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Introduction: Infectious bursal disease (IBD), caused by the infectious bursal
diseaseQ8 virus (IBDV), is a highly contagious disease in young chickens, leading
to immunosuppressionwithgreat economic importance. IBDV, anon-enveloped
virus with a bipartite dsRNA genome, infects the bursa of Fabricius, causing
severe gastrointestinal disease. Effective vaccines are urgently needed due to the
limitations of current oral vaccines, including gastrointestinal degradation and
low immunogenicity. This study designs and evaluates a multiepitope subunit
vaccine using immunoinformatics.

Methods: Sequences of the IBDV structural proteins VP2 and VP3were obtained
from the National Centre for Biotechnology Information) NCBI. These are
structural proteins VP2 and VP3 were subjected to the Vaxijen 2.0 webserver
to predict the antigenicity, ToxiPred to predict the toxicity and further analyzed to
identify immunogenic epitopes of Chicken Leukocyte Antigens (CLAs) using the
NetMHCpan 4.1 webserver.

Results: The final vaccine construct includes 2 HTL, 21 CTL, and 7 LBL epitopes,
with gallinacin-3 precursor as an adjuvant. The construct is antigenic (0.5605),
non-allergenic, and non-toxic, consisting of 494 amino acids with a molecular
weight of 54.88 kDa and a positive charge (pI of 9.23). It is stable, hydrophilic,
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and soluble. Population coverage analysis revealed a global immune coverage of
89.83%, with the highest in Europe (99.86%) and the lowest in Central America
(25.01%). Molecular docking revealed strong interactions with TLR-2_1, TLR-4,
and TLR-7, with TLR-7 exhibiting the highest binding affinity (−366.15 kcal/mol).
Immune simulations indicated a robust immune response, with high initial IgM
levels, sustained IgG, memory cell formation, and activation of T helper (Th) cells
1 and 2, Natural Killer (NK) cells, and dendritic cells, suggesting potential long-
lasting immunity against IBDV.

Discussion: This study presents a promising multi-epitope subunit vaccine
candidate capable of effective immunization against IBDVwith broad population
coverage. However, further in vivo experimental validation is required to confirm
its efficacy and safety.

KEYWORDS

infectious bursal disease virus (IBDV), immunosuppression, gastrointestinal tract,
immunoinformatics, dendritic cells, immunity

Introduction

Infectious Bursal Disease (IBD) also known as Gumboro
disease, is an acute viral disease that affects young chickens
(World Organisation for Animal Health, 2022) and it is caused by
the infectious Bursal Disease Virus (IBDV) (Bebora et al., 2017;
Mwenda et al., 2018). This has been known to cause bursal
lesions, atrophy, and immunosuppression in chickens between
3 weeks and 3 months old (Mawgod et al., 2014). IBDV is a non-
enveloped, icosahedral virus containing double-stranded RNA with
a bisegmented genome belonging to the Avibirnavirus genus and
Birnaviridae family (Jackwood et al., 2018). The bipartite dsRNA
genome (segment A and segment B) of the IBDV is packaged into
a single virus particle with a diameter of roughly 70 nm. There are
five proteins present in IBDV, which are commonly known as the
(Viral Protein 1) VP1 of 90Kd), VP2 of 40Kd, VP3 of 35Kd, VP4
of 28Kd and VP5 of 21Kd showing the molecular weights of the
viral proteins (Orakpoghenor et al., 2020). Segment A is large and
encodes VP2, VP3, VP4, and VP5, while segment B is smaller and
encodes VP1 only, which is involved in capping and polymerase
activities. The two main structural proteins of the virion are VP2
and VP3 (Sharma, 2000). The structural proteins of IBDV present
various functions that apply to the life cycle and defense mechanism
of the virus. These proteins are vital in the formation and replication
of the virus. Structurally, VP2 is the most dominant protein of
IBDV; it is a component of the capsid of the virus (Pascual et al.,
2015). VP3 is another structural protein involved in IBDV life cycle
as well as in the pathogenesis of the disease. It is a scaffolding
protein that plays a crucial role in the viral capsid assembly and is
requisite for the multiplication of the virus (Vakharia et al., 1993).
It is demonstrated that VP3 interacts with the capsid protein of

Abbreviations: IBD, Infectious Bursal Disease; IBDV, Infectious Bursal Disease
Virus; dsRNA, Double Stranded Deoxyribonucleic Acid; VP, Viral Proteins;
BF, Bird’s bursa of Fabricius; NCBI, National Center for Biotechnology
Information; CLAs, Chicken Leukocyte Antigens; HLAs, Human Leukocyte
Antigens; MHC, Major Histocompatibility Complex; IL, Interleukins; ProSA,
Protein Structure Analysis.

the virus VP2 in the construction of the virus capsid (Deng et al.,
2021). This interaction is crucial in the cycling of the viral
compound around the body in a manner that is likely to lead to
replication.

The virus exhibits a strong tropism for lymphoid tissues,
particularly targeting immature B-cells and T-cells in the bursa
of Fabricius (BF) (Mwenda et al., 2018). It has also been shown
to cause lymphoid depletion in BF in the free-living wild bird,
which usually goes unnoticed or causes mild clinical signs only
(AHA, 2009). After the entry of the virus into the host through
ingestion of contaminated food or inhalation, IBDV may attach
itself to proteins within the host’s cell membranes to enable
viral entry into the cytoplasm of the infected cell. It infects T-
lymphocytes and macrophages where the virus undergoes the first
and second cycles of viremia. It infects the different lymphoid
tissues and causes inflammation of the bursa of Fabricius. IBDV
causes acute gastrointestinal disease and immunosuppression due
to B-cell and T-cell dysfunctions. The nature and intensity of the
infection depend on the status of immunity, the age of affected
chickens, genetic dispositions, and the strain of the virus involved
(Yip et al., 2012). There is, however, a classification of the strains
mainly based on antigenicity or virulence. The first is the Classical
IBDV, which are the original strains of IBDV that were first
identified. They are generally less virulent and cause less severe
disease compared to other strains. Another is the Variant IBDV
which has emerged over time and is more virulent than classical
strains. They can cause more severe diseases and have different
antigenic properties, which can affect the efficacy of vaccines
(Jayasundara et al., 2017). The classical subtype is additionally
categorized into three pathotypes, which aremild, very virulent, and
attenuated IBDV. The very virulent sub-type is highly virulent and
can cause significant economic losses to the poultry industry, while
the attenuated IBDV, which is a domesticated strain, does not cause
obvious clinical signs and can protect against wild IBDV strains
(Li et al., 2020).

There are several important advantages associated with the use
of a subunit vaccine.These include safety where appropriate antigens
are chosen, specificity, consistency, and storage stability for freeze-
dried formulations, and the possibility of designing more antigens

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1562997
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Oladipo et al. 10.3389/fbinf.2025.1562997

and formulations of vaccines to direct immune response towards
certain epitopes and to define the type of immune response to
be induced (Moyle, 2017). Applied to immunological knowledge,
immunoinformatics is a branch that focuses on immunological
computation and resources dedicated to immune function research.
Medical, biological, and computing relevant knowledge and tools
are used in immunoinformatics to suitably and correctly store and
analyze the data related to the immune response of an organism
and its roles (Oladipo E. K. et al., 2024). Immunoinformatics
encompasses diverse data sources, integrating structural and
functional bioinformatics tools to predict immunogenic epitopes
and optimize vaccine design (Mills et al., 2015; Hegde et al.,
2017). Various strategies such as using bioinformatics approach
in determining predicted immunogenic epitopes on viral proteins
like VP2 and VP3 of IBDV (Amit et al., 2011), studying the
influence of age on immunocompetent of birds leading to increased
prevalence of diseases and poor effectiveness of vaccines in
aged birds (Haynes, 2020) may complement each other to enhance
the understanding of the immune system of not only man but
also animals and combat in contrast to some less predetermined
pathogenesis.

IBDV remained a major cause of economic loss in the poultry
industry due to high mortality rate and immunosuppression in
chickens. This research aims to design a multiple-epitope subunit
vaccine for the effective control of IBDV in chickens using
bioinformatics tools. In our study, we aim to select and link viral
epitopes that provide a long and strong immune response in
chickens. Previous research that focused on designing a vaccine
candidate suitable to combat IBDV present limitations, especially
with regards to the prediction of specific Chicken Leukocyte
Antigens (CLAs), resulting in the use of any Human Leukocyte
Antigens (HLAs) as a proxy due to their functional and structural
similarities (Gul et al., 2023). To resolve limitations in research,
this study focuses on finding a solution to the economic decline
in the poultry industry, which may lead to limited access to
poultry-based protein. This study focuses on finding a solution
to the selection of the epitopes by observing the best HLAs
closer to that of Chicken Leukocyte Antigen (CLA). We also
addressed the importance of computational tools in tackling
the challenges surrounding vaccine design and development,
which encourages a faster process, more efficient and precise
results.

Methodology

Obtaining target protein sequences

A total of 4,509 VP2 and 43 VP3 protein sequences from Asia,
Africa, Europe, North America, South America, and Australia
were retrieved in FASTA format from the National Center for
Biotechnology Information (NCBI) protein database (https://www.
ncbi.nlm.nih.gov/) (Sayers et al., 2021). Using a threshold of 0.52
(Oladipo E. K. et al., 2024), the VaxiJen v2.0 server (https://www.
ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html) (Doytchinova
and Flower, 2007) was used to determine the antigenicity of the
reference sequences.

Prediction of cytotoxic T-cell lymphocytes
(CTLs) epitopes

Cytotoxic T-Cell lymphocyte (CTL) epitopes were
predicted using the NetMHCpan-4.1 NetMHCpan-4.1
server (https://services.healthtech.dtu.dk/service.php?
NetMHCpan-4.1) (Reynisson et al., 2020) and the strong binding
peptides were selected. The epitopes were screened based on the
half-maximal inhibitory concentration threshold IC50 value. The
length of the epitopes was set as 9mers. The epitopes for HLAs
were selected based on the threshold of 0.6 which reveals that
the binding affinity tends more toward positive than negative.
However, the MixMHC2 pred server (http://ec2-18-188-210-66.
us-east-2.compute.amazonaws.com:4000/#) (Racle et al., 2023)
was used to select the highest quality MHC class I CLA alleles
from the pool of the HLA alleles due to its accurate prediction
of peptide bonds, and the ability to help in the presentation of
antigen in different species.The antigenicity of the CTL epitopes was
predicted using the Vaxijen 2.0 server (https://www.ddg-pharmfac.
net/vaxijen/VaxiJen/VaxiJen.html) (Doytchinova and Flower, 2007)
with the threshold set at 0.52. The AllerTop v2.0 (https://www.
ddg-pharmfac.net/AllerTOP/) (Dimitrov et al., 2014) tool was used
to assess the allergenicity of the epitopes while the toxicity of the
epitopes was predicted using the ToxinPred 2 server (https://webs.
iiitd.edu.in/raghava/toxinpred2/) (Sharma et al., 2022).

Prediction of helper T-cell lymphocytes
(HTLs) epitopes

To predict HTL epitopes that can bind to MHC class II alleles,
VP2 and VP3 antigenic sequences were simultaneously input
into the NetMHCIIPan-4.0 tool (https://services.healthtech.dtu.
dk/services/NetMHCIIpan-4.0/1-Submission.php), and strong
binding epitopes were selected using the threshold of 0.4
as a determinant for passing this prediction. This threshold
is chosen because it is the default setting of the webserver.
(Sanchez-Trincado et al., 2017). The obtained epitopes of
HLA alleles were scanned via MixMHC2pred to determine
the highest quality alleles closest to CLA i.e., Gallus Gallus
alleles (http://ec2-18-188-210-66.us-east-2.compute.amazonaws.
com:4000/#) (Racle et al., 2023). To enhance the analysis of
epitopes, the epitopes of interest were not only analyzed for
their antigenicity, allergenicity, and toxicity but also, for their
ability to induce interferon-gamma (IFN-γ) cytokine using the
IFN-γ epitope tool (http://crdd.osdd.net/raghava/ifnepitope/)
(Dhanda et al., 2013a), Interleukin 4 (IL-4) using IL4pred (http://
crdd.osdd.net/raghava/il4pred/predict.php) (Dhanda et al., 2013b)
and Interleukin 10 (IL-10) using IL10 pred (http://crdd.osdd.
net/raghava/il10pred/predict.php) (Nagpal et al., 2017).

Prediction of linear B-cell epitopes

The ABCpred (http://crdd.osdd.net/raghava/abcpred/)
(Malik et al., 2022) and BEPIpred (http://tools.iedb.org/bcell/)
(Jespersen et al., 2017) servers were used to analyze the antigenic
consensus sequences to find antigens that can stimulate the B-cell
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FIGURE 1
The flowchart detailing the methodology of the study.

immune response, which in turn can result in the formation of
antibodies. The servers use an artificial neural network to predict
linear B-cell epitopes (Sanchez-Trincado et al., 2017). The threshold
set for the epitopes predicted fromABCpred was 0.70, while the 0.50
threshold was set for BEPIpred server with a range of 9–16 as the
length of peptides. Analysis of antigenicity, toxicity, and allergenicity
were carried out to determine the efficacy of these epitopes. The
prediction parameters were used to filter the final B-cell epitopes.

Prediction of conformational B-cell
epitopes

Linear and conformational epitopes are the two broad
classifications of the epitopes that are fixed by the B-cells. The linear
form is placed in a sequence, whereas conformational epitopes are
made up of long-chain amino acids (El-Manzalawy et al., 2016). The
final vaccine 3D model structure was further analyzed using the
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TABLE 1 Final CTL epitopes based on the NETMHC pan 4.1 and MixMHC2 server.

Proteins Epitopes Chicken alleles Antigenicity Allergenicity Toxicity

VP2

KTVWPTREY Gaga_BLB1_002_01 Antigenic Non -Allergen Non-Toxic

VTVAGVSNF Gaga_BLB2_012_01 Antigenic Non -Allergen Non-Toxic

NLMPFNIVI Gaga_BLB2_002_01 Antigenic Non -Allergen Non-Toxic

RFDPGAMNY Gaga_BLB1_002_01 Antigenic Non -Allergen Non-Toxic

DDYQFSSQY Gaga_BLB1_012_01 Antigenic Non -Allergen Non-Toxic

ITAADDYQF Gaga_BLB2_012_01 Antigenic Non -Allergen Non-Toxic

NLMPFNLVI Gaga_BLB2_002_01 Antigenic Non -Allergen Non-Toxic

VFQTSVQSL Gaga_BLB2_002_01 Antigenic Non -Allergen Non-Toxic

ITAANDYQF Gaga_BLB2_002_01 Antigenic Non -Allergen Non-Toxic

NYKFDQMLL Gaga_BLB2_002_01 Antigenic Non -Allergen Non-Toxic

YILQSNGNY Gaga_BLB1_002_01 Antigenic Non -Allergen Non-Toxic

VFKTSVESL Gaga_BLB2_002_01 Antigenic Non -Allergen Non-Toxic

VFKTNIQNL Gaga_BLB2_002_01 Antigenic Non -Allergen Non-Toxic

ILGATIYFI Gaga_BLB1_002_01 Antigenic Non -Allergen Non-Toxic

VFQTNVQNL Gaga_BLB2_012_01 Antigenic Non -Allergen Non-Toxic

SYKFDQMLL Gaga_BLB2_002_01 Antigenic Non -Allergen Non-Toxic

NLMPFNVVI Gaga_BLB2_002_01 Antigenic Non -Allergen Non-Toxic

DGNYKFDQM Gaga_BLB1_002_01 Antigenic Non -Allergen Non-Toxic

VP3

KVYEINHGR Gaga_BLB1_002_01 Antigenic Non -Allergen Non-Toxic

GRGPNQEQM Gaga_BLB1_002_01 Antigenic Non -Allergen Non-Toxic

GPSPGQLKY Gaga_BLB2_012_01 Antigenic Non -Allergen Non-Toxic

TABLE 2 Final HTL epitopes based on the NETMHCII pan 4.1 and MixMHC2 server.

Proteins Epitopes Chicken
alleles

IL-4 IL-10 IFN-γ Antigenicity Allergenicity Toxicity

VP2

RPRVYTITAANDYQF Gaga_BLB1_002_01 Inducer Inducer Inducer Antigen Non-Allergen Non-Toxic

ANDYQFSSQYQAGGV Gaga_BLB1_012_01 Inducer Inducer Inducer Antigen Non-Allergen Non-Toxic

LIVFFPGFPGSIVGA Gaga_BLB1_002_01 Inducer Inducer Inducer Antigen Non-Allergen Non-Toxic

GAHYILQSNGNYKFD Gaga_BLB1_002_01 Inducer Inducer Inducer Antigen Non-Allergen Non-Toxic

QMSWSARGSRALTIH Gaga_BLB1_002_01 Inducer Inducer Inducer Antigen Non-Allergen Non-Toxic

GAHYTLQSNGSYKFD Gaga_BLB1_002_01 Inducer Inducer Inducer Antigen Non-Allergen Non-Toxic

DNYQFSSQYQTGGVT Gaga_BLB1_012_01 Inducer Inducer Inducer Antigen Non-Allergen Non-Toxic

VP3 PSPGQLKYWQNTREI Gaga_BLB1_002_01 Inducer Inducer Inducer Antigen Non-Allergen Non-Toxic
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TABLE 3 Final B-cell epitopes based on the ABCpred and BEPIpred server.

Proteins Epitopes Antigenicity Allergenicity Toxicity

VP2 NDYQFSSQYQTGGVTI, TREITQPITSIKLGIE, DNYQFSSQYKTGGVTI,
TITAADNYQFSSQYKA, YQFSSQYQTGGVT, TITAADDYQFSSQYQS, TSEITQPITSIKLEIV,
SLSIGGELVFQTNVQD, GSVVTVAGVSNFELIP, SFSIGGELVFQTSVQS,
GLTAGTDNLMPFNIVI, SARGSRALTIHAGNYP, RFDPGAMNYTKLILSE,
PEDQMSWSASGSLAVT, KNLVTEYGRFDPGAMN, NDYQFSSQYQTGGVTI,
VYTITAADDYQFSSQY, MTTATNKLRPFNLVIP, AGEQMSWSASGSLAVT,
LTTGIDNLMPFNLVIP, VYTITAANDYQFSSQY, LGIETSKSGGQAGDQM,
ANDYQFSSQYQAGGVT, DDYQFSSQYQLGGVTI, VYTITAADDYQFSSQF,
AEDQMSWSASGSLAVT, KNLITEYGRFDPGAMN, YQFSSQYQTGGVT,
AGDQMSWSARGSLAVT, YQFSSQYQSGGV, VGEQMSWSASGSLAVT, YQFSSQYQAGGV,
TITAADNYQFSSQYKT, DNYQFSSQYQTGGVT, TITAADDYQFSSQYQP,
DNYQFSSQYQAGGV, TITAADNYQFSSQYQT, DNYQFSSQYKTGGVTI,
TGEQMSWSASGSLAVT, DDYQFSSQYQAGGV, SLSIGGELVFKTSIQN,
YQFSSQYQTGGVTI, GLTAGTDNLMPFNLVI, DDYQFSSQYQSGGVT,
TITAADNYQFSSQYQA, ADDYQFSSQYQ, GLTAGTDNLMPFNVVI, YQFSSTYQAGGV,
TSQITQPITSIKLEIV, YQFSSQYKTGGVTI, TITAADDYQFSSQYQA,
VAANYGLTAGTDNLMP, TITAADDYQFLSQYQP, TSKSDGQVGEQMSWSA,
SLSVGGELVFQTNVQN, SSQYQAGGV, SFSIGGELVFQTSVQG, NDYQFSSQYQAGGV,
SASGSLAVTIRGGNYP, DYQFSSQYQLGGV, LGATIYFIGFDGTAVI, DYQFSSQYQAGGV,
DDYQFSSQYQTGGVTI, DDYQFSSQYQAGGVT, AGDQMSWSASGSLAVT, DDYQFSSQYQ,
VTSKKDGQPEDQMSWS, ADNYQFSSQYKTGGVT, TSIKLEIVTSKKDGQP

Antigen Non-Allergen Non-Toxic

VP3 EINHGRGPNQEQMKD, GPGAFDVNTGSNWATF, TPEWVALNGHRGPSPG,
YHLAMAASEFKETPEL, AMEMKHRNPRRAPPKP, YDLAMAASEFRETPEL

Antigen Non-Allergen Non-Toxic

FIGURE 2
The conformational B-cell epitopes of the designed vaccine and 2D score chart. The yellow areas indicate the linear epitopes while the gray areas
indicate the rest of the structure. The pI scores are as follows; (A) 0.891 with 8 residues, (B) 0.804 with 11 residues, (C) 0.756 with 16 residues, (D) 0.715
with 12 residues, (E) 0.683 with 8 residues, (F) 0.678 with 8 residues, (G) 0.667 with 11 residues, and (H) 0.562 with 8 residues.

ElliPro server (http://tools.iedb.org/ellipro/) (Ponomarenko et al.,
2008), to observe the solvent exposure and flexibilities, as well as the
linear and structural forms of the epitopes. This server predicts the
antibody epitopes based on a three-step process: First, the surface
of the protein was approximated with an ellipsoid, second, every
residue of the protein was assigned a protrusion index (PI) and
last, neighboring residues were grouped according to the PI values.
Conversely, the higher values are associated with the higher solvent

accessibility of the residues in question. This method was discussed
in an earlier study by Oluwagbemi et al. (2022).

Population coverage

The use of HLA alleles that are similar to chicken alleles
made it possible to proceed with the prediction of the
population coverage of the vaccine constructed in this study.
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TABLE 4 Predicted conformational B-cell epitopes of the final construct.

S/N Residues No. of residues Score

1 A:M222, A:K223, A:D224, A:K225, A:K226, A:T227, A:P228, A:E229 8 0.891

2 A:E210, A:I211, A:N212, A:H213, A:G214, A:R215, A:G216, A:P217, A:N218, A:Q219, A:E220 11 0.804

3 A:M1, A:I3, A:V4, A:Y5, A:L6, A:L7, A:I8, A:P9, A:F10, A:F11, A:L12, A:L13, A:F14, A:L15, A:Q16, A:G17 16 0.756

4 A:A291, A:A292, A:Y293, A:I294, A:T295, A:A296, A:A297, A:D298, A:D299, A:Y300, A:Q301, A:F302 12 0.715

5 A:A328, A:Y329, A:K330, A:V331, A:Y332, A:E333, A:I334, A:N335 8 0.683

6 A:W230, A:V231, A:A232, A:L233, A:N234, A:G235, A:H236, A:R237 8 0.678

7 A:Y374, A:A375, A:A376, A:Y377, A:I378, A:T379, A:A380, A:A381, A:D382, A:D383, A:F386 11 0.667

8 A:F254, A:A255, A:A256, A:Y257, A:N258, A:L259, A:M260, A:P261 8 0.562

FIGURE 3
Predicted Population Coverage of Final T-cell Epitopes. The primary vaccine construct shows population coverage predictions across global regions,
ranging from 99.86% in Europe (highest) to 25.01% in Central America (lowest). Other notable coverage rates include North America (99.59%), West
Indies (99.29%), East Asia (98.6%), North Africa (98.1%), and South Asia (97.6%).

The epitopes binding to the MHC I and MHC II molecules were
subjected to the IEDB population coverage tool (http://tools.iedb.
org/population/) (Bui et al., 2006) to estimate the population size
that will be immune responsive to the constructed vaccine.

Primary vaccine construction

The primary vaccine construct was designed with
modification to Oladipo E. K. et al. (2024) using

immunoinformatics tools that involved identifying and selecting the
best HTL, CTL, and LBL epitopes. A total of 7 LBL epitopes, 3 HTL
epitopes, and 21 CTL epitopes were selected based on a multistep
evaluation process, incorporating antigenicity, allergenicity, toxicity,
and induction of IL4, IL10, and IFN-γ by the HTL epitopes,
prioritizing those with the highest immunogenic potential and
lowest adverse properties. These selected epitopes were joined
together using different linkers, and a gallinacin-3 precursor was
used as an adjuvant to enhance the immune response. The adjuvant,
which was placed at the N-terminal, was connected to the HTL
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FIGURE 4
Schematic representation of the multiepitope subunit vaccine candidate, comprising of the adjuvant (purple) at the N-terminal, linked with HTL
epitopes (blue) through a GPGPG linker, which also links the HTL to the LBL (yellow). The LBL epitopes is linked to the CTL epitopes (green) with the
AAY linkers.

FIGURE 5
Solubility graph showing the prediction score of the vaccine construct
(QuerySol) and the average soluble Escherichia coli protein
(PopAvrSol).

epitope using GPGPG linkers, and the same was for the HTL-to-
HTL connection. KK linkers were used to connect the HTL-to-LBL
and intra-LBL connections. AAY linkers were used to connect
LBL-to-CTL and CTL-to-CTL.

Antigenicity, allergenicity, and toxicity of
the primary vaccine construct

Following construction, the candidate construct was subjected
to antigenicity, allergenicity, and toxicity evaluation to test for the
ability of the construct to elicit an immunological response. Vaxijen
2.0 (https://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html)
(Doytchinova and Flower, 2007), AllerTop (https://www.ddg-

pharmfac.net/AllerTOP/) (Dimitrov et al., 2014) and ToxinPred
(https://webs.iiitd.edu.in/raghava/toxinpred2/) (Sharma et al., 2022)
were respectively used.

Analysis of solubility and physicochemical
properties of the primary vaccine construct

The physicochemical properties of the construct were
predicted using the ExPASy ProtParam server (https://web.expasy.
org/protparam/) (Gasteiger et al., 2005) which gave an exposition of
the physical and chemical nature of the vaccine construct. ProteinSol
server (https://protein-sol.manchester.ac.uk/) (Hebditch et al.,
2017) was also employed to determine the solubility of the construct,
by observing a bimodal distribution of protein solubility for
Escherichia coli proteins in cell-free expression.

Secondary structure prediction

The vaccine’s secondary structure, which displays the
connections between the amino acids, is a crucial stage because it
provides details about the relationships between the amino acids
in the construct (Ma et al., 2018). SOPMA (https://prabi.ibcp.
fr/htm/site/web/app.php/home) (Geourjon and Deléage, 1995), a
program that uses comparable predictions from several alignments
to significantly improve the secondary structure prediction of the
mRNA vaccine was used.

Three-dimensional modeling, refinement,
and validation

The prediction of the tertiary structure of the vaccine
construct was done with the aid of AlphaFold2 (https://github.
com/sokrypton/ColabFold) (Mirdita et al., 2022) and was subjected
to molecular refinement to enhance the quality of the structure.
The GalaxyRefne server (https://galaxy.seoklab.org/index.html)
(Heo et al., 2013) was used and the bestrefined model was selected
considering the GDT-HA, RMSD, MolProbity scores, clash scores,
Poor rotamers, and Rama favored scores. This tool is specifically
designed to enhance the local geometry of protein structures. By
performing this structural refinement, we were able to increase the
confidence in the quality of the predicted model. The validation of
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TABLE 5 Table detailing the score for physicochemical and
immunogenicity properties.

Properties Score

Number of amino acids 494

Molecular weight 54.877kDA

Formula C2510H3761N645O714S15

Total number of atoms 7645

Theoretical pI 9.23

Half-life 30 h (mammalian reticulocytes, in
vitro)
>20 h (yeast, in vivo)
>10 h (Escherichia coli, in vivo)

Grand average of hydropathicity
(GRAVY score)

−0.157

Aliphatic index 73.38

Instability index 27.06

Solubility 0.341

Antigenicity 0.5605

Allergenicity Non-allergic

Toxicity Non-toxic

the refined model was done using the SAVES 2.0 server (https://
saves.mbi.ucla.edu/) through ERRAT (Colovos and Yeates, 1993),
and PROCHECK (Laskowski et al., 2012). Continuously, QMEAN4
parameter was used to examine the model quality estimates using
the SWISS-MODEL’s Quality Model Energy Analysis (QMEAN)
score server (https://swissmodel.expasy.org/qmean) (Benkert et al.,
2011), and ProSA-web server (https://prosa.services.came.sbg.ac.
at/prosa.php) was used to analyze the stereochemical properties of
the model. ProSA (Protein Structure Analysis) is a powerful tool for
validation of the overall model quality which indicates whether the
model has features characteristic for native structures (Wiederstein
and Sippl, 2007).

Molecular docking

The interactions between the refined model of the tertiary
construct with toll-like receptors (TLRs) were studied using the
HDock server (http://hdock.phys.hust.edu.cn/), which supports
protein-protein docking by incorporating homology search,
template-based modeling, structure prediction, macromolecular
docking, and biological information incorporation for robust and
fast predictions (Yan et al., 2020). Three chicken TLRs, TLR-2_1 (2
type 1) with ID: Q9DD78 (Sun et al., 2021), TLR-4 (C4PCG7)
(Ruan et al., 2012), and TLR-7 (C4PCM1) (Tachibana et al.,
2020) were selected and their three- dimensional structures

were retrieved from the UniprotKB server (https://www.uniprot.
org/) (Boutet et al., 2007).

Molecular dynamic simulation

The docked complex of the refined tertiary construct
and TLR with the highest binding affinity was subjected
to molecular dynamics (MD) simulation using the WebGro
protein in water simulation tool (https://simlab.uams.edu/index.
php) (Abraham et al., 2015), which uses the GROMACS simulation
package at default set parameters except but at 50 ns of time, to study
the physical basis of the structure and function of the complex,
providing time-dependent perspective on molecular interactions
and changes.

Immune simulation

To ascertain the interaction between the vaccine construct
and the host immune system, immune simulation was
carried out using default parameters of the C-ImmSim
server (https://kraken.iac.rm.cnr.it/C-IMMSIM/) (Rapin et al.,
2010), which uses a position-specific scoring matrix
(PSSM) to assess the production of cytokines and other
substances like interferon and antibodies, and in general
the immune response. The general workflow of this study
is shown in Figure 1.

Results

Obtaining target protein sequences

In developing an efficient subunit vaccine, it is paramount
to find suitable antigens that induce protective immunity.
Thus, out of the 4,509 VP2 and 43 VP3 protein sequences,
149 (VP2) protein sequences, as well as 15 (VP3) protein
sequences from the six continents, namely, Asia, Africa,
Europe, North America, South America, and Australia, were
qualified based on the antigenicity scores. The data are
appropriately shown in Supplementary Table S1, Supplementary
Table S2, and Supplementary Table S3.

Cytotoxic T-cell lymphocyte epitope

The 149 VP2 and 13 VP3 sequences were submitted to the
NETMHC pan 4.1 server to predict CTL epitopes. However,
the NETMHC pan 4.1 server is limited in the chicken alleles
to be used for predicting Chicken Leukocyte antigens, therefore
the 1,670 VP2 and 39 VP3 CTL epitopes of HLA alleles gotten
from the server were run through MixMHC2 prediction server
which helped to identify 92 VP2 CTL epitopes and 27 VP3 CTL
epitopes that are of Chicken Leukocyte Antigens of alleles including
Gaga-BLB1∗002:01, Gaga-BLB1∗012:01, Gaga-BLB2∗002:01, Gaga-
BLB2∗012:01, and Gaga-BLB2∗012:02. The selected CLA epitopes
underwent antigenicity, toxicity, and allergenicity assessment,
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FIGURE 6
Secondary structure prediction of vaccine construct. The predicted secondary structure of the vaccine construct includes helices, sheets, turns, and
coils, with their distributions visualized across the protein sequence. The top panel presents the structural arrangement, while the lower panel
quantifies the frequency of each structural component.

TABLE 6 Properties of the secondary vaccine construct.

Properties Number of residues Percentages

Alpha helix 145 29.35%

310 0 0.00%

Pi helix 0 0.00%

Beta bridge 0 0.00%

Extended strand 127 25.71%

Beta turn 52 10.53%

Bend region 0 0.00%

Random coil 170 34.41%

Ambiguous states 0 0.00%

Other states 0 0.00%

resulting in the final selection of 18 VP2 and 3 VP3 CTL epitopes
as shown in Table 1.

Helper T-cell lymphocyte epitope

NetMHCII Pan 4.1 predicted HTL of Human leukocyte
antigens (HLAs) for VP2 and VP3 epitopes, resulting in 2,447
strong bind epitopes. These epitopes of HLA alleles were run via
MixMHC2pred to determine the highest quality alleles closest
to CLAs i.e., Gallus Gallus alleles. After the subjection to the
epitope to interferon, interleukin-inducing features, antigenicity,
toxicity and allergenicity prediction, 7 VP2 epitopes and 1 (VP3)
epitope were identified as the most promising HTL epitope
candidates for the final vaccine design, and are highlighted in
Table 2.

Linear B-cell epitope

The ABCpred server was used to generate 2,736 (VP2) and
241 (VP3) B-cell epitopes, while the BEPIpred server was used
to generate 254 (VP2) and 36 (VP3) B-cell epitopes. However,
the results from each tool were tested for antigenicity, toxicity,
and allergenicity analysis of which 47 (VP2) and 5 (VP3) B-
cell epitopes of ABCpred passed while 24 (VP2) and 1 (VP3)
B-cell epitopes of BEPIpred server passed to make a total of
71 VP2 and 6 VP3 final B-cell epitopes determined to be
antigenic, non-toxic, and non-allergic. These epitopes are shown in
Table 3.

Conformational B-cells epitopes prediction

The conformational epitopes of the B-cells were identified using
the Ellipro server. Figure 2 and Table 4 summarized the positional
and residue analysis of all the predicted conformational epitopes
accurately.

Population coverage

The results of the population coverage are shown in Figure 3.
The world’s average score of the vaccine candidate is 89.83%.
This demonstrates that the Infectious Bursal Disease Virus will
be effectively fought off by the vaccination developed using these
chosen epitopes.

Primary vaccine construct

The assembled construct of the vaccine candidate contains
31 epitopes altogether (five VP2 and two VP3 LBL epitopes,
two VP2 and one VP3 HTL epitopes, 18 VP2 and 3 VP3 CTL
epitopes), and the gallinacin-3 precursor at the N-terminal as an
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FIGURE 7
Three-dimensional structure of the vaccine construct. (A) A refined model of the vaccine construct (in ribbon) (B) Surface structure of the refined
vaccine construct.

adjuvant to enhance the immunogenic potential of the construct,
all connected by linkers like GPGPG, KK, and AAY as shown in
Figure 4.

Antigenicity, allergenicity, and toxicity

The construct following its subjection to antigenicity,
allergenicity, and toxicity evaluation shows to be antigenic with
an antigenic score of 0.5605, non-allergenic, and non-toxic.

Physicochemical properties and solubility

The prediction of the physiochemical properties revealed that
the construct has 494 amino acid residues, with a molecular
weight of 54.88 kDa. The total number of negatively charged
residues (Asp and Glu) is 27 and the total number of positively
charged residues (Arg and Lys) is 42, this indicates that the
protein is positively charged. The instability index of the vaccine
construct is 27.06, thus ranking it as a stable protein as proteins
with an instability index greater than 40 are regarded as non-
stable. It has an aliphatic index of 73.38 indicating that the
protein is stable over a wide range of temperatures and a GRAVY
score of −0.187 making it hydrophilic. The solubility of the
construct as shown in Figure 5 is also determined to be 0.341.
The physicochemical and immunogenicity properties have been
highlighted in Table 5.

Secondary structure

With 29.35% alpha-helix, 25.71% extended strands, 10.53%
beta-turn, and 34.41% random coils, Figure 6 and Table 6
depicts the stabilized structure of the vaccine construct and
the properties of the secondary vaccine construct as a result of
the analysis. This result additionally indicated that the vaccine
construct possessed strong globular conformation, flexibility, and
stability.

Three-dimensional modeling, refinement,
and validation

The tertiary structure of the IBDV-designed multiepitope
construct was predicted by the AlphaFold2 server using a
comparative modeling approach, while the GalaxyRefine server was
employed to refine the structure. Among the five refined models,
model number 1 (Figure 7) with a GDT-HA score of 0.7874, RMSD
score of 0.895,MolProbity score of 1.449, clash score of 3.8, and poor
rotamers of 0.3 was selected as the best structure. The validation by
PROCHECK produced the Ramachandran Plot (Figure 8) showing
that the most favored region of the residue is 91.4%. ERRAT shows
a quality score of 86.667 (Figures 9A, B), and the Z-score obtained
by the ProSA-web shows a score of −0.96 (Figure 10) signifying the
high quality of the structure. The structure was also examined to
have a QMEAN4 value of −7.38 as shown in Figure 11. The local
quality estimate plot shows residue-wise predicted local similarity
to target structures from high-resolution experimental data. Higher
values (closer to 1.0) indicate better local reliability, whereas lower
values reflect potentially disordered or less reliable regions. The
normalized QMEAN Z-score plot compares the overall model
quality against a non-redundant set of high-resolution Protein Data
Bank (PDB) structures of similar lengths. The red star denotes the
predicted vaccine construct, indicating its relative positioning and
overall quality.

Molecular docking

The HDock server predicted ten models of each of the
docking complexes, and they were ranked based on their docking
scores. The models with the lowest docking scores (model 1) of
each of the docked complexes were chosen as the best models
because it indicated the highest binding affinity. TLR-2_1 and
the vaccine construct complex had a docking score of −366.15,
TLR-4 and the vaccine construct complex had a docking score
of −349.33, while TLR-7 and the vaccine construct complex had
a docking score of −369.46, as shown in Table 7 and Figure 12
below.
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FIGURE 8
Validation of the 3−D structure. The Ramachandran plot generated by the PROCHECK shows the analysis of the residue.
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FIGURE 9
ERRAT Graphs of the Refined Model (A) Analysis of epitope values across the sequence revealing a pronounced peak at residue number 70, indicating a
region of high antigenicity. (B) Residues demonstrated error values within acceptable limits. However, residues near positions 390 and 480 exhibited
significantly higher error rates, surpassing the 99% error value.

Molecular dynamics simulation

The stability, binding, and dynamics of the docked complex
with the highest binding affinity (complex of TLR-7 and the
vaccine construct) were evaluated using MD simulations of
50 ns, focusing on key parameters such as root mean square
deviation (RMSD), root mean square fluctuation (RMSF), radius of
gyration (Rg), and hydrogen bonding, as illustrated in Figure 13.
The RMSD analysis (Figure 13A) indicated an initial increase in
RMSD values, followed by fluctuations around just below 1.5 nm
throughout the 50 ns simulation period. This pattern suggests that
the construct-TLR7 complex reached equilibrium after an initial
equilibration phase and maintained structural integrity over time.
The RMSF plot demonstrated significant fluctuations across the
entire range of residues, with certain peaks indicating higher
RMSF values for specific residues, suggesting that these regions
possess high flexibility. The radius of gyration (Rg) values ranged
from 3.4 to 3.8 nm, indicating some degree of flexibility in the
structural compactness of the complex. Hydrogen bonding analysis
revealed fluctuations between approximately 360–480 hydrogen
bonds over the 50 ns simulation. This suggests that the construct-
TLR7 complex is structurally stable while maintaining functional
flexibility, essential for immune activation and receptor binding.

Immune simulation

The C-ImmSim server reveals that the vaccine construct elicits a
strong initial immune response evident by IgM production followed
by the development of immunological memory sustaining the
level of IgGs. Figure 14 shows the initial antiviral response,Th2-type
response, andTh1-type response indicate some interleukin inducers
which include IFN gamma, IL4 and IL12 respectively. Total B-cells
and plasma B-cells initiated a strong immune response transitioning
to memory cells, this indicates a typical immune reaction. Sustained
levels of IgG1 and IgG2 antibodies depict successful long-term
immunity. The effectiveness of the vaccine construct was also
indicated by its influence on the variability in the NK cell population
and activation of dendritic cells.

Discussion

Infectious Bursal Disease (IBD) affects young chickens
and has been shown to produce bursal lesions, atrophy,
and immunosuppression in chickens aged three to 6 weeks
(Bebora et al., 2017; Mwenda et al., 2018), posing a serious
threat to the economy. As a result, there is a need to develop
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FIGURE 10
Z-score graph of the refined model. The black dot represents the IBDV
vaccine model plotted against experimentally determined structures
(X-ray and NMR) based on the number of residues. The model’s
position within the distribution indicates acceptable overall quality and
structural reliability.

effective vaccinations that can aid in the fight against IBDV,
particularly for the oral vaccine, which has certain issues
such as gastrointestinal degradation and low immunogenicity
(Lucero et al., 2021).

To address the issue, we designed a multiepitope-based
subunit vaccine utilizing immunoinformatic techniques. Finding
appropriate antigens that generate protective immunity is critical in
the development of an effective subunit vaccine. Thus, antigenicity
scores were used to qualify retrieved viral protein 2 (VP2) and viral
protein 3 (VP3) sequences from six continents namely, Asia, Africa,
Europe, North America, South America, and Australia.

The use of standard servers was implemented to predict the B-
cell epitopes, as well as the T-cell epitopes of Human Leukocyte
Antigens (HLAs).TheMixMHC2pred serverwas employed to refine
epitope selection by identifying the closest MHC class I CLA alleles
from the predicted HLA alleles. The Helper T-Lymphocyte (HTL)
epitopes were identified for their ability to induce key cytokines,
such as IFN-γ, IL-4, and IL-10, indicating their potential for eliciting
a balanced immune response.

Using standard servers (ABCpred and BEPIpred), appropriate
B-cell epitopes from the targeted VP2 and VP3 proteins were
found and analyzed. Using two approaches allows for cross-
validation of predictions, which improves the dependability of
epitope detection (Oladipo et al., 2021). The combined predictions
also provide a more in-depth understanding of potential B-cell
epitopes in IBDV subunit vaccine design increasing the prediction
accuracy to improve the vaccination efficiency. However, seven

B-cell epitopes were chosen for the final vaccine design after a
satisfactory evaluation of the epitopes.

The final selection of epitopes from both VP2 and VP3
proteins for the vaccine design demonstrates a rigorous selection
procedure, with the qualified epitopes having a least antigenicity
score of (0.7), and a strong predicted binding to MHC class I
alleles and MHC class II alleles. This ensures extensive coverage
of IBDV’s antigenic landscape and viable candidates for future
development (Sanchez-Trincado et al., 2017). The primary vaccine
construct was manually assembled based on an immunoinformatics
strategy. 7 LBL epitopes, 3 HTL epitopes, and 21 CTL epitopes
were chosen to achieve high immunogenicity. These epitopes
were joined using GPGPG, KK, and AAY linkers and also an
adjuvant gallinacin-3 precursor was incorporated at the N-terminal
to increase the immunogenicity index. Galilnacins in poultry
are functional homologous of mammalian beta-defensins and are
important components of the indigenous defense of a host. The
expression of gallinacin in diverse tissues, such as bone marrow,
bursa of Fabricius, and liver, highlights their role in bridging innate
and adaptive immune responses in chickens (Hasenstein et al.,
2006). Studies on the interaction between gallinacin-3 and specific
Toll-like receptors (TLRs) in chickens are limited. However, there is
substantial evidence suggesting that gallinacin-3 precursor (Avian
β-defensin 3, AvBD3) plays a crucial role in the avian innate
immune response. Zhao et al. (2001) demonstrated that gallinacin-3
expression increases significantly in the trachea following infection
with Haemophilus paragallinarum, indicating its involvement in
mucosal immunity and antimicrobial defense. A key consideration
for its use as a vaccine adjuvant lies in its structural and functional
similarity to human β-defensin 2 (hBD-2, DEFB4A), which is
a known TLR4 and TLR2 ligand. Vora et al. (2004) showed
that hBD-2 interacts with TLR4 and TLR2, triggering NF-κB
activation, cytokine production, and immune cell recruitment,
which are critical for enhancing both innate and adaptive immune
responses. Given these parallels, gallinacin-3 may function similarly
in chickens, potentially serving as a TLR4/TLR2 agonist and thereby
enhancing vaccine-induced immune responses when included as
an adjuvant.

A safety check was also performed to examine the construct’s
antigenicity, allergenicity, and toxicity (Sharma et al., 2022). Study
outcomes suggested that the construct was antigenic (score of
0.5605), non-allergenic, and non-toxic; justifying the possibility
that the construct could be a good vaccine candidate. The
analysed physicochemical properties of the construct revealed
that it comprises 494 amino acids, has a molecular weight of
54.88 kDa, which is within the typical range for protein-based
vaccines, and similar to the report of Gul et al. (2023) which has
a 522 amino acid residue and a molecular weight of 55.64 kDa.
The construct has an instability index of 27.06 classified as stable
which demonstrates its ability to withstand harsh storage or
transportation conditions, with an aliphatic index of 73.38 and a
GRAVY score of −0.187 indicating its hydrophilicity, this is similar
to the report of Oladipo et al. (2023) with a GRAVY of −0.261 and
an aliphatic index of 75.05, demonstrating high tendency to interact
with water molecule. ProteinSol analysis confirmed its solubility
with a score of 0.341, supporting its practical administration.
These results indicate that the vaccine construct is antigenic,
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FIGURE 11
QMEAN4-based quality assessment of the 3D structure. (A) Local quality estimate showing residue-wise predicted similarity to high-resolution
structures. (B) Normalized QMEAN Z-score comparing the model (red star) with PDB structures of similar length. (C) Global quality scores for QMEAN,
Cβ, all-atom contacts, solvation, and torsion energy, indicating overall model reliability.

TABLE 7 Summary of the docking score, confidence score, and ligand RMSD for model 1 of each docked complex.

Docked complexes Docking score Confidence score Ligand RMSD (Å)

Construct and TLR-2_1 −366.15 0.9869 51.87

Construct and TLR-4 −349.33 0.9818 69.31

Construct and TLR-7 −369.46 0.9877 77.28

stable, and immunogenic, warranting further in vivo validation for
efficacy and safety.

The secondary structure of the vaccine construct showed 29.35%
alpha-helix, 25.71% extended strands, 10.53%beta-turn, and 34.41%
random coils. These depicts that the vaccine structure is stable,
possess strong globular conformation and flexibility (Cheng et al.,
2023). AlphaFold, a quick method for predicting protein structures
was used to simulate the tertiary structure of the IBDV-multiepitope

vaccine (Jumper et al., 2021; Varadi et al., 2021).The study employed
the GalaxyRefine server to refine the 3-D model of the vaccine
construct and SAVES server to validate the 3D model, a necessary
step toward predicting a structure that is similar to the native system
(Lee et al., 2019). The global distance test-high accuracy (GDT-
HA) score, RMSD value, MolProbity score, clash score, rotamers
score, and Rama favored score of the improved model all show
good quality. The majority of the amino acid residues in the vaccine
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FIGURE 12
Molecular docking analysis of the vaccine construct with immune receptors. This figure presents the molecular docking results between the designed
multi-epitope vaccine construct and key Toll-like receptors (TLRs). (A) The tertiary structure of the vaccine construct, predicted using AlphaFold,
showcasing its overall 3D conformation. (B) Docked complex of the vaccine construct with TLR-2_1, highlighting the interaction between the vaccine
and the receptor responsible for IBDV recognition. (C) Docked complex with TLR-4, a crucial receptor involved in innate immune activation against the
viral components. (D) Docked complex with TLR-7, which plays a key role in viral RNA recognition and immune signaling. The colored structures
represent the interacting molecules, where the vaccine construct is consistently shown in green, and receptors are displayed in distinct colors (yellow,
orange, and blue) for differentiation. These docking results provide insights into the vaccine’s potential to elicit an immune response through TLR
activation.

(91.4% residues) were found in the favored region, according to
the improved model analyzed using Ramachandran’s plot which is
similar to a study by Kumar et al. (2021). However, the vaccine’s
overall quality was supported by the Z-score evaluation provided by
the ProSA web service.

Following the tertiary construction of the vaccine design, the
3-D construct was docked with three toll-like receptors (TLRs).
TLRs are membrane-spanning proteins that regulate cytokine
production by recognizing pathogen-associated molecular patterns
(Gul et al., 2023). Of the three TLRs, TLR-2_1, TLR-4, and
TLR-7, a substantial interaction with a negative Gibbs-free (ΔG)
value was predicted by the server. It is necessary to use the
Gibbs free energy to describe the strength of an interaction that
takes place in a cell under specific conditions. The more negative
the Gibbs free energy value, the more energetically feasible the
interaction (Yan et al., 2020). TLR-2_1 is unique to birds and is
analogues to mammalian TLR-9, which recognizes unmethylated
CpG DNA motifs, resulting in the activation of adaptive immune
responses (Chuang et al., 2020; Keestra et al., 2010). TLR-4
though primarily known for bacterial lps induction has also
been implicated in antiviral immunity in poultry by modulating
inflammatory cytokine production (Keestra and Van Putten, 2008;
Abdul-Careem et al., 2011). TLR-7 is crucial for detecting single-
stranded RNA viruses, making it highly relevant for infectious

bursal disease virus (IBDV) recognition and immune response
initiation (Santana et al., 2024). The MD simulation results reveal
that the construct-TLR7 complex exhibits notable stability and
dynamic properties essential for its potential biological function.
The RMSD analysis indicates that the complex reaches equilibrium
quickly and maintains structural integrity over the 50 ns simulation
period. This suggests a stable overall conformation as a low RMSD
value is an indicator of a more stable protein structure (Praveen,
2024). Incorporating adjuvants and linkers can introduce additional
flexibility into vaccine constructs, potentially leading to higher
RMSD values. For instance, a study on a multi-epitope vaccine
targeting Tropheryma whipplei incorporated an adjuvant linked
to connected epitopes to boost immunogenicity and engage both
innate and adaptive immunity. This design choice, while enhancing
immune responses, could also contribute to increased structural
flexibility and, consequently, higher RMSD values (Albekairi et al.,
2022). Similarly, research on a multi-epitope vaccine against HTLV
subtypes demonstrated that the incorporation of adjuvants and
linkers enhanced immunogenicity but also introduced flexibility, as
evidenced by molecular docking and MD simulations (Moin et al.,
2023). These findings suggest that the observed RMSD values
in our study may be attributed to the flexible nature of the
linkers and the inclusion of adjuvants, which, while essential for
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FIGURE 13
Molecular dynamics simulation analysis of the docked complex between TLR-7 and the designed vaccine construct over a 50 ns simulation period. (A)
Root-Mean-Square Deviation (RMSD). The RMSD plot represents the structural stability of the complex over time, showing initial fluctuations followed
by stabilization, indicating system equilibration. (B) Root-Mean-Square Fluctuation (RMSF). The RMSF plot highlights the flexibility of individual residues,
identifying regions with higher fluctuations that may correspond to loop regions or binding site flexibility. (C) Radius of Gyration (Rg). The Rg plot
demonstrates the compactness of the complex, with a decreasing trend suggesting stabilization and proper folding over the simulation time. (D)
Hydrogen Bond Analysis. The number of hydrogen bonds maintained throughout the simulation, indicating the strength and stability of molecular
interactions between the vaccine construct and TLR-7.

eliciting robust immune responses, can lead to increased structural
fluctuations.

The RMSF analysis identifies regions of high flexibility within
the complex, highlighting their potential role in facilitating
necessary conformational changes during interactions. This
flexibility, corroborated by the Rg values (3.4–3.8 nm), suggests
a balanced structural compactness that allows for functional
adaptability. Hydrogen bonding analysis shows dynamic
fluctuations between 360 and 480 bonds, indicating that the
complex’s interactions are adaptable over time. This dynamic nature
is likely important for the complex’s biological activity, particularly
in immune signaling pathways where both stability and adaptability
are crucial.

The immune simulation component of this research provides
crucial insights into the anticipated interaction between the
designed multiepitope subunit vaccine against IBDV and the host

immune system, revealing the potential efficacy against IBDV. One
of the unique aspects of this research was our ability to adapt
the C-IMMSIM server, which is primarily designed for human
immune response prediction, for our poultry vaccine construct.
This was achieved by refining our pipeline during epitope mapping.
Specifically, we selected epitopes for HLAs based on a threshold of
0.6, ensuring a higher binding affinity. To bridge species differences,
we then utilized the MixMHC2pred server (Racle et al., 2023) to
identify high-quality MHC class I and II CLA alleles respectively,
which are relevant for antigen presentation in chickens. Since
the initial mapping involved HLA alleles, this approach allowed
us to leverage C-IMMSIM while ensuring the predicted immune
response remained applicable to poultry. In the given results,
the strong initial IgM response, followed by sustained IgG levels
and memory cell formation, suggests that the vaccine could offer
effective and long-lasting immunity (Mateus et al., 2021). The
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FIGURE 14
Immune simulation prediction. (A) Antigens, Immunoglobulins, and Immunocomplexes. This panel illustrates the dynamic interaction between antigen
presence and the immune response, showing the production of different immunoglobulin (Ig) isotypes over time. The rapid increase in IgM followed by
IgG subtypes indicates a typical adaptive immune response. (B) Concentration of Cytokines and Interleukins. This graph presents the temporal
expression of key cytokines and interleukins, including IFN-γ, IL-2, IL-4, TNF-α, and TGF-β. The inset highlights a peak in IL-2 concentration, which is
crucial for T-cell proliferation and differentiation. (C) Plasma B Lymphocyte (PLB) Population. Depicts the expansion and contraction of plasma B cells
following antigen exposure. The isotype distribution of immunoglobulins produced by PLBs (IgM, IgG1, IgG2) is shown, reflecting class switching. (D) B
Cell Population per Entity State. It tracks B cell dynamics across different functional states, including active, internalized, presenting, duplicating, and

(Continued)
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FIGURE 14 (Continued)

anergic states. The initial activation phase is followed by clonal expansion and antigen presentation. (E) Total B Lymphocyte Counts. Displays the
total number of B lymphocytes, including memory B cells and isotype-specific subsets, showing the sustained presence of immune memory. (F)
Helper T Cell Population which illustrates the expansion of total T-helper cells, including naive and memory subsets, over the simulation period,
indicating their role in orchestrating the immune response. (G) Helper T Cell Count per Entity State. Shows the proportion of helper T cells in
different activation states, including active, duplicating, resting, and anergic cells, reflecting immune regulation. (H) Epithelial Cell Population per
Entity State. It demonstrates epithelial cell dynamics in response to infection, with actively infected and antigen-presenting cells being highlighted. (I)
Cytotoxic T Cell Count (Total and Memory). Tracks the expansion and differentiation of cytotoxic T cells, distinguishing between total and memory
subsets. The fluctuations in memory cell numbers suggest antigen-driven responses. (J) Cytotoxic T Cell Count per Entity State. Shows cytotoxic T
cells in active, infected, and presenting states, emphasizing their role in pathogen clearance. (K) Natural Killer (NK) Cell Population. Displays NK cell
counts over time, with oscillations indicating periodic immune surveillance and response to infected cells. (L) Macrophage Populations per Entity
States illustrates the distribution of macrophages in different activation states. (M) Dendritic Cell Population per Entity State represents dendritic cell
activation states, demonstrating their crucial role in antigen presentation and initiation of adaptive immunity.

identified Th1 and Th2 responses, along with the involvement of
NK cells and dendritic cells, further affirm the vaccine’s potential
to invoke a multifaceted and robust immune defense. The balance
of Th1 and Th2 becomes instrumental because the Th1 response
characterized by IFN-γ acts in favor of cellular immunity as well
as cytotoxic T-cell responses that eliminate infected cells (Hirahara
and Nakayama, 2016). Th2 responses characterized by IL-4 and IL-
10 act in favor of humoral immunity, stimulating B-cell maturation
and antibody production. Therefore, a certain degree of Th1/Th2
balance is required to fight the IBDV since it will promote immediate
clearance of the virus, which, in turn, favors some degree of
immunological memory. Our simulation results demonstrate that
the vaccine construct can initiate a robust and well-balanced
adaptive immune response, characterized by induction of IFN-γ
following Th1 stimulation and IL-4/IL-10 following Th2 stimulation
(Tedla et al., 2024).

These findings prove that the vaccine construct would make an
efficient vaccine candidate, unlike live attenuated vaccine which
has the potential to revert to virulence and cause induction of
uneven immune responses (Müller et al., 2012), our computationally
designed vaccine directly incorporates highly immunogenic
epitopes, which ensures targeted immune activation. The analysis
found significant variation in population coverage scores between
locations, indicating the heterogeneous distribution of HLA alleles
and their associated immunogenic responses. Europe has the highest
population coverage score of 99.86%, indicating that most chickens
in the region would likely develop an effective immunological
response to the vaccine according to the study of Cheng et al.
(2023). This substantial coverage demonstrates the suitability of the
selected epitopes for eliciting widespread immunity in European
chickens. In contrast, Central America had the lowest population
coverage rate, at 25.01%. This substantial gap demonstrates the
difficulties of establishing universal vaccination efficacy globally.
The low score indicates that the HLA alleles widespread in Central
America do not match the targeted epitopes, potentially limiting
the vaccine’s effectiveness in this location. East Asia (98.6%),
North America (99.59%), and Oceania (95.58%) all have high
population coverage scores, indicating that the vaccinationwould be
quite effective in these locations. However, other regions’ coverage
scores include Central Africa (89.83%), East Africa (92.82%), and
South Africa (94.81%). With a global coverage of 89.83%, our
findings align with Kardani et al. (2019), supporting the vaccine’s
potential to elicit a robust immune response in diverse poultry
populations.

The variation in population coverage observed from the model
suggests that region specific changes to the vaccine may be
needed to achieve more comprehensive and equitable immunity.
The lower predicted coverage in Central America, of 25.01%,
compared to Europe, of 99.86%, reveals varying regionally of
Chicken Leukocyte Antigen (CLA) allele distributions that dictate
epitope binding and vaccine efficacy. To address this, future vaccine
should incorporate more unrestrained epitopes that bind to a wider
range ofMHC alleles (Schulte et al., 2023).This is a promising study,
indicating that the vaccine has the potential to give large global
protection against IBDV.

Conclusion

Using immunoinformatics, a multiepitope subunit vaccine
against the Infectious Bursal Disease Virus (IBDV) was designed,
providing a complete and strategic strategy for combating
this serious threat to poultry health. Infectious Bursal Disease
(IBD) seriously impacts the poultry industry because it causes
immunosuppression in chickens, increasing susceptibility to
secondary illnesses and resulting in large economic losses. The
immunoinformatic-driven creation of a multiepitope subunit
vaccine against IBDV is a cutting-edge method that tackles the
limitations of conventional vaccinations. This approach allows
for a more precise selection of epitopes from chicken leukocyte
antigens, increased immunogenicity, safety, and development speed.
This method ensures a comprehensive and effective solution to
controlling Infectious Bursal Disease, eventually protecting poultry
health and increasing industry output. Future research should
consider adjuvant selection beyond gallinacin-3 precursor, as
adjuvants significantly influence immune response. Nonetheless,
further experimental validation is necessary to confirm the
vaccine’s immunogenicity, safety, and efficacy in live poultry
models.
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