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Identification of novel drug
targets and small molecule
discovery for MRSA infections

Nandha Kumar Subramani and Subhashree Venugopal*

School of Bio Science and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India

Introduction: The topmost deadliest microorganism, namely, methicillin-
resistant Staphylococcus aureus (MRSA), causes dreadful infections
like bacteremia, pneumonia, endocarditis, and systemic inflammations.
The virulence factors associated with MRSA exhibit multidrug-resistant
characteristics, complicating treatment choices. So, the primary objective of
this study is to identify the MRSA virulence factors and inhibiting its activity
utilizing bioinformatic approaches.

Methods: The screening of novel therapeutic MRSA targets was conducted
based on the predictions retrieved from non-homologous, physicochemical
analysis, subcellular localization, druggability, and virulence factor
examinations. Following that, flavonoid compounds were docked against
specific MRSA targets using AutoDock Vina. Further, molecular dynamic
simulations and binding free energy calculations were performed using
simulation software.

Results: After examining 2,640 virulence factors that presented in MRSA,
the heme response regulator R (HssR) was found to be a novel protein
that greatly controls the levels of heme in MRSA infections. Subsequently,
the binding energy calculations for flavonoid compounds and HssR
revealed that the catechin provided −7.9 kcal/mol, which surpassed the
standard drug, namely, vancomycin (−5.9 kcal/mol). Further, the results
were validated by evaluating molecular dynamic simulation parameters like
RMSD, RMSF, ROG, SASA, and PCA. Through analyzing these parameters,
catechin provided a more stable, compact nature and less solvent exposure
with HssR than vancomycin. Moreover, the predicted binding free energy
for HssR-catechin was found to be −23.0 kcal/mol, which was less
compared to the HssR-vancomycin (−16.91 kcal/mol) complex. The results
suggested that the catechin was able to modulate the activity of the HssR
protein effectively.

Conclusion: These potential findings revealed that heme response
regulator R as a promising therapeutic target while the flavonoid
compound catechin could act as alternative therapeutic inhibitor that target
MRSA infections.
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Staphylococcus aureus, MRSA, subtractive proteomic data analysis, drug target,
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1 Introduction

A wide variety of antimicrobial pathogens cause millions of
human fatalities worldwide. To be precise, in 2022, antimicrobial-
resistant pathogens caused 1.27 million deaths and 4.95 million
infections in people (Medugu et al., 2023). Specifically, the
drug-resistant microorganism, namely, methicillin-resistant
Staphylococcus aureus (MRSA), was listed as the most lethal drug-
resistant pathogen, responsible for over 100,000 deaths (Yao et al.,
2023). In addition to that, the World Health Organization listed
MRSA as a top-priority bacterium that causes severe infections in
humans. Despite this, the death rate from MRSA had increased
slightly each year since 2017 (Hossein Hasanpour et al., 2023).
Furthermore, numerous studies over the last 2 decades have
reported different prevalence rates of MRSA in various sectors,
such as healthcare settings, overcrowded areas, cattle forms, and
so on. Among them, the prevalence of MRSA mostly occurs in
hospital environments (Shoaib et al., 2023). Further, it affects all
age groups and causes mild to superficial infections. Primarily,
this infection spreads through skin-to-skin contact, especially in
individuals with weakened immune systems, ultimately resulting
in fatality (Ahmed et al., 2023).

Staphylococcus aureus is a Gram-positive commensal bacterium
and is known as an opportunistic pathogen. These bacteria
are known for their resistance to most commercial beta-lactone
antibiotics, including methicillin and penicillin (Bellis et al., 2024).
It poses a significant global threat in healthcare, community,
and livestock settings due to its antibiotic resistance, which is
making the treatment more complex (Crespo-Piazuelo and Lawlor,
2021). Primarily, it is associated with nosocomial infection, skin
and soft tissue infections, pneumonia, bloodstream infections,
staphylococcal scalded skin syndrome, osteomyelitis, endocarditis,
and bacteremia (Hou et al., 2023). Additionally, it can cause food
poisoning by producing various toxins, including enterotoxins
and exfoliative toxins (Leung et al., 2018), and also cause toxic
shock syndrome by releasing superantigens into the bloodstream
(Bukowski et al., 2010). The foremost mechanisms of MRSA
resistance to most antibiotics are biofilm formation, the presence
of penicillin-binding proteins (PBPs), and the presence of virulence
factors, which play a major role in preventing the bacteria from all
antibiotics (Wang et al., 2020). These virulence factors, including
adhesion, capsule, exoenzyme, exotoxins, and colonization, are
primarily involved in bacterial attachment to the host body. Besides
that, the bacteria have various binding proteins that regulate various
signaling pathways via the extracellular matrix in the host, including
clumping factors, collagen-binding proteins, fibronectin-binding
proteins, and elastin-binding proteins (Parveen et al., 2020).

Identifying the target protein that regulates MRSA infections
in the host is a complicated process. Henceforth, there is a need
to identify novel proteins that preserve the activity of MRSA.

Abbreviations: MRSA, Methicillin Resistant Staphylococcus aureus; HssR,
Heme response regulator R; PBPs, Penicillin-binding proteins; ADV,
AutoDock Vina; MDS, Molecular Dynamic Simulation; RMSD, Root Mean
Square Deviation; RMSF, Root Mean Square Fluctuation; ROG, Radius of
Gyration; H-bond, Hydrogen Bond; SASA, Solvent Accessible Surface Area;
PCA, Principal Component Analysis; MMGBSA, Molecular mechanics with
generalized Born and surface area solvation.

The identification of potential and novel therapeutic targets will
improve the treatment of the infection with specific drugs. There
are many approaches available for investigating drug targets in
microorganisms. One of the unique methods to identify potential
targets is subtractive genome analysis, otherwise called subtractive
proteomic data analysis (Alhamhoomet al., 2022).This investigation
predominately utilizes bioinformatics approaches and strategies
that are cost-effective and speed up the identification of potential
targets. This subtractive proteomic data analysis approach is
primarily used for identifying potential therapeutic targets that are
present in various life-threatening organisms, such as Pseudomonas
aeruginosa (Uddin and Jamil, 2018), Streptococcus pneumoniae
(Khan et al., 2022), Helicobacter pylori (Ibrahim et al., 2020),
Mycobacterium tuberculosis (Hosen et al., 2014), Edwardsiella
tarda, and Salmonella enterica (Hossain et al., 2017), Acinetobacter
baumannii (Kaur et al., 2021).

As of now, there have been a few antibiotics reported to treat
MRSA infections. Currently, vancomycin is reported as the sole
antibiotic that treats severe MRSA infections, but it has several
side effects on the human body, like nephrotoxicity, ototoxicity,
thrombophlebitis, and red men syndrome, which complicates
its usage in infected individuals (Wang et al., 2022a). Apart
from that, MRSA has also developed resistance to vancomycin
due to its extensive use in treating infections. Therefore, there
is a necessity to discover alternatives that mimic the activity
of antibiotics. The researchers highlighted that the compounds
derived from plants, like alkaloids, flavonoids, terpenoids, tannins,
and so on, provide better inhibitory activity against MRSA
infections. Among these phytochemical compounds, flavonoids
have a wide range of properties, which include antioxidant, anti-
inflammatory, anticancer, antimicrobial, and neuroprotective effects
with low toxicity (Billowria et al., 2024).

Considering this potential promising action possessed by
natural compounds, this investigation was taken up to in silico
screening of potential flavonoids from a variety of natural sources
against selected proteins from the subtractive proteomic data
method to identify the candidates for developing new antimicrobial
agents. Hence, the main objective of this study is to conduct
a whole proteome analysis of methicillin-resistant S. aureus,
aiming to identify and characterize new therapeutic targets and
potential inhibitors against disease-causing proteins using in silico
approaches.

2 Materials and methods

The detailed methodology is divided into two phases: Phase I
involves identifying therapeutic targets from methicillin-resistant
S. aureus; Phase II covers molecular docking, molecular dynamic
simulation, and binding free energy calculations.

2.1 Phase I

2.1.1 Proteome retrieval of MRSA strain
The complete protein sequences of S. aureus MRSA252 were

retrieved from the NCBI (National Center for Biotechnology
Information) database (https://www.ncbi.nlm.nih.gov/).
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FIGURE 1
Schematic representation of Phase I and Phase II.

2.1.2 Identification of paralogous protein
After retrieval of the proteins, the CD-HIT tool (Cluster

Database at High Identity with Tolerance) was used to eliminate
duplicate proteins that are presented in the data (Huang et al.,
2010). The entire proteome set was subjected to CD-HIT
(https://www.bioinformatics.org/cd-hit/), which was utilized to
remove paralogous or duplicate sequences with a threshold
value of 80%.

2.1.3 Non homologous analysis
Furthermore, non-paralogous proteins were submitted to

NCBI BLASTp (Basic Local Alignment Search Tool) (https://blast.
ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins) against Homo sapiens

proteins, with an expectation value (E-value) of 10−3 to identify non-
homologous proteins and homologous proteins. Afterward, only the
non-homologous proteinswere used for downstream investigations.

2.1.4 Physicochemical characterization
The Expasy ProtParam server (https://web.expasy.

org/protparam/) was used to compute the theoretical
physicochemical properties of each protein, including molecular
weight, isoelectric point, aliphatic index, instability index,
and GRAVY (the grand average of hydropathicity). Proteins
with an instability index lower than 40 were selected for
further analysis because this classifies the protein as stable,
while an instability index greater than 40 indicates the protein
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TABLE 1 List of subcellular localization of selected MRSA proteins.

S. No Subcellular localization Number of proteins

1 Cell wall 10

2 Cytoplasmic membrane 166

3 Extracellular 30

4 Unknown 236

5 Cytoplasmic (PSORTb score <9) 217

6 Cytoplasmic (PSORTb score >9) 105

is unstable (Waterhouse et al., 2018). Only the stable proteins were
chosen for the forthcoming steps.

2.1.5 Protein localization prediction
To find therapeutic drug target identification, the identified

proteins were subjected to PSORTb version 3.0.3 (https://www.
psort.org/psortb/). These tools classified proteins into distinct
types based on their cellular location, with five key locations in
microbes, including cytoplasmic, extracellular, outer membrane,
cytoplasmic membrane, cell wall, and unknown (Yu et al., 2010).
Only the proteins present in the cytoplasmic were chosen for
further investigation due to their established role in bacteria’s
survival, antibiotic resistance, virulence, and potential ability to act
as biomarkers or therapeutic targets.

2.1.6 Druggability analysis of proteins
Furthermore, cytoplasmic proteins were subjected to

druggability analysis. The Drugbank database (https://go.drugbank.
com/) and Therapeutic Target Database (https://idrblab.net/ttd/)
were used for comparing the druggability efficiency of proteins.
The evaluation was carried out with an E-value cutoff of 10−4 along
with default parameters (Craig et al., 2024; Zhou et al., 2024). Only
the proteins (hits) with identified drug targets were selected for
downstream analysis, while the no-hit proteins were excluded.

2.1.7 Virulence factors and essentiality analysis
Identification of virulence proteins is an important step in

the process of targeted drug therapy. These proteins play a major
role in destabilizing the activity of immune cells in the host
body, potentially leading to widespread disease (De Jong et al.,
2019). For the determination of virulence proteins, the Blastp
was performed using two common databases: VFDB (http://www.
mgc.ac.cn/VFs/main.htm) and VICMpred (https://webs.iiitd.edu.
in/raghava/vicmpred/). These two databases contained information
about virulence factors, cellular processes, information molecules,
and metabolism molecules (Liu et al., 2022). The proteins were
shortlisted based on the comparison of hit proteins retrieved
from these databases. Only the proteins that hit the VFDBs and
VICMpred were used for further examinations. The virulence
proteins retrieved from VFDBs and VICMpred were further
screened for their essentiality in MRSA bacteria survival. For this
purpose, theDatabase of Essential Genes (DEG) (http://origin.tubic.

org/deg/public/index.php), an open-source database, was used.This
resource contains information on experimentally verified essential
genes across bacteria, archaea, and eukaryotes, as well as gene
annotations, sequence information, protein details, essentiality
classifications, and the experimental conditions that showed genes
were necessary for microorganisms to survive. In this study, this
database was used for identifying essential genes that were present
in S. aureus subsp. aureus MRSA252 by submitting the FASTA
sequences of retrieved protein. Afterwards, these protein sequences
were compared to identify high-similarity protein sequences using
the BLASTp tool, with an expectation value of 10−5.

2.1.8 Metabolic pathway and protein-protein
interaction network analysis

After selection of proteins through various filters from different
databases, the specific metabolic pathways and protein-protein
interactions were predicted through webservers. For identification
of metabolic pathways, the KEGG (Kyoto Encyclopedia of Genes
and Genomes) (https://www.genome.jp/kegg/) server was used
for providing the functional annotations, and the protein-protein
network analysis was predicted through String DB (Search Tool
for the Retrieval of Interacting Genes/Proteins) (https://string-db.
org/) (Szklarczyk et al., 2023). After identification of metabolic
pathways and protein network analysis, the 3D structures of
the protein were examined in the RCSB PDB (protein data
bank) database.

2.2 Phase II

2.2.1 Protein modeling and validation
After prediction the protein through subtractive proteomic

data analysis, the 3D structure of the protein was modeled using
the SWISS-MODEL web server SWISS-MODEL (expasy.org)
(Waterhouse et al., 2018) and the 3D structure was validated
by using SAVESv6-1 (https://saves.mbi.ucla.edu/) and ProSA
webservers (https://prosa.services.came.sbg.ac.at/prosa.php).
The SAVESv6.1 web server contains 3D structure validation
tools, including PROCHECK, ERRAT, verify 3D, PROVE, and
WHATCHECK. Among these, PROCHECK was utilized for
analyzing the Ramachandran plot, while the ProQ (Wallner and
Elofsson, 2003) (https://proq.bioinfo.se/cgi-bin/ProQ/ProQ.cgi)
and ProSA (Wiederstein and Sippl, 2007) (https://prosa.services.
came.sbg.ac.at/prosa.php) web servers predicted protein qualities as
well as statistical parameters.

2.2.2 Retrieval of flavonoid compounds
The flavonoid structures were retrieved from the NuBBE

(research for the development and sustainable use of the
biodiversity) database (https://nubbe.iq.unesp.br/portal/nubbe-
search.html). This database contained a wide variety of compounds
and secondary metabolites from plants, insects, fungi, bacteria, and
marine organisms. It’s a user-friendly database that allows users
to filter compounds based on chemical information, location, and
biological properties (Pilon et al., 2017). Further, it enables users to
retrieve similar substances by sketching the chemical structure of
unknown compounds.
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FIGURE 2
(a) Pie chart representation of subcellular localization of proteins. (b) Protein-protein interaction network of HssR protein.

2.2.3 Preparation of proteins and small
molecules for molecular docking

After modeling the 3D structure of the protein and retrieval
of flavonoid compounds, the protein and compounds were
prepared before molecular docking studies. For the preparation
of protein, the AutoDock version 1.5.6 tool was used, which
involves removing water molecules, adding polar hydrogens,
assigning Kollman charges, and converting the protein in
pdb format to pdbqt format. For the preparation of ligands,
OpenBabel GUI version 2.4.1 software (O’Boyle et al., 2011)
was used for converting the compounds from sdf format to
pdbqt format with default parameters (Kumar Subramani and
Venugopal, 2024).

2.2.4 Virtual screening using AutoDock vina
After preparation of the receptor and the ligands for molecular

docking, virtual screening was performed using AutoDock Vina
(ADV) software (Trott and Olson, 2010). The protein and ligand
were subjected to Autodock 4.2.1, generating grid maps for blind
docking and the grid box dimensions were 126 × 126 × 126 Å, with
a spacing of 0.456. and center grid box is X = 0.913, Y = −0.034,
and Z = 5.282. ADV software extensively investigates the lowest
binding energy between protein and ligand complexes by employing
a gradient-based optimization algorithm (Sanchez, 2013). In
this study, ADV was used for predicting the binding interaction
with multiple ligands on a single protein. After retrieving virtual
screening results, the complexes with the lowest binding energy and
highest hydrogen bond interactions were selected for molecular
dynamic simulation. Further, the complex’s binding energies
and binding free energies were compared with a commercial
antibiotic drug, vancomycin. PyMOL version 2.5.4 (Yuan et al.,
2017) and Discovery Studio Visualizer version 21.1.020298
software were used for the visualization of protein and ligand
complexes.

2.2.5 Molecular dynamic simulation
In this molecular dynamic simulation (MDS) step, the behavior

of the protein in the presence of water (Native-Protein), the

selected complex (Protein-Ligand), and the protein-vancomycin
(Protein-Drug) complex were evaluated through 100 ns MDS using
GROningen MAchine for Chemical Simulations (GROMACS)
version 2023.2 (Gajula et al., 2016). The CHARMM27 all-atom
force field was used to generate the protein topology file, and
the default water model (TIP 3-point) was used to solvate the
system in a cubic box, which mimicked the biological environment
conditions. Then, the counterions, such as Na+ or Cl−, were added
to neutralize the whole system. After adding ions, the energy
minimization step was performed up to 50,000 ns steps using
the steepest descent minimization algorithm. Simultaneously,
the system underwent isothermal-isochoric (NVT) and isobaric
(NPT) equilibration. Thereafter, the actual MDS was performed
for 100 ns (Munieswaran et al., 2025). Through MDS results, root
mean square deviation (RMSD), root mean square fluctuation
(RMSF), the radius of gyration (ROG), solvent accessible surface
area (SASA), principal component analysis (PCA), hydrogen
bond (H-bond), and the binding free energy using gmx_
MMBPSA were calculated for complexes. The graphs were
plotted and visualized using Xmgrace software (Bucher et al.,
2021). All these MDS were executed on the Ubuntu 20.04
LTS platform.

3 Results

3.1 Phase I

Identification of novel potential therapeutic targets against
the methicillin-resistant S. aureus pathogen with subtractive
proteomic data analysis was the main objective of the phase
1 study. The proposed drug targets were chosen based on
druggability criteria, that includes non-homology to H. sapiens
essential proteins for pathogens, contributes an important
role in metabolic pathways, and act as virulence factors in
proteins. Figure 1 shows the systematic workflow and their
respective outcomes of the number of proteins from each step of
phase 1 and phase II.
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TABLE 2 List of selected protein sequences through non homologous, cytoplasmic, essential druggability and virulence factor analysis. (DBD-
DrugBank Database, TTDB- Therapeutic Target Database, VFDB- Virulence factor database).

S. No UNIPROT
ID

Seq. length Instability
index

(ProtParam)

Subcellular localization Druggability
analysis

Virulence factor
analysis

Psortb Psortb
score

DBD TTDB VICM pred VFDB

1 Q6GK90 749 Stable Cytoplasmic 10 YES YES Cellular process NO

2 Q6GEJ6 61 Stable Cytoplasmic 10 YES YES Cellular process NO

3 Q6GG72 420 Stable Cytoplasmic 10 YES YES Metabolism
Molecule

NO

4 A0A7U7IBT3 235 Stable Cytoplasmic 9.97 YES YES Cellular process NO

5 Q6GEZ1 356 Stable Cytoplasmic 9.97 YES YES Cellular process NO

6 Q6GGU4 354 Stable Cytoplasmic 9.97 YES YES Metabolism
Molecule

NO

7 Q6GHF0 347 Stable Cytoplasmic 9.97 YES YES Cellular process NO

8 Q6GHQ2 449 Stable Cytoplasmic 9.97 YES YES Cellular process NO

9 Q6GHW1 160 Stable Cytoplasmic 9.97 YES YES Metabolism
Molecule

NO

10 Q6GI01 572 Stable Cytoplasmic 9.97 YES YES Metabolism
Molecule

NO

11 Q6GIL5 505 Stable Cytoplasmic 9.97 YES YES Cellular process NO

12 A0A7U7EV46 245 Stable Cytoplasmic 9.97 YES YES Information and
storage

NO

13 A0A7U7EVF1 549 Stable Cytoplasmic 9.97 YES YES Cellular process YES

14 A0A7U7EW44 589 Stable Cytoplasmic 9.97 YES YES Virulence factors NO

15 Q6GE73 224 Stable Cytoplasmic 9.97 YES YES Virulence factors YES

16 Q6GEE5 136 Stable Cytoplasmic 9.97 YES YES Information and
storage

YES

17 Q6GEK0 166 Stable Cytoplasmic 9.97 YES YES Cellular process NO

18 Q6GER8 368 Stable Cytoplasmic 9.97 YES YES Metabolism
Molecule

NO

19 Q6GEX6 146 Stable Cytoplasmic 9.97 YES YES Metabolism
Molecule

YES

20 Q6GFX2 329 Stable Cytoplasmic 9.97 YES YES Metabolism
Molecule

YES

21 Q6GGT4 219 Stable Cytoplasmic 9.97 YES YES Cellular process NO

22 A0A7U7ICS4 487 Stable Cytoplasmic 9.97 YES YES Metabolism
Molecule

NO

23 Q6GJH2 450 Stable Cytoplasmic 9.97 YES YES Cellular process YES

24 A0A7U7EVT9 452 Stable Cytoplasmic 9.97 YES YES Virulence factors NO

25 Q6GF03 382 Stable Cytoplasmic 9.89 YES YES Metabolism
Molecule

NO

(Continued on the following page)
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TABLE 2 (Continued) List of selected protein sequences through non homologous, cytoplasmic, essential druggability and virulence factor analysis.
(DBD- DrugBank Database, TTDB- Therapeutic Target Database, VFDB- Virulence factor database).

S. No UNIPROT
ID

Seq. length Instability
index

(ProtParam)

Subcellular localization Druggability
analysis

Virulence factor
analysis

Psortb Psortb
score

DBD TTDB VICM pred VFDB

26 A0A7U7EUV9 361 Stable Cytoplasmic 9.89 YES YES Virulence factors NO

27 A0A7U7EUI7 431 Stable Cytoplasmic 9.68 YES YES Virulence factors YES

28 A0A7U7IDV7 236 Stable Cytoplasmic 9.67 YES YES Cellular process NO

29 Q6GH12 240 Stable Cytoplasmic 9.67 YES YES Cellular process NO

30 Q6GIA4 313 Stable Cytoplasmic 9.67 YES YES Metabolism
Molecule

NO

31 A0A7U7ETI6 381 Stable Cytoplasmic 9.67 YES YES Cellular process NO

32 A0A7U7EVD2 260 Stable Cytoplasmic 9.67 YES YES Metabolism
Molecule

NO

33 Q6GEW9 179 Stable Cytoplasmic 9.67 YES YES Cellular process NO

34 Q6GF73 156 Stable Cytoplasmic 9.67 YES YES Cellular process NO

35 Q6GGH4 129 Stable Cytoplasmic 9.67 YES YES Cellular process NO

36 Q6GGJ5 271 Stable Cytoplasmic 9.67 YES YES Virulence factors NO

37 A0A7U7IDX4 221 Stable Cytoplasmic 9.67 YES YES Cellular process YES

3.1.1 Identification of non-paralogous,
non-homologous proteins

The entire protein sequence of S. aureus (strain MRSA252) was
downloaded from the UniProtKB database. A total of 2,640 proteins
were retrieved, which include 888 reviewed proteins (Swiss-Prot),
1,753 unreviewed proteins (TrEMBL) and Taxon ID is 282458. Once
the proteomewas retrieved, the initial stepwas to remove paralogous
proteins from the proteome. The paralogous proteins were removed
due to their high sequence similarity, which potentially affects the
outcome of the results. Following the elimination of paralogous
proteins using the CD-HIT tool, only the non-paralogous proteins
were retained for further analysis. The CD-HIT tool used 80%
identity as the threshold value, which resulted in 2,616 non-
homologous proteins. Next, human non-homologous proteins were
identified by performing NCBI BlastP using 10−3 as the expected
threshold value, and themaximumnumber of aligned sequenceswas
found to be 5,000. Subsequently, each non-paralogous hit protein
(2,616) was used against H. sapiens. The homologous proteins
(1,482) and non-homologous proteins (1,134) were predicted based
on the similarity between bacteria and humans. Further, the
microbial proteins that were not similar to human proteins (non-
homologous) were used for downstream analysis.

3.1.2 Prediction of physicochemical
characterization and subcellular localization

A total of 1,134 non-homologous proteins (Supplementary 
Sheet 1 ) were selected for physicochemical characterization. These

proteins were submitted to the Expasy ProtParam web server to
compute various physical and chemical parameters. This server
calculates the instability index based on the categorization of stable
and unstable classes. If the instability index exceeded 40, the server
classified the protein as unstable; otherwise, this server classified it as
stable (Chakma et al., 2023). Out of the 1,134 proteins, 764 proteins
were classified as stable proteins (Supplementary Sheet 2). These
stable proteins were chosen for subcellular localization analysis.

For the subcellular localization prediction, 764 stable proteins
were submitted to the PSORTp version 3.0.2 web server. Based
on the localization score (Table 1), 322 proteins were identified
in the cytoplasmic, 166 proteins in the cytoplasmic membrane,
10 proteins in the cell wall, and remaining 236 proteins were
found to have an unknown localization (Supplementary Sheet 3).
Among these, only the cytoplasmic protein with a prediction score
greater than 9.0 was used for druggability analysis. Out of 322
cytoplasmic proteins with known localization, 105 (14%) proteins
had prediction scores over 9.0. Potential vaccine targets could be
extracellular proteins or membrane proteins, whereas cytoplasmic
proteins are considered potential drug targets (Alhamhoom et al.,
2022). The Figure 2A shows the pie chart illustration of subcellular
localization of proteins. Further, these selected cytoplasmic proteins
were used for druggability analysis.

3.1.3 Druggability and virulence factor analysis
Following the prediction of cytoplasmic proteins of MRSA, the

druggability potential for each target was assessed. These shortlisted
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TABLE 3 Physicochemical properties of the HssR.

S. No Descriptions Values

1 Number of amino acids 224

2 Molecular weight 25,929.87

3 Instability index 33.81

4 Aliphatic index 99.2

5 Theoretical pI 5.87

6 Formula C1150H1852N316O344S10

7 Grand average of hydropathicity (GRAVY) −0.307

8 Total number of atoms 3,672

9 Total number of negatively charged residues (Asp + Glu) 32

10 Total number of positively charged residues (Arg + Lys) 29

FIGURE 3
Modeled 3D structure of HssR and their validation. (a) predicted 3D structure of HssR using Swiss-model. (b) overall structure validation via
Ramachandran plot [a = α-helix (right/left-handed); B = anti-parallel β-sheet; b = parallel β-sheet; p = proline]. The coloring and shading on the plot
denote the permissible phi-psi backbone conformational regions, with the darkest portions (in red) indicating the most advantageous combinations of
phi-psi values. (c, d) shows the local and overall model quality of HssR protein using ProSA webserver and (e) checking the overall quality factor using
ERRAT sever.

proteins were subjected to BLASTp against the DrugBank Database
and Therapeutic Target Database with an expected threshold value
of 10−5. By comparison of both databases, only the hit proteins were
considered for drug-like properties analysis. Out of 105 proteins,

only 37 were identified (Table 2) in both databases and were
subsequently used for virulence factor analysis. The virulence factor
database (VFDB) and the VICMpred web servers were utilized for
identification of the virulence factors in selected protein sequences.
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TABLE 4 3D structure validations using various webservers.

Structure validation Values Webservers

Z-score −8.19 ProSA

Overall quality factor 97.21% ERRAT

LG score 10.456
ProQ

MaxSub value 0.5

Residues in most favored
regions

94.70%

ProCheck (Ramachandran
Plot)

Residues in additional allowed
regions

4.30%

Residues in generously allowed
regions

1%

Residues in disallowed regions 0

From this analysis, two proteins were identified as virulence
factors, which include penicillin-binding protein 4 (A0A7U7EUI7)
and a heme response regulator (Q6GE73). Further, the proteins
essentiality on MRSA survival were analyzed using BLASTp against
the DEG database with an ID of DEG1065. By examining the results,
both proteins were identified as non-homologous proteins, essential
proteins that are involved in bacterial mechanisms, and drug-
like proteins that are involved in MRSA regulations. Subsequently,
the 3D crystal structures of these two proteins were examined in
the Research Collaboratory for Structural Bioinformatics Protein
Data Bank database (RCSB PDB). Among these two proteins, only
the heme response regulator protein R was selected for Phase II
investigation due to the absence of its 3D structure in the PDB.

3.1.4 Heme response regulator R
Heme response regulator R (HssR) was considered an essential

protein that manages heme levels in MRSA survival, virulence, and
flexibility during the infection. HssR acts as a response regulator that
detects the amount of heme inside the bacterial cell (Leasure et al.,
2023). The physicochemical properties (Table 3) of HssR (UniProt
ID: Q6GE73) comprised 224 amino acids, a molecular weight of
25,929.87 Da, and an isoelectric point of 5.87. The instability index
was calculated to be 33.81, which classified this protein as stable.
The Grand average of hydropathicity (GRAVY) was found to be
−0.307, indicating that the protein was determined to be hydrophilic
and soluble. The most abundant amino acid residue found in the
HssR was leucine (10.7%), while the least abundant amino acid
was tryptophan (0.4%). Further, the protein contains 32 negatively
charged residues (aspartic acid + glutamic acid) and 29 positively
charged residues (arginine + lysine). The atomic composition of
this protein was found to be 3,672, with the molecular formula of
C1150H1852N316O344S10.

Further, the metabolic pathway of HssR was analyzed using
the KEGG database. The various pathways and their corresponding
KEGG IDs regulated by this protein were the bacterial secretion
system (sau03070) and the two-component system (sau02020).
From the analysis it revealed that these pathways were present

only in the bacteria and not in humans, which indicated that this
novel protein could n’t interfere withH. sapiensmetabolic pathways.
Further, protein-protein interaction (PPI) was investigated using the
string database. It enables researchers to easily identify the network,
biological processes, and nearby interacting proteins of HssR. The
STRING database results are shown in Figure 2B. By analyzing
the string database results, the HssR protein mainly acts as a hub
protein that interacts with numerous MRSA-regulating proteins.
So, targeting the HssR protein eventually disrupts the function of
other interacting proteins, as these proteins interact with each other.
The highly interacting proteins predicted through the database
were HssS, HrtA, HrtB, staphylococcal respiratory response protein
(SrrB), sensor histidine kinase (SaeS), and conserved hypothetical
proteins (arlS and graS). Overall, the network consists of 11 nodes,
25 numbers of edges with an average local clustering coefficient
of 0.715, and 10 expected numbers of edges. Hence, the HssR was
found as a potential MRSA therapeutic drug target. Inhibiting the
activity of this particular protein eventually reduces heme toxicity
from MRSA infections, thereby increasing rate of removal immune
cells and antibiotics.

3.2 Phase II

3.2.1 Homology modeling and structure
validation

The 3D crystal structure of the selected drug target of the MRSA
was modeled using the Swiss Model Sever. It’s an automated protein
homologymodeling server that utilizes the protein FASTA sequence
to model the protein of interest. The template was selected based on
the quaternary structure quality estimate (GMQE) score, sequence
similarity, sequence coverage, and oligo state of the template. By
comparing various template structures in the AlphaFold protein
structure database (AFDB), only the best model was determined
as HssR protein by utilizing the Swiss Model webserver. The 3D
structure of the predicted model is shown in Figure 3A, with
the sequence identity of 80.98%, GMQE score of 0.91, sequence
coverage of 1.0, and a biounit oligostate of monomer.

The modeled protein structure was verified using various web
servers. The values are shown in Table 4. The Ramachandran plot
predicted that the modeled protein had over 94.7% of residues in
the most favored regions (Figure 3B), which indicated the predicted
3D structure to be a good model. Further, the Z-score of the model
protein was determined to be −8.19 (Figures 3C, D), which also
validated the modeled protein as more stable. The overall ERRAT
quality factor was found to be 97.209% (Figure 3E), which suggested
that the residues of the modeled protein provided a high-quality
backbone structure. Subsequently, the modeled protein quality was
also predicted by using the ProQ web server, which provides
LGscore and MaxSub values of modeled structures. If the LGscore
and MaxSub values were found to be greater than 4 and 0.5, then the
modeled protein was declared as an extremely good model (Wallner
and Elofsson, 2005). In this case, the HssR 3D structure had
LGscore and MaxSub values of 10.456 and 0.5, respectively, an
indication of the built protein to be an extremely goodmodel.Hence,
Ramachandran Plot analysis, ERRAT analysis, Z-score calculation,
LGscore, and MaxSub value predictions suggested the modeled
protein structure as a accurate and reliable model.
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TABLE 5 Drug-likeness of compounds.

Properties of flavonoid compounds Lipinski’s rule Ghose rules Veber’s rules

Molecular weight (Daltons) ≤500 160 to 480

LogP ≤5 −0.4 to +5.6

Hydrogen bond donors ≤5

hydrogen bond acceptors ≤10

Rotatable bonds ≤10

Polar Surface Area (Å2) ≤140

Molar Refractivity 40 to 130

TABLE 6 Binding affinities of compounds computed through AutoDock and AutoDock Vina.

S. No Compound ID Compound name Type of flavonoids Binding energy
AutoDock Vina
(kcal/mol−1)

No. of hydrogen
bond interaction

1 287 Catechin Flavanol −7.9 5

2 1,317 Isolonchocarpin Flavanone −7.6 1

3 1,589 3′,4′-methylenedioxy-6,5-
(2″,2″-dimethylpyran)-7-

methoxyflavone

Flavone −7.2 2

4 2,224 (+-)-7,4′-dihydroxy-3′-
methoxyflavan

Flavonoids −7.2 1

5 567 Sulfuretin Flavonoids −7.1 2

6 1,320 7,8-(2″,2″-dimethylpyrano)-
flavone

Flavone −7 0

7 2035 5,2′-Dihydroxy-7-methoxy-
6,8-dimethyl-4′,5′-

methylenedioxyflavan

Flavonoids −7 0

8 1,694 5,4′-dihydroxy-8,3′,5′-
trimethoxy-6,7-(2″,2″-
dimethylpyran)-flavone

Flavone −6.9 2

9 1,305 3′,4′-methylenedioxy-5,7-
dimethoxyflavone

Flavone −6.8 0

10 1,777 2′-Hydroxy-7-methoxy-4′,5′-
methylenedioxyflavan

Flavonoids −6.8 0

11 Commercial Drug Vancomycin −5.9 1

3.2.2 Docking analysis
Many bioinformatics tools have been created and extensively

utilized for the process of molecular docking, specifically in
the drug development process. In this study, virtual screening
were performed by utilizing ADV tools. Through the NuBBE
database, a total of 173 flavonoid compounds were retrieved
based on the selection criteria of drug-likeness rules, which
include Lipinski’s rule of five, Veber’s rule, and Ghose’s rule

(Table 5). These 173 compounds were docked against the HssR
protein using virtual screening. From these results, the top ten
compounds (Table 6) with low binding affinity complexes were
selected to check the hydrogen bond interaction with HssR protein.
Among these ten compounds, the Isolonchocarpin had low binding
energy of −7.6 (kcal/mol−1), followed by 3′,4′-methylenedioxy-6,5-
(2″,2″-dimethylpyran)-7-methoxyflavone, (+-)-7,4′-dihydroxy-3′-
methoxyflavan and sulfuretin with binding energies of −7.2, −7.2,
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FIGURE 4
Molecular docking results of HssR protein with flavonoid compound and commercial drug. (a) Interaction of flavonoid compound (catechin) with the
HssR protein and their binding sites. (b) interaction of reference drug (vancomycin) with the HssR protein and their binding site. The ligands are
represented as green sticks while the yellow dashed line represent the hydrogen bond.

and −7.1 (kcal/mol−1) respectively. From the results of virtual
screening, only one compound was determined to have the
lowest binding affinity with more hydrogen bond interactions.
The predicted compound was found to be catechin, which had
a binding energy of −7.9 (kcal/mol−1) with 5 hydrogen bond
interaction (GLU24, GLU136, GLU156, ASN152, and LYS177)
hydrogen bond interactions. Also, the commercial antibiotic,
vancomycin, had a binding energy of −5.9 (kcal/mol−1) with 4
hydrogen bond (SER19, LYS155, TRP179, andHIS193) interactions.
Comparison of the docking results of both complexes (HssR-
catechin and HssR-vancomycin) suggested that the compound
catechin provided better binding affinity with the HssR protein than
the commercial antibiotics. The 3D structures of HssR-catechin and
HssR-vancomycin are shown in Figures 4A, B.

3.2.3 Molecular dynamic simulation
In order to evaluate the stability of the native proteins,

HssR-catechin and HssR-vancomycin, the RMSD was estimated.
Figure 5A shows the RMSD value of HssR and complexes. Initially,
the RMSD value of the HssR-catechin complex was 0.3–0.5 nm;
after 5 ns, the structure displayed stable fluctuation till the end
of the 100 ns simulation. Similarly, the RMSD value of HssR-
vancomycin was displayed in the range of 0.5–8 nm throughout
100 ns. The RMSD values suggested that HssR-catechin provided
greater stability in contrast to HssR and HssR-vancomycin. Further,
the RMSF analysis was carried out to understand whether the
protein nature was flexible or rigid. Figure 5B shows the fluctuation
of the backbone of the native proteins, HssR-catechin and HssR-
vancomycin.ThemaximumRMSF value of native proteinwas found
at 0.38 and 0.41 nm with atoms ranging from 2,950–3,020 and
3,510–3,580. Simultaneously, the RMSF of the HssR-catechin was
determined at 0.28 and 0.37 nmwithin the atom range of 1990–2010
and 3,510–3,580, respectively, while the HssR-vancomycin was

found at 0.31 and 0.42 nm in the atom range of 2,970–3,010 and
3,510–3,580, respectively. Therefore, the RMSF indicated that in
HssR-catechin complex fluctuation were higher in the rigid regions
than HssR and HssR-vancomycin. Following that, the structural
compactness of the native protein and complex were calculated
using the ROG analysis. Figure 5C illustrates the ROG value of
native proteins as well as complexes. The ROG value of HssR-
catechin was found in the range of 2.01–2.12 nm, the ROG value
was observed in the range of 2.05–2.151 nm in HssR-vancomycin
and the native HssR exhibited an ROG value in the range of
2.075–2.225 nm. Lesser the ROG value greater compactness of
the protein (Tiwari et al., 2022). From this it confirmed that the
catechin was more compact with HssR than other complexes or
native protein. This demonstrated that the HssR-catechin was more
stable in its folded state than that of HssR and HssR-vancomycin.

The contribution of ligand binding sites to the solvent behavior
of the protein molecule was investigated using SASA. Figure 5D
illustrates the SASA values of the native proteins and complexes.The
SASAvalues of the native protein a hadhigher SASAvalue compared
to HssR-catechin and HssR-Drug complex. The fluctuation for
native protein was observed in the area of 160–165 nm2 during
the 100 ns simulation. The SASA for the HssR-catechin complex
was found in the lowest region of 120–130 nm2 compared to
the HssR-vancomycin complex (130–137 nm2). By analyzing the
SASA value, the HssR-catechin had the lowest surface area which
indicates the complex is less exposed to the solvent. Subsequently,
the hydrogen bond formations between the HssR protein and the
ligands were measured for assessing the strength and stability of
the complexes. Figure 5E displays the hydrogen bond formations.
Throughout the 100 ns simulation, the chosen flavonoid complex
exhibited 5 to 7 instances of hydrogen bond formations, while
the commercial drug complex exhibited 4 to 5 instances of
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FIGURE 5
Evaluation of (a) RMSD, (b) RMSF, (c) ROG, (d) SASA, (e) Hydrogen bonds, (native protein (black), HssR-catechin complex (red) and HssR-vancomycin
complex (green) during 100 ns simulation).
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FIGURE 6
Evaluation of principal component analysis of complexes (a) PCA of HssR-catechin complex, and (b) PCA of HssR-vancomycin complex plots of native
protein (black), HssR-catechin complex (red) and HssR-vancomycin complex (green) during 100 ns simulation. Binding free energy contribution of
HssR-catechin and HssR-vancomycin from various interactions.

FIGURE 7
Binding free energy contribution of HssR-catechin (blue) and HssR-vancomycin (orange) from various interactions.

hydrogen bond formations.Hence, the flavonoids exhibited a greater
propensity for hydrogen bond formation with HssR compared to
commercial drugs. In addition, the principal component analysis
(PCA) was analyzed to explore the prominent modes of motion
in a trajectory. The eigenvalues and eigenvectors attained by
diagonalizing the covariance matrix and the carbon-alpha motions
of the two principal components (PC1 and PC2), which were
further inspected by the essential dynamic method. Figures 6A, B
show the 2D projection of trajectory plot generation in PCA.
From the plot, the HssR-catechin complex occupied less space than
HssR-vancomycin. It clearly indicated that the selected flavonoid
compound catechin was more stable with HssR protein.

To assess the binding free energy of the simulated complexes, the
last 20 ns of the trajectory was used (Valdés-Tresanco et al., 2021).
The HssR-catechin and HssR-vancomycin complexes exhibited total
binding free energies of −23.0 and −16.91 kcal/mol, respectively.The
HssR-catechin complex was observed to have a stronger binding
affinity between catechin and the HssR protein. Figures 7A, B
illustrate the binding free energies of complexes, and Table 7 shows
the energy contributions resulting from multiple interactions that
led to the formation of both complexes.

The trajectory analysis of molecular dynamic simulation of
catechin provided a stronger binding affinity and better stability
with the HssR protein. Further, RMSD, RMSF, ROG, SASA, PCA,
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TABLE 7 Computed binding free energies for complexes.

S. No Energy component
(kcal/mol−1)

Average Standard deviation

HssR-catechin HssR-vancomycin HssR-catechin HssR-vancomycin

1 Van der Waal energy −29.26 −33.88 2.32 4.36

2 Electrostatic energy −26.23 −32.58 4.51 8.05

3 Polar solvent energy 37.15 53.96 3.56 5.7

4 Surface energy −4.66 −4.41 0.14 0.45

5 Gas phase energy −55.49 −66.46 4.2 6.76

6 Solvent free energy 32.49 49.55 3.52 5.81

7 Total binding energy −23 −16.91 2.53 4.6

and H-bond results also depicts that the selected flavonoid complex
(HssR-catechin) hadmore stability, flexibility, and high compactness
compared to the commercial drug.

4 Discussion

The presence of various virulence proteins in MRSA causes
severe healthcare-associated infections in every individual. Due
to their multidrug-resistant properties, the infection couldn’t be
easily controlled by the use of standard therapeutic drugs that
were commercially available in the market. Overcoming this
emergency by use of new antibacterial drugs that particularly
target virulent proteins in MRSA becomes crucial. With the use
of computational methods, prediction of the potential therapeutic
targets and identification of therapeutic drugs will minimize the
standardization initial in pharmaceutical research. In this study, the
important virulence protein, namely, heme response regulator R
(HssR), was predicted through the use of subtractive proteomic data
analysis. The protein HssR was evaluated as an essential protein that
highly responsible for regulating heme levels in MRSA.

After discovering HssR through the computational method, the
3D structure of this protein was built through homology modeling
as their structure was not available in the RCSB repository. Further,
the flavonoid compounds were retrieved to compute the binding
affinity against HssR. The phytochemical compounds, especially
flavonoids, had tremendous effects in combating the disease-
causing proteins (Billowria et al., 2024). Due to their availability
and ability to scavenging free radicals, reducing oxidative stress
parameters, modulating inflammatory pathways and inhibiting the
growth of microorganisms, flavonoids were chosen over other
phytochemicals. Moreover, this study highlighted that flavonoid
compound act as potential anti-MRSA agents that modulate several
disease-causing metabolic pathways in MRSA infections. In this
study, most of the flavonoid compounds had a binding energy
above −6.0 kcal/mol, which indicated that the compounds had a
greater inhibitory ability against HssR. Further, the compound
catechin had the highest binding energy of −7.9 kcal/mol and also
had 5 hydrogen bond interactions, whereas the commercial drug

had the lowest binding affinity (−5.9 kcal/mol) and had only 4
hydrogen bond interactions. Furthermore, from others studies it
was determined that the compound catechin had various properties,
which include anti-microbial (Wang et al., 2022b), anti-tumor, anti-
oxidant, anti-diabetic, anti-viral, anti-inflammatory (Baranwal et al.,
2021; Gunti et al., 2019), and so on. In a recent study, the researchers
used a catechin compound from a cashew nut shell to combat ATCC
and clinical isolates of MRSA. The results revealed that the catechin
greatly damaged the bacterial cell wall and increased reactive
oxygen species, which indicated that the compound potentially
acted as an anti-MRSA agent (Sinsinwar and Vadivel, 2020). With
these enormous properties reported by researchers, the catechin
utilized in this study also proved that it had the strongest ability
to modulate the activity of a specific MRSA therapeutic target,
namely, HssR, which is known to regulate the heme levels in
MRSA infections. With these findings, further in vitro and in vivo
studies will be evaluated to assess the inhibition ability of catechin
against the HssR virulent protein. Moreover, this investigation
could be utilized for inhibiting the proliferation and activation
of Staphylococcus microorganisms that were considered harmful
to humans.

Further, the results of AutoDock Vina were determined that
the flavonoid compounds had a strongest binding affinity than
vancomycin. In another research, a list of polyhydroxylated
flavonoids were used against MRSA protein, namely, penicillin-
binding protein 2a, and determined the binding energies through
AutoDock Vina and the neural networking method. All these
methods provided a binding affinity of above −7.0 kcal/mol,
which suggested that the flavonoid compounds used in this
study were a great choice for inhibiting the virulence effects of
MRSA (Verma et al., 2022). In our previous study, traditional
medicine compounds, with a wide variety of phenolic compounds,
were docked against staphylococcal scaled skin syndrome-
causing protein, namely, exfoliative toxin B, and found that the
docking scores were greater than −7.6 kcal/mol (Kumar Subramani
and Venugopal, 2024). In comparison particular types of
phenolic compounds, specifically flavonoids, provided better
binding interactions with MRSA disease-causing proteins in
this study.
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Furthermore, the analysis of molecule movement through
the use of molecular dynamic simulations also suggested that
the catechin compound provided more stable compatibility with
HssR protein than vancomycin during the 100 ns simulations. In
addition to that, RMSD, RMSF, ROG, PCA, SASA, hydrogen bond
interactions and binding free energy calculation also validated
that the catechin had a stronger correlation with HssR than
vancomycin. In conclusion, the binding-free calculation between
the two complexes, which includes catechin-HssR and vancomycin-
HssR, also confirmed that the flavonoid compounds could act as a
potential anti-MRSA agent against HssR.

5 Conclusion

The novel virulence factor, namely, heme response regulator
R (HssR), that causes MRSA infection in humans was predicted
through subtractive proteomic data analysis from a vast set
of proteins. Subsequently, the flavonoid compound catechin
demonstrated higher binding activity against HssR than
vancomycin. Moreover, the RMSD, RMSF, ROG, hydrogen bond
prediction, SASA, PCA, and binding free energy calculations
through molecular dynamic simulations corroborated the results
of this study. Overall, the outcome of this in-silco study confirms
that catechin had the potential to be exploited as an alternative
anti-MRSA agent that combats microbial infections caused by
Staphylococcus.
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