algorithm
has been selected as the clustering method for determining the
concordance of cells with their predefined cell types (i.e., the
accuracy), both obtained with CellTypist to avoid any possible
bias. Techniques based on community detection, like Louvain and
Leiden algorithms, have been shown to outperform alternative
data clustering algorithms across a range of evaluation criteria
(Yu et al., 2022). Whereas the Louvain algorithm is no longer
maintained, the Leiden algorithm is the core strategy of widely
used methods for scRNA data clustering like Seurat, that has
been recently recommended as the first choice for scRNA-seq
clustering (Traag et al., 2019; Zhang et al., 2023). In addition to
conventional clustering algorithms, the advent of deep learning has
given rise to a variety of approaches based on neural networks. In
the field of single-cell analysis, the Deep Embedding for Single-
cell Clustering (DESC) method has exhibited superior performance
metrics when compared to alternative approaches (Liang et al.,
2024). Consequently, it has been selected as a representative of deep
learning methods and allowed to evaluate further the impact of
number of nearest neighbors and resolution.
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FIGURE 8
Distribution and residual plot of intrinsic and extrinsic metrics for Leiden algorithm outcomes. For each dataset (in columns), intrinsic measures
(Banfield-Raftery in green, WC_dispersion in blue and Silhouette index in red) and extrinsic metrics (ARI in magenta and NMI in yellow) have been
represented in terms of normalized distribution in function of accuracy (first line) and the scatterplot of the residual of linear regression.
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FIGURE 9
Distribution and residual plot of intrinsic and extrinsic metrics for DESC algorithm outcomes. For each dataset (in columns), intrinsic measures
(Banfield-Raftery in green, WC_dispersion in blue and Silhouette index in red) and extrinsic metrics (ARI in magenta and NMI in yellow) have been
represented in terms of normalized distribution in function of accuracy (first line) and the scatterplot of the residual of linear regression.
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4.1 Leiden vs. DESC

It was evident that both algorithms demonstrated a marked
increase in accuracy when applied to the DeMicheli dataset, in
comparison to their performance on other datasets. Nevertheless,
the DESC algorithm exhibits inferior performance in comparison
to the Leiden algorithm when applied to the MacParland and HCA
datasets, despite the observation that both distributions demonstrate
reduced variance. Whilst the diminished performance could be
ascribed to the imperative to augment the investigated values for
resolution in order to achieve enhanced sampling of clustering
accuracy (as substantiated by the UMAP plot), the enhanced
performance could be attributable to the fact that DESC balances the
biological and technical disparities between clusters and mitigates
the influence of batch effect (Liang et al., 2024).

Unlike Leiden, the DESC algorithm appears particularly
sensitive to changes in parameter values: suboptimal configurations
such as these give rise to a distinct cluster of low accuracy
values, producing a bimodal distribution. As a result, standard
parametric assumptions are partially violated, and even the robust
regression model, although effective, tends to treat the left mode
as a set of outliers, down-weighting its influence. This emphasizes
how, in the case of DESC, poor parameter selection can severely
deteriorate clustering performance,making themethodmore fragile
than Leiden under misspecification. HCA shows a more regular
distribution of residuals, though mild deviations persist.

Given the distribution of accuracy and the resampling approach
employed for data generation, a robust linear mixed-effects
regression model was utilized to model the data. Indeed, the robust
approach is recommended in the presence of outliers (Santos, 2020).

It is noteworthy that, due to the stochastic nature of nearest-
neighbor search algorithms, the introduction of different random
seeds can slightly influence the final output. This is because the seed
affects the initial steps of the algorithm that have random elements,
such as the choice of initial points formodularity optimization or the
order of exploration of nodes in the graph.These variations can lead
to small divergences in the identified clusters, especially in complex
datasets with many border zones between clusters or in the presence
of cells that could be assigned tomore than one cluster depending on
the initial configuration of the algorithm.Through the analysis of the
main effect model, it was determined that the variability introduced
by varying the starting point of the cluster algorithm can be regarded
as a secondary effect in comparison to the other variables therefore
this stochastic effect could be ignored and is not considered further
in this analysis.

4.2 Method and metric

An examination of the first-order interaction model revealed
that the UMAP method exhibited a notable positive impact on
clustering accuracy, as compared to the Gauss method, for two out
of three datasets. Nevertheless, the positive effect is consistently
significant when the Euclidean metric is employed in conjunction
with the method, as evidenced by the results obtained on all three
datasets.Therefore, even if themarginal effect would suggest that the
cosine metric is generally preferable, the negative baseline impact of
the Euclidean metric is largely offset by its positive interactions with

UMAPmethod and higher resolution, making it a preferable choice
for two out of three datasets. However, as demonstrated in Table 3,
the cosine metric is to be preferred over the Euclidean metric with
the UMAP method when all cells are utilised in order to achieve
the highest possible accuracy. Therefore, the cosine metric could be
advantage in case of higher number of cells.

4.3 Number of neighbors

The number of nearest neighbors modulates the structure of
the nearest neighbors graph. An insufficient value may result in a
fragmented view of the data, whereby the overall structure of the
cells is lost, leading to the formation of numerous small clusters that
may represent minor or random variations rather than biologically
significant differences. Consequently, there is a risk of isolating
cells or small groups of cells that, in reality, belong to larger cell
populations and, therefore, are characterized by a greater number of
connections in the graph. Conversely, an excessively high number of
neighbors has the potential to link together cells that should remain
distinct, thereby obscuring the distinction between different states
or cell types (Dann et al., 2022).This can be particularly problematic
in the presence of cell heterogeneity or transition states, where it is
crucial tomaintain the ability to distinguish between subtly different
cell populations. The optimal number of nearest neighbors must
therefore be selected in order to accurately capture the local and
global structure of cells on which to implement clustering. This is
reflected when a high number of nearest neighbors reduces accuracy
when considered alone (for both Leiden and DESC algorithm) or
in combination with the Euclidean metric. However, interactions
with UMAP and high clustering resolution demonstrated that these
negative effects can be mitigated, suggesting that the choice of the
number of nearest neighbors should be considered in combination
with other parameters.

In summary, lower values lead to sparser and more locally
sensitive graphs, which better preserve fine-grained cellular
relationships. This sparsity increases the effect of the resolution
parameter, allowing both algorithms to detect small, tightly
connected communities. In contrast, higher values of nearest
neighbors promotemore connected graphs, smoothing themanifold
and reducing sensitivity to local structures—especially detrimental
when combined with low resolution.

4.4 Resolution

The resolution thus determines the sensitivity of the clustering
method in identifying cell subpopulations. At low resolution, the
algorithm tends to produce a smaller number of clusters, each
comprising a larger number of cells.This approachmay be beneficial
when the objective is to discern the predominant cell lineages
present within a given sample, thereby reducing the likelihood
of overly subdividing homogeneous populations. Conversely, an
increase in resolution results in enhanced sensitivity, enabling the
differentiation of more precisely delineated cell populations. This
is particularly advantageous when searching for subpopulations or
rare transition states, which may prove crucial for understanding
specific biological processes or characterizing a particular disease.
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However, as was the case with the selection of the number of
nearest neighbors, an excessively high value may result in the over-
segmentation of the data, leading to the recognition of potentially
biologically irrelevant clusters. In contrast, a value that is too low
may fail to reveal the intrinsic complexity of the sample, with
cells that are similar but belong to distinct biological states being
aggregated together (Kiselev et al., 2019).

In summary, increasing the clustering resolution directly
increases the number of clusters detected by both clustering
algorithms, effectively “over-partitioning” the neighborhood graph.
While this can lead to overfragmentation in datasets with few
true clusters, it significantly improves cluster separation when the
underlying cell populations are heterogeneous and abundant. This
explains why the best configurations consistently include resolution
= 2, regardless of dataset.

4.5 Number of principal components

The number of principal components plays a more nuanced
role. Principal component analysis defines the latent space in which
distances for the neighborhood graph are computed.The inclusion of
an insufficient number of PCs may prove inadequate for accurately
capturing the underlying biological complexity. This could result
in a potential fusion or splitting of biologically distinct clusters.
While increasing the number of components generally improves
variance capture, it can also introduce noise and distort local
neighborhood structures.Therefore, the optimal number of principal
components to includerepresents acompromisebetween thenecessity
to reduce the complexity of the data while retaining sufficient
information to accurately discriminate between different states or
cell types (Stuart et al., 2019). When considered in isolation, its
effect is therefore modest or non-monotonic. However, when paired
with high clustering resolution and low number of neighbors, a
higher number of principal components (e.g., 30 or 50) allows
Leiden algorithm to exploit a richer representation of the data,
enhancing the ability to resolve subtle substructures. This effect is
dataset-specific—particularly beneficial inHCAandMacParland, and
marginal in DeMicheli—highlighting that the utility of dimensional
richness depends on the intrinsic structure of the data (e.g., number
and dimension of clusters, distance between clusters).

As demonstrated, the impact of augmenting the number of
principal components on accuracy is not consistent across the three
datasets. This may be indicative of the fact that this parameter
is significantly influenced by the inherent complexity of the data.
In order to further explore this aspect and determine whether
this complexity is perhaps tissue-specific, three additional datasets
originating from the same anatomical districts were analysed
using the robust linear mixed regression model. The extraction
of the optimal and suboptimal parameter configurations for the
three paired datasets (see Supplementary Table S7) demonstrated a
complete overimposition of both parameter configurations for the
liver datasets, and an almost complete overimposition for the kidney
datasets (i.e., in this case theMuto dataset demonstrated a preference
for the cosine metric over the Euclidian metric in comparison to
the HCA). It is evident that there is a lack of congruence between
the method, the number of principal components, and the nearest
neighbours for datasets pertaining to skeletal muscle. Consequently,

it is not possible to conclude that the best andworst configurations of
parameters are tissue-specific. However, it is important to note that
the number of clusters is likely to be a contributing factor in this
phenomenon since both liver datasets exhibit a comparable number
of clusters (i.e. 20 and 21 clusters, respectively), a similarity that is
not observed in the other datasets.

The impact of the selected optimal and sub-optimal
configurations for parameters, along with the significance of
resolution, is particularly evident in the UMAP plots. In the
representation of DESC outcomes misclassifications is clearly
visible. For instance, Hepatic Stellate Cells are misclassified as
periportal LSECs (MacParland), EC-AEA as EG-GC, NKT as NK
(HCA), and CLDN5+PECAM1+Endothelial as ICAM1+SELE +
VCM1+Endothelial (DeMicheli). In Leiden representation, the
number of hepatocyte types from the MacParland dataset has been
reduced by half. Furthermore, the distinction between inflammatory
and non-inflammatory macrophages, as well as endothelial
cells, has been eliminated. It is evident that, in the DeMicheli
dataset, the endothelial cells are predominantly misclassified. This
phenomenon may be explained by the heterogeneity of endothelial
cells, which complicates the targeting of the endothelium. This
challenge is further compounded by the paucity of knowledge
regarding the identification and functional inventory of EC
phenotypes (Pasut et al., 2021). The results of the HCA revealed
that, in spite of the optimal configuration, the number of clusters
detected was inadequate to accurately depict the complexity of
the tissue.

4.6 Intra and cross-dataset assessment of
intrinsic measures-based ElasticNet model

As a consequence of addressing the primary objective, it
is now feasible to employ a range of accuracy values obtained
through the implementation of diverse parameter configurations.
In order to define a proxy for predicting the accuracy of cell
clustering, fifteen intrinsic goodness metrics have been calculated
for each of the aforementioned configurations.These metrics can be
classified into two main categories: those based on intra- and inter-
cluster pairwise distances and those based on dispersion measures.
The correlation and hierarchical cluster analysis of the variables
revealed the presence of consistent patterns, particularly a positive
correlation between: Ball-Hall, and PBM; Banfield-Raftery, and
WC_Dispersion; C-index andMclain-Rao; Point-Biserial, Ray-Turi,
and SD_Separation; Silhouette index and the Wemmert-Gancarski.
A strong negative correlation has been found between Dunn and
Xie-Beni index; and no correlation between TSS and other variables.

In light of these correlations, ElasticNet has been selected as a
linear regression model with both l1 and l2 regularization of the
coefficients. This combination permits the construction of a sparse
model in which a limited number of weights are non-zero, as is the
case with Lasso, while simultaneously preserving the regularization
properties of Ridge. Training the model on the outcome obtained
through Leiden algorithm for MacParland and HCA dataset yielded
high performance, with an R2 value exceeding 0.8 and an RMSE
value of 0.0002 on average. In contrast, the DeMicheli dataset
demonstrated comparatively lower performance, with anR2 value of
0.64 and an RMSE value of 0.0005 on average.This discrepancy may
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be attributed to the disparate distribution of accuracy data, which is
concentrated in a narrower interval in the latter case. The analysis
of outcomes from DESC algorithms resulted in inferior model
performances in terms of R2, but not for RMSE, forMacParland and
HCA datasets, with R2 decreasing to 0.76 and 0.64, respectively. In
contrast, themodel that was trained on theDeMicheli outcome from
the DESC model demonstrated an increase in R2 to 0.73.

Given the potential for overestimation of performance due to
the intra-dataset approach, an alternative method was employed
whereby one dataset was removed from the training set and used for
testing in a cross-dataset approach. In this case, the performance of
ElasticNet model applied to Leiden outcome decreases to R2 = 0.72,
0.54, and 0.71 for MacParland, DeMicheli, and HCA respectively.
The low performance of the model in case of DeMicheli could
be easily explained by the fact that the accuracy of the other two
datasets used for training span in different range, that indeed provide
higher performance for both of them when used as training set.
Analogously, the performance of ElasticNet model applied to DESC
outcome decreases to R2 = 0.61, 0.53, and 0.57 for MacParland,
DeMicheli, andHCArespectively. Also theRMSE increases to values
higher that 0.13.

It is therefore evident that the reliability of the ElasticNet
model trained with all computed intrinsic measures, is contingent
on both the employed algorithm and the dataset utilised during
the training process. The trained model demonstrates a limited
capacity for generalisation, as evidenced by the cross-dataset results,
particularly with regard to the DESC outcomes. In consideration of
the aforementioned factors, the ElasticNet results have been utilised
to establish a ranking of the intrinsic metrics, thereby identifying
those metrics that can provide a more accurate assessment of the
accuracy, irrespective of the employed methods and dataset.

ElasticNet estimates the weights of features and performs
feature selections, weighting to zero irrelevant features (Zou and
Hastie, 2005). However, it is important to note that the weights
dedicated to linear fitting are irrelevant to the correlation between
features and their corresponding labels. Consequently, they are not
appropriate for feature importance ranking. An approach that is
usually employed to rank chosen features is described in (Yu et al.,
2020). Subsequently, the features under consideration could be
evaluated according to the frequency with which they are identified
as relevant. In this study, the objective is to furnish a proxy of
accuracy; consequently, it is essential to generalise the findings
of built models. Therefore, features which have been consistently
selected, irrespective of the training dataset or the clustering
algorithm, have been prioritized since they are more effective in
generalisation. In this perspective, of the 15 features, only two
exhibited coherent ElasticNet weights across the three datasets, two
algorithms and both in intra and cross dataset assessment. The
variables identified as being of particular significance were Banfield-
Raftery andWC_dispersion.The low negative coefficients estimated
by ElasticNet suggest that the lower the values, the higher the
accuracy predicted. This trend can be attributed to the fact that
the WC_dispersion is defined as the variability or spread of data
points within a cluster (Brusco et al., 2020). A low value suggests
that the data points within each cluster are similar and cohesively
grouped, while a high dispersion suggests that the data points are
more scattered and less cohesive. On the other hand, the Banfield-
Raftery index is a weighted sum of the logarithms of the traces of

the within-group scatter matrix of each cluster. As it is based on
the cluster variances, it demonstrates greater suitability when the
clusters are hyperspherical but of varying sizes (Todeschini et al.,
2024). Therefore its suitability could be due to greater sensitivity
to internal variance within clusters, making it a more robust and
appropriate measure in contexts characterized by the presence of
clusters with varying sizes, as is the case in single-cell RNA-seq data.

It is important to note that these results cannot be immediately
compared with other methods in literature, since intrinsic metrics
have been previously used as an instrument to estimate the optimal
number of clusters, even if the number of clusters do not fully
reflect the quality of the selected label set (Liu et al., 2021). Taking
into account this limitation, since the majority of literature employs
the silhouette index (Cheng et al., 2019), a comparison was made
between the aforementioned significant metrics and the silhouette
index. Moreover, extrinsic measures as ARI and NMI have been
computed in the same conditions to check the consistency of chosen
intrinsic metrics. The results for Leiden outcomes demonstrated
that, whilst the Banfield-Raftery, and WC_Dispersion variables
exhibited a slight divergence from linearity, the silhouette index
did not demonstrate a linear behaviour in comparison to the
computed accuracy. This finding indicates that the silhouette index
is less effective in its role as an intrinsic metric for an immediate
comparison of different clustering parameter configurations. The
findings pertaining to DESC outcomes indicated that all intrinsic
metrics manifested elevated levels of divergence from linearity,
particularly at lower values of accuracy. Nevertheless, in each case,
the chosen intrinsic metrics appeared to be negatively correlated
with the extrinsicmetrics.This finding demonstrated that they could
be used as proxies for accuracy, with the advantage of not necessarily
knowing the actual cluster labels.

This study has potential limitations. It made use of manually
annotated datasets, whichmeant that the quality control procedures,
that are the standard preliminary steps of single-cell analysis, were
not undertaken. This was because only the labels for high-quality
cells were available. In future work, it would be beneficial to consider
a cluster of cells deemed to be of insufficient quality in order to
analyze additional parameters, such as the impact of the minimum
acceptable number of counts per cell on clustering stability. This
approach will also assist researchers in evaluating the efficacy of the
parameters employed for cell elimination based on the minimum
acceptable number of reads. Furthermore, the clustering methods
have been evaluated using the Scanpy toolkit, and a different number
of functions and methods would be available in the R environment.
It would be beneficial for future research to extend the analysis to a
larger andmore diverse set of single-cell datasets.The incorporation
of datasets representing a broader range of biological conditions
could serve to further validate the robustness of the clustering
methods and parameters.

5 Conclusion

This study permitted an investigation into the influence of
diverse clustering parameters on the accuracy of single-cell RNA-seq
data analysis. To this end, a robust linear mixed-effects regression
model was fitted in order to correctly identify the key factors
affecting clustering performance. The number of nearest neighbors,
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resolution, number of principal components, distance metric and
neighbor definition method were found to have a significant
impact on accuracy. The analysis of the first-order interaction
model demonstrated that clustering accuracy can be interpreted as
the outcome of a trade-off between clustering resolution capacity
and signal-to-noise ratio. The resolution capacity—driven by the
clustering resolution, and modulated by the number of nearest
neighbors and principal components—determines the algorithm’s
ability to separate distinct cellular populations. At the same time,
increasing the number of principal components carries the risk
of incorporating noisy or biologically irrelevant variation. Optimal
configurations strike a balance between these forces, favoring high
clustering resolution, low number of nearest neighbors, and a
sufficiently expressive PCA space, especially when combined with
UMAP, which preserve local geometries.

Among the intrinsic metrics used to predict accuracy, the
WC_dispersion and Banfield-Raftery have been identified as those
which demonstrate the most linear trend, negatively correlated with
accuracy, irrespective of the dataset to which they are applied and
the method used for clustering. Consequently, they can be utilised
to evaluate the accuracy, with the benefit of not necessarily being
aware of the actual cluster labels.
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