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In silico analysis of
Triphala-derived polyphenols as
inhibitors of TIR–TIR
homodimerization in the
inflammatory pathway

Durgadevi Rajendran and Nalini Easwaran*

School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India

Downstream signaling of the nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-κB) pathway is mediated by the adaptor protein
myeloid differentiation primary response gene 88 (MyD88). The TIR domain
present in MyD88 plays a pivotal role in regulating the expression of pro-
inflammatory cytokines. Although synthetic drugs, including M20 and TJ-
M2010-5, have been studied to mitigate the overexpression of MyD88,
their prolonged usage is known to cause adverse side effects, highlighting
the need for a safer, risk-free alternative. An Ayurvedic formulation named
Triphala, which is rich in polyphenols and traditionally used to treat various
ailments, was selected for this investigation. Although polyphenols are gaining
attention as anti-inflammatory agents, their precise mode of action remains
insufficiently understood. Previous studies have explored the anti-inflammatory
properties of Triphala in a broad spectrum, but this study notably focuses
on the interactions of Triphala-derived polyphenols with the TIR domain
of the MyD88 adaptor protein in the NF-κB signaling pathway. This study
employs computational docking and a molecular dynamics (MD) simulation
to study the interaction and stability of the polyphenols with the target
protein. The polyphenols were virtually docked to the TIR domain of MyD88
using AutoDock tools 1.5.7. Among them, the top three protein–polyphenol
complexes with the highest binding affinities were selected and subjected
to MD simulation for 200 ns to evaluate their interaction properties in
detail. The findings of the MD simulation corroborated the docking results,
showing that two complexes (protein–punicalagin and protein–chebulagic
acid) demonstrated better interaction patterns. The MD trajectory revealed
that polyphenol binding enhanced the stability of the target protein, as
indicated by lower root-mean-square deviation (RMSD) (∼0.25 nm), solvent
accessible surface area (SASA) (∼96.848–100.666 nm2), and stabilized radius
of gyration (Rg) (∼1.50–1.53 nm) values for punicalagin and chebulagic acid
complexes compared to the reference complex. Our findings have supported
the hypothesis that Triphala polyphenols may interact with the TIR domain of
MyD88, thereby inhibiting the production of inflammatory cytokines. This study
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provides a combination of computational validation of specificmolecular targets
andmechanistic insights into the anti-inflammatory potential of Triphala-derived
polyphenols.
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nuclear factor kappa-light-chain-enhancer of activated B cells, myeloid differentiation
primary response gene 88, Triphala, TIR–TIR homodimerization, docking, molecular
dynamics simulation

Introduction

Myeloid differentiation primary response gene 88 (MyD88)
is a cytosolic critical adaptor protein that plays a crucial role
in the downstream signaling of the innate immune response
(Di Padova et al., 2018). Although there is a vast array of
mechanisms and proteins that contribute to the activation of
the innate immune response, MyD88 acts as a central mediator
in triggering the process (Olson et al., 2015). It facilitates the
downstream signaling of the nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pathway and releases pro-
inflammatory cytokines. Imbalance of MyD88 triggers a wide
spectrum of inflammatory diseases, highlighting its significance
in the homeostasis of innate immunity. MyD88 is predominantly
activated by Toll-like receptors (TLRs) (except TLR3). TLRs are
the major class of pathogen recognition receptors (PRRs) that
can recognize the pathogen-associated molecular patterns (PAMPs)
present in the microbe (Wang et al., 2014). PAMPs such as
lipopolysaccharides (LPS) can bind to the leucine-rich repeat
(LRR) motifs of TLRs. This interaction promotes the dimerization
of the Toll/interleukin-1 receptor (TIR) domains, subsequently
recruiting the TIR domain-containing adaptor proteins, including
MyD88 (Clabbers et al., 2021; Saikh, 2021). MyD88 consists
of three domains, namely, the N-terminal death domain (DD),
the C-terminal Toll/interleukin-1 receptor (TIR) domain, and
the intermediate domain (INT). The TIR domain (155–296 aa)
facilitates the interaction of MyD88 with the TIR domain of
TLR or IL-1R receptors to form a higher-order complex, thereby
recruiting additional TIR domains in the vicinity and propagating
the downstream signaling cascade. This strongly suggests that
TIR–TIR homodimerization may be a viable drug target to inhibit
inflammation. Previous studies have focused on developingmimetic
small-molecule inhibitors that target the BB-loop of the TIR domain
to elucidate the inhibitorymechanism ofMyD88 homodimerization
(Loiarro et al., 2005; Saikh, 2021).

Several studies have demonstrated that synthetic analogs such
as ST2825 effectively inhibit the dimerization of MyD88 by binding
to the BB-loop within the TIR domain, thereby disrupting NF-
κB-mediated signal transduction in pro-inflammatory cytokine
production (Loiarro et al., 2007). Furthermore, ST2825 has
been studied to reduce oxidative stress by attenuating the
production of reactive oxygen species (ROS) and suppressing
NLRP3 inflammasome activation, ultimately inhibiting caspase-1
inflammatory pathways (Zhang et al., 2022). Additionally, TJ-
M2010-5 is a mimetic drug designed to interact with the TIR
domain of MyD88 to inhibit homodimerization. It binds to the
αE, βD, βC, αA, DD, and EE loops but not to the BB-loop of the
TIR domain (Xie et al., 2016). However, studies show that this drug

has some key limitations and is more effective when administered
prophylactically rather than therapeutically (Zou et al., 2023). M20
is another small-molecule inhibitor designed to reduce MyD88
homodimerization by binding to the hydrophobic (αC′–βD–αD)
pocket of the TIR domain (Song et al., 2021). These synthetic
drugs need to be investigated further for their limitations, mainly
regarding their toxicity associated with prolonged usage. In contrast,
ancient medicinal systems such as Siddha and Ayurveda provide
alternative therapeutic approaches that play a rescuing role in
such cases. These natural medicines have potentially lower toxicity
profiles and are rich in bioactive compounds that exhibit strong
anti-inflammatory properties. Triphala is a well-known ancient
polyherbal formulation made up of three fruits, namely, Terminalia
chebula, Terminalia bellerica, and Phyllanthus emblica, in a ratio
of 1:1:1. This formulation is rich in bioactive compounds such
as polyphenols, flavonoids, and tannins. They have been found
to play a positive role in the treatment of various inflammatory
diseases such as arthritis, cancer, diabetes, and gastrointestinal tract
disorders. (Shanmuganathan and Angayarkanni, 2018). Studies
have demonstrated that Triphala can hamper the production
of pro-inflammatory mediators such as interleukin-6 (IL-6),
interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-
α) by inhibiting the NF-κB signaling pathway (Kalaiselvan and
Rasool, 2016). All the above-mentioned studies have explored the
general immunomodulatory effects of Triphala. However, no in
silico or experimental evidence is currently available for Triphala-
derived polyphenol-mediated inhibition of MyD88. Our study
provides insights into the direct molecular interactions between
Triphala polyphenols and the MyD88 adaptor protein, unveiling
the underlying mechanism behind the immunomodulatory
properties of these polyphenols through computational screening
approaches.

Materials and methods

Database and software

The databases and software applications used in this study
include RCSB PDB (Protein Data Bank) (https://www.rcsb.org),
PubChem (https://pubchem.ncbi.nlm.nih.gov/), ChemSpider
(http://www.chemspider.com), Open Babel version 3.1.1 (https://
github.com/openbabel/openbabel/releases), pkCSM webserver
(https://biosig.lab.uq.edu.au/pkcsm/prediction), PyMOL 3.0.3
(https://www.pymol.org), AutoDock tools 1.5.7 (https://ccsb.
scripps.edu/mgltools/downloads/), Swiss-PDB Viewer version
4.1.0 (https://spdbv.unil.ch/download/binaries/SPDBV_4.10_
PC.zip), AutoDock Vina version 1.1.2 (https://vina.scripps.
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edu/wp-content/uploads/sites/55/2020/12/autodock_vina_1_1_2_l
inux_x86.tgz), LigPlot + v.2.2 (https://www.ebi.ac.uk/thornton-srv/
software/LigPlus/), and GROMACS version 2023.1 (https://zenod
o.org/records/7852175/files/gromacs-2023.1.tar.gz?download=1).

Preparation of the protein

The crystal structure of the TIR domain of the adaptor protein
MyD88 (PDB ID: 4DOM) was retrieved from the RCSB PDB
database, which contains 151 amino acids (Clabbers et al., 2021).
The structure was determined by X-ray diffraction to a resolution
of 2.30 Å. Heteroatoms, water molecules, and undesired ligand
molecules were removed using PyMOL. Missing atoms were fixed
using Swiss-PDB Viewer version 4.1.0. Using AutoDock tools 1.5.7,
polar hydrogens and Kollman charges were added to stabilize the
protein structure and were saved in the PDBQT file format for
molecular docking (Hu et al., 2024).

Ligand preparation

A total of 33 Triphala-derived bioactive compounds with strong
interaction properties toward the target protein were selected
based on a literature survey. For instance, all the selected ligands
have been frequently explored for their strong anti-inflammatory,
anticancer, and antioxidant properties. The 3D structures of
these ligands were retrieved from the PubChem and ChemSpider
databases (Tarasiuk et al., 2018; Prasad and Srivastava, 2020;
Rudrapal et al., 2022; Wang et al., 2023). Energy minimization of
all the ligands was performed by applying Merck Molecular Force
Field 94 (MMFF94) to obtain stable conformations, as MMFF94
was specifically developed to provide accurate intermolecular
geometries for small organic molecules. All the ligands were
then converted to the PDBQT format for molecular docking
(Murugesan et al., 2021; Olaokun et al., 2022).

Molecular docking

The processed ligands were subjected to docking against the
TIR domain of MyD88 using AutoDock Vina version 1.1.2. In
this study, the ligands that were energy minimized were given
as the input file, and the prepared protein was given as the
target file. To perform high-throughput molecular docking, a
Perl script was used containing multiple ligand files to execute
AutoDock Vina (Eberhardt et al., 2021). The blind docking
covers the whole protein, and the center of the grid box was
precisely positioned at the coordinates X: 17.67, Y: 1.496, and Z:
12.318 with a size range of X: 58 Å, Y: 54 Å, and Z: 46 Å. This
configuration facilitates the sampling of the entire protein surface
by the ligands to explore all the potential binding pockets. A
maximum of 10 docking conformers were set, from which the
most favorable binding energies were selected, and the root-mean-
square deviation (RMSD) values were saved (Aliye et al., 2021;
Eberhardt et al., 2021). Complexes of the saved confirmations of
ligands and target proteins were written using PyMOL 3.0.3. Non-
covalent interactions of the complexes were studied using LigPlot+

(Laskowski and Swindells, 2011). Furthermore, an MD simulation
along with calculations of binding free energies was carried
out for these complexes to understand the dynamic properties
involved in the interaction and stability of the protein–ligand
complexes (Rudrapal et al., 2022).

Molecular dynamics simulation

An MD simulation was performed for the complexes with the
top three binding affinities, the reference drug (TJ-M2010-5), and
the MyD88 protein alone using GROningen MAchine for Chemical
Simulations (GROMACS) version 2023.1 (Abraham et al., 2015;
Rudrapal et al., 2022). The CHARMM (Chemistry at HARvard
Macromolecular Mechanics) force field was employed for the MD
simulation of all the complexes due to its robust parameterization
and reliability in modeling biomolecular systems, including small
molecules and phytochemicals. The topology file for the target
protein was prepared using GROMACS, and the target ligands
were prepared using CGenFF (Vanommeslaeghe et al., 2010).
The periodic boundary was set using a rectangular box, and
the water box with solute molecules surrounded by the solvent
was extended to 10 Å. Bond constraints were handled using the
LINCS algorithm. All the complexes were solvated using the
TIP3P water model, followed by sodium and chloride ions being
added for neutralization (Ghosh et al., 2021; Murugesan et al.,
2021). Energy minimization was carried out for all the complexes
using the steepest descent algorithm. Equilibration was carried
out under isothermal–isochoric (NVT) and isothermal–isobaric
(NPT) conditions for 0.3 ns each (Rudrapal et al., 2022). The
systems were then subjected to an MD simulation under a pressure
of 1 atm and a temperature of 300 K for 200 ns (duplicates
were run to ensure reproducibility). Here, the leapfrog algorithm
was used at 2 fs for integrating the motion equation of atoms.
Finally, the average distance between the atoms of the overlying
protein–ligand complex was studied by RMSD. Deviations in the
positions of the atomswere studied by root-mean-square fluctuation
(RMSF). The overall size and compactness were studied using
the radius of gyration (Rg), and the accessibility of the surface
area to the solvent molecules was quantified by solvent accessible
surface area (SASA). All the above four parameters corroborated
the stability of the target protein in the presence of ligands,
suggesting the sustainability of the interaction. The non-covalent
associations (H-bonds) were calculated to evaluate the stability and
specificity of the molecular interactions using GROMACS scripts
(Ghosh et al., 2021; Rudrapal et al., 2022).

Molecular mechanics Poisson–Boltzmann
surface area

Binding free energy is the energy that tends to be released when
a protein and a ligand form a complex, and it can be calculated
using the molecular mechanics Poisson–Boltzmann surface
area (MM-PBSA) method. MM-PBSA helps in understanding
the thermodynamics and kinetics involved in the processes of
molecular binding. Dielectric constants are the key parameters
to calculate MM-PBSA, which enables the accurate estimation of
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the electrostatic contribution to the reaction medium. An internal
dielectric constant (indi) of 4.0 was adopted to approximate the
electric polarizability of the solute (protein), whereas an external
dielectric constant (exdi) of 80.0 was set to simulate the environment
of bulk water at room temperature (Hou et al., 2011). Snapshots were
recorded at an interval of 0.1 ns (100 picoseconds) throughout the
200 ns simulation. The frames of the trajectory used for the MM-
PBSA calculation were extracted using the parameter nstxtcout =
50,000, corresponding to one frame every 0.1 ns. A total of 2,000
frames were taken to cover the whole trajectory of 200 ns rather
than focusing on a segment of the trajectory. The parameters, such
as changes in bond energies, angles, electrostatics, and van derWaals
and solvation-free energy, which is the sum of polar and nonpolar
solvation energies, were calculated. The overall binding free energy
was calculated using the following formula (Kumari et al., 2014;
Murugesan et al., 2021; Rudrapal et al., 2022):

ΔGbind = ΔGcomplex − (ΔGprotein +ΔGligand),

where ΔGbind is the binding free energy between the ligand and
protein, ΔGcomplex is the binding free energy released by the
protein–ligand complex, ΔGprotein is the binding free energy of the
unbound protein, and ΔGligand is the binding free energy of the
unbound ligand.

Drug-likeness and pharmacokinetic profile

Drug-likeness is a qualitative property that indicates whether
a drug molecule can act as a potential drug. The rule of five
(Ro5) or Lipinski’s rule of five provides a set of guidelines to
evaluate the drug-likeness of oral drugs (Lipinski, 2004). These
rules provide criteria for certain molecular properties that play
a major role in pharmacokinetic profiles, such as absorption,
distribution, metabolism, and excretion (ADME). In this study,
SwissADME and pkCSM were used to study drug-likeness,
physicochemical properties, and pharmacokinetics (Pires et al.,
2015; Daina et al., 2017; Ghosh et al., 2021).

Results

Molecular docking

A list of 33 polyphenols derived from the Ayurvedic formulation
Triphala were taken and computationally docked with the crystal
structure of the TIR domain of the MyD88 protein to evaluate
their interaction and binding affinities (Tarasiuk et al., 2018;
Prasad and Srivastava, 2020; Wang et al., 2023). TJ-M2010-5,
a synthetic anti-inflammatory drug, was taken as a reference
molecule (Xie et al., 2016). Binding affinities were assessed
based on the docking scores, expressed in kcal/mol (Song et al.,
2021; Hu et al., 2024). All the polyphenols exhibited favorable
interaction patterns, and few polyphenols, such as chebulagic acid,
chebulinic acid, emblicanin B, emblicanin A, luteolin, malinic
acid, maslinic acid, pentagalloylglucose, punicalagin, punicafolin,
quercetin, sennoside C, and sennoside E, exhibited good binding
affinities toward the target protein compared to the reference

molecule. In particular, punicalagin (−9.1 kcal/mol), sennoside C
(−8.4 kcal/mol), and chebulagic acid (−8.5 kcal/mol) showed the
highest binding affinities compared to the reference drugTJ-M2010-
5 (−7.4 kcal/mol), suggesting that the polyphenols have better
interaction properties with the target protein than the reference
drug (Table 1) (Figures 1, 2). However, the practical application of
polyphenols as inhibitors of MyD88 depends on several additional
factors such as molecular interaction, stability, and binding free
energy, which were also elaborately investigated in the present
study. The non-covalent interactions between the protein–ligand
complexes were examined in detail using LigPlot + V.2.2. In this
study, punicalagin was observed to interact with Arg133, Asn123,
Lys101, Phe109, and Glu108 amino acid residues present in the TIR
domain of MyD88 through seven hydrogen bonds (reversible non-
covalent bonds). Similarly, chebulagic acid was observed to have
established seven hydrogen bonds with Asp40, Gln81, Ser75, Cys13,
Glu77, and Lys76 amino acid residues of the target protein. Notably,
sennoside C established 11 hydrogen bonds with Trp50, Glu77,
Ser15, Gln81, Ser39, Val49, Val43, Leu44, and Thr47 acid residues of
the target protein. In contrast, the reference drug TJ-M2010-5 did
not form any hydrogen bonds with the target protein, which shows
that the interaction profile of the reference drug was weaker than
that of Triphala-derived polyphenols (Table 2) (Figure 3).

Molecular dynamics simulation

The top three complexes with higher binding affinities, the
reference complex, and the target protein were studied for their
stability, interaction, and confirmation in detail by performing
an MD simulation for 200 ns (Ghosh et al., 2021; Aljarba et al.,
2022). The stability of the complexes was assessed by studying key
parameters, including RMSD, RMSF, SASA, Rg, and the hydrogen
bonds formed. Graphical representations for these parameters were
generated using the Xmgrace 2D plotter (Ghosh et al., 2021;
Rudrapal et al., 2022; Vieira et al., 2023). RMSD was employed to
study the conformational stability and structural integrity of the
molecules present in the protein–ligand complexes (Ghosh et al.,
2021; Rudrapal et al., 2022). The RMSD of the target protein
was gradually increased from 0 to 33.5 ns and reached a peak of
0.28 nm, followed by a sudden decrease. Subsequently, the RMSD
values showed continuous fluctuations and reached up to 0.27 nm
at 58.4 nm, before a gradual decrease until 92.8 ns. Following that,
the RMSD stabilized with minor fluctuations; the protein backbone
was normalized after 149.7 ns and remained stable throughout
the simulation with minor fluctuations. The RMSD profile of the
protein–TJ-M2010-5 complex was more variable in the beginning,
reaching up to 0.25 nm at 13.4 ns, followed by minor fluctuations
throughout the MD simulation for 200 ns, indicating the structural
instability of the complex. The protein–punicalagin complex first
displayed significant fluctuations in RMSD and reached amaximum
value of 0.25 nm at 48.2 ns and 145.8 ns. After that, the complex
stabilized with some minor deviations. The protein–chebulagic acid
complex exhibited oscillations in RMSD from 0 to 107.7 ns and
reached a maximum value of 0.25 nm at 69.9 nm. Subsequently,
the values stabilized with slight deviations until 145.8 ns and
remained stable throughout the 200 ns. The RMSD exhibited by
the protein–sennoside C complex was the highest of all the other
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TABLE 1 Binding affinity or docking scores of different Triphala
polyphenols and the reference compound with the TIR domain of the
MyD88 protein.

S.No Ligand Docking score/binding affinity
(kcal/mol)

1 Arjunolic acid −7.1

2 Ascorbic acid −4.9

3 Betasitosterol −6.5

4 Brevifolin −5.1

5 Chebulagic acid −8.5

6 Chebulic acid −6.8

7 Chebulinic acid −7.8

8 Corilagin −7.2

9 Ellagic acid −7.1

10 Emblicanin A −7.8

11 Emblicanin B −8

12 Epigallocatechin −6.7

13 Gallocatechin −6.8

14 Kaempferol −7.3

15 Luteolin −7.9

16 Maslinic acid −7.4

17 Melissic acid −4.4

18 Myristic acid −4.5

19 Palmitic acid −3.9

20 Pentagalloylglucose −8.1

21 Phyllaemblicin A −7.6

22 Phyllaemblicin B −7.2

23 Phyllaemblicin C −7.3

24 Phyllanthin −5.1

25 Progallin A −6

26 Punicafolin −7.6

27 Punicalagin −9.1

28 Quercetin −7.6

29 Quinic acid −5.1

30 Sennoside C −8.4

(Continued on the following page)

TABLE 1 (Continued) Binding affinity or docking scores of different
Triphala polyphenols and the reference compound with the TIR domain
of the MyD88 protein.

S.No Ligand Docking score/binding affinity
(kcal/mol)

31 Sennoside E −8.2

32 Syringic acid −5.1

33 Tannic acid −6.3

34 TJ-M2010-5 −7.4

Note: the more negative the docking score, the higher the binding affinity for the ligand
with the target protein.
Bolded values indicate the highest binding affinities (most negative docking scores) of the
tested compounds against the target protein.

complexes and the target protein, which reached a maximum
value of 0.29 nm at 74.8 ns. The trajectory showed continuous
oscillations until 146.8 ns, followed by the complex being partially
stabilized with minor fluctuations (Figure 4A). Overall, punicalagin
and chebulagic acid stabilized the backbone of the target protein
compared to other ligands.

RMSF analysis helps identify regions of increased flexibility
and stability within proteins. The RMSF profile of the target
protein varied significantly between 2–5, 40–50, 88–96, 105–117,
and 123–129 residues of amino acids. For the protein–TJ-M2010-
5 complex, major fluctuations in the RMSF were found between
the 2–5, 43–50, 86–96, 105–117, 123–129, and 141–142 residues of
amino acids. The complex showed more fluctuations in its residues
than the target protein. For the protein–punicalagin complex, major
fluctuations were observed between the 2–5, 50, 89–95, 106–107,
112–115, 123–125, and 129 amino acid residues. The complex
exhibited fewer fluctuations compared to the target protein, showing
the stabilizing effect of punicalaginwhenbound to the target protein.
Similarly, the protein–chebulagic complex displayed fluctuations
between 2–5, 41–50, 90–96, and 123–127 amino acid residues,
which have significantly lower RMSF than the target protein.
The protein–sennoside C complex exhibited fluctuations between
the 2–5, 38–50, 89–95, 114–115, 123–126, and 142 amino acid
residues. This complex showed lower fluctuations than the target
protein, although the fluctuations were slightly higher than those of
punicalagin and chebulagic acid complexes (Figure 4B).

SASA was analyzed to gain insights into the structural and
functional properties of biomolecules by quantifying the protein
surface exposed to the solvent present in the environment. Effective
ligand binding was expected to minimize the solvent accessible
surface area of the protein. The target protein exhibited a maximum
SASA value of 95.450 nm2. In contrast, the reference complex
showed a maximum SASA value of 103.325 nm2, which is higher
than that of the target protein, indicating that ligand binding
was disturbed by MD simulation. The maximum SASA values
recorded for the protein–punicalagin, protein–chebulagic acid,
and protein–sennoside C complexes were 100.666, 96.848, and
101.003 nm2, respectively. Subsequently, the values were reduced
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FIGURE 1
Structure of Triphala ligands with the top three binding affinities and the reference compound. (A) Punicalagin, (B) chebulagic acid, (C) sennoside C,
and (D) TJ-M2010-5.

during a further simulation for 200 ns, suggesting potential protein
stabilization by ligands over the course of the MD simulation
(Figure 4C). Overall, punicalagin and chebulagic acid complexes
exhibited lower SASA values than the reference drug. On the other
hand, sennoside C showed elevated SASA values, similar to the
reference drug. This data trend shows a strong correlation with
the docking results, in which punicalagin and chebulagic acid
exhibited the lowest binding energies, which ultimately implies
stable binding with the target protein. Rg shows the compactness of
the molecular system, thereby providing insights into the stability,
folding, and unfolding conformational changes in the protein.
The Rg of the target protein showed minor fluctuations initially
and gradually increased, reaching a maximum of 1.52 nm on
98.4 ns. Subsequently, the system was stabilized after 148.4 ns and
remained the same throughout the simulation. Conversely, the Rg
value of the reference complex displayed continuous fluctuations
throughout the simulation and reached a maximum of 1.52 nm

at 98.4 ns. This suggests that ligand binding negatively influences
the rigidity of the protein structure. Initially, the Rg values of the
punicalagin, chebulagic acid, and sennoside C complexes oscillated
and reached maximums of 1.53, 1.50, and 1.51 nm, respectively.
Following that, the Rg values of punicalagin and chebulagic acid
complexes were stabilized after 147.7 ns and 148.8 ns, respectively.
Notably, both punicalagin and chebulagic acid complexes exhibited
better structural rigidity than the other complexes (Figure 4D).
Furthermore, the stability of the complexes was assessed by
studying the number of intermolecular hydrogen bonds,which helps
maintain the complex intact. In this study, the reference complex
did not form any hydrogen bonds throughout the simulation,
indicating an unstable binding interaction. The H-bonds formed
by the punicalagin, chebulagic acid, and sennoside C complexes
varied between 1–7, 1–9, and 1–8, respectively, throughout the
simulation (Figure 4E). Notably, the chebulagic acid and sennoside
C complexes displayed an increased and decreased number of
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FIGURE 2
Graphical representation of the binding affinities of Triphala-derived ligands against the target protein. The graph illustrates the docking scores of
various ligands, wherein the maximum negative score represents the highest binding affinity for the target protein.

TABLE 2 Formation of hydrogen bonds between the ligands and the target protein with their interacting residues.

Ligands No. of H bonds formed by the ligands with the
protein

Interacting amino acid residues in the protein

Punicalagin 7 Arg133, Asn123, Lys101, Phe109, and Glu108

Chebulagic acid 7 Asp40, Gln81, Ser75, Cys13, Glu77, and Lys76

Sennoside C 11 Trp50, Glu77, Ser15, Gln81, Ser39, Val49, Val43, Leu44, and Thr47

TJ-M2010-5 0 Nil

H-bonds in post-simulation comparedwith the binding energy from
the docking results. An increase in bond number represents the
additional conformational states that were explored by the ligand,
thereby enhancing its interaction and stability under dynamic
conditions, whereas a decline in bond number suggests a weaker
binding of the ligand. The statistical significance tests were carried
out individually for all the parameters using one-way ANOVA with
the Brown–Forsythe test, and all the parameters were statistically
significant (p-values are <0.05).

Molecular mechanics Poisson–Boltzmann
surface area

Binding free energy (ΔGbind) was computed using the sum of
SASA, van der Waals, electrostatic energy, and polar and non-
polar solvation energies. MM-PBSA helps in comparing the binding
affinities of different proteins and ligands. A more negative ΔGbind
indicates a stronger binding affinity between the ligand and the
target protein. The results of MM-PBSA provided insights into the
energy contributed to the binding of the target protein and ligands.
The average energy exhibited by the protein–punicalagin complex

was −1,974.13 kcal/mol, whereas the protein and ligand alone
displayed −2,320.87 kcal/mol and 369.52 kcal/mol, respectively,
leading to a total ΔGbind of −22.78 kcal/mol. Similarly, the
protein–chebulagic acid complex exhibited an average energy of
−2,234.98 kcal/mol, with the unbound protein and ligand displaying
−2,353.13 kcal/mol and 145.02 kcal/mol, respectively, yielding the
total ΔGbind of −26.88 kcal/mol. The protein–sennoside C complex
showed an average energy of −2,092.39 kcal/mol, the protein
alone exhibited −2,316.08 kcal/mol, the ligand alone exhibited
23.51 kcal/mol, and the total ΔGbind was −15.83 kcal/mol. For
comparison, the reference complex was also analyzed for its ΔGbind,
which was approximately −4.24 kcal/mol. The energy displayed
by the protein–TJ-M2010-5 complex was −2,374.9 kcal/mol, the
protein alone exhibited −2,334.55 kcal/mol, and the ligand alone
exhibited −36.12 kcal/mol. Overall, punicalagin and chebulagic
acid, among the other ligands, demonstrate the most favorable
thermodynamic integrity. The MM-PBSA values of the polyphenols
were consistent with the SASA and H-bond results, which
suggest a reduction in the exposure of the protein surface
toward the solvent upon ligand binding and stable intermolecular
hydrogen bonding throughout the MD simulation of 200 ns
(Table 3) (Figure 5).
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FIGURE 3
The top three protein–ligand complexes with hydrogen bond interactions (studied using LigPlot + v.2.2). (A) Interaction of punicalagin with the target
protein. (B) Interaction of chebulagic acid with the target protein. (C) Interaction of sennoside C with the target protein. (D) Interaction of TJ-M2010-5
with the target protein.
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FIGURE 4
Graphical plots for the top three complexes, the reference complex, and the target protein alone. (A) RMSD shows the interaction, stability, and
conformational changes of the molecular structures of the different complexes (p-value = 0.0227). (B) RMSF shows the positional fluctuation of
individual residues of the protein in different complexes (p-value = 0.0118). (C) SASA shows the degree of the protein surface exposed to the solvent
present in the medium (p-value = 0.0130). (D) Radius of gyration (Rg) measures the compactness, folding, and unfolding of the protein structure in
different complexes (p-value = 0.0465). (E) H-bond shows the number of H-bonds formed in the complexes during dynamic conditions (p-value =
0.0118). All of the above-mentioned p-values are <0.05, indicating statistical significance. Note: one-way ANOVA with a Brown–Forsythe test was used
for comparing each parameter individually in duplicate for significance.
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TABLE 3 MM-PBSA of the top three complexes along with the reference complex.

Energy Complex

Punicalagin Chebulagic acid Sennoside C TJ-M2010-5

Complex (ΔGcomplex) −1974.13 −2,234.98 −2092.39 −2,374.91

Target protein (ΔGprotein) −2,320.87 −2,353.13 −2,316.08 −2,334.55

Ligands (ΔGligand) 369.52 145.02 23.51 −36.12

Total (ΔGbind) −22.78 −26.88 −15.83 −4.24

FIGURE 5
MM-PBSA analysis of the 200°ns trajectory to estimate the binding free energies of the top three protein–ligand complexes, along with the
reference complex.

Drug likeness and pharmacokinetic profile

SwissADME and pkCSM were utilized to study Lipinski’s
rule of five and the pharmacokinetic properties of the ligands
(Ghosh et al., 2021). The synthetic reference drug exhibited no
violations of Lipinski’s rule of five, whereas all three Triphala-
derived ligands showed three violations: 1. molecular weight
exceeding 500 Da, 2. nitrogen-oxygen bonds exceeding 10,
and 3. nitrogen–hydroxyl bonds surpassing 5. Specifically, the
molecular weights of punicalagin, chebulagic acid, and sennoside
C were 1,084.72, 954.66, and 848.76 Da, respectively. All three
polyphenols exceeded the threshold for nitrogen–oxygen bonds
and nitrogen–hydroxyl bonds up to 10 and 5, respectively. The
normal bioavailability score range was 0–10, and all the polyphenols
showed poor bioavailability (0.11–0.17), while the reference
compound exhibited a significantly higher bioavailability score
of 0.55 (Martin, 2005; Daina et al., 2017). All the polyphenols
displayed awater solubility of −2.892, while the reference compound
had a solubility of −3.812, suggesting that the ligands ranged
from moderately soluble to soluble (Daina et al., 2017). Further
pharmacokinetic evaluation indicated that punicalagin, chebulagic

acid, and TJ-M2010-5 demonstrated good intestinal absorption
(100%, 93.835%, and 91.865%, respectively), while sennoside C
showed a very poor intestinal absorption rate of 0% (Zhao et al.,
2002). Even though sennoside C exhibited significant binding
affinity toward the TIR domain, this major limitation, the lack
of intestinal absorption, reduces its oral efficacy, and it can be
overcome by advanced drug delivery platforms such as nanoparticle
encapsulation (Sun et al., 2024).

The blood–brain barrier (BBB) membrane permeability
revealed that TJ-M2010-5 exhibited a permeability of 0.287 log BB,
whereas Triphala polyphenols showed very poor permeability
(<-1) compared to the reference compound. Furthermore, none
of the ligands met the range of −0.89 to 3.32 log mL/min/kg in
total clearance (Zhivkova and Doytchinova, 2013). Cytochrome
P450 (CYP450) enzymes play a crucial role in drug metabolism,
particularly with CYP2D6/CYP3A4. An ideal drug should function
as a CYP substrate for proper metabolic processing. The reference
drug functions as a CYP substrate, whereas all the other tested
ligands failed to act as a CYP substrate. Additionally, a drug
candidate should not inhibit CYP450 enzymes. All the polyphenols
did not show any inhibitory properties toward CYP450 enzymes;
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in contrast, the reference drug demonstrated inhibitory effects over
these enzymes. Organic cation transporter 2 (OCT2) is a renal
transporter that plays a crucial role in the excretion of drugs. An
ideal drug should serve as an OCT2 substrate for proper excretion.
However, all three polyphenols failed to exhibit the property of
being OCT2 substrates; in contrast, the reference drug acted as
an OCT2 substrate. Toxicity assessments showed that the Triphala-
derived ligands did not exhibit hepatotoxicity or AMES (mutagenic)
toxicity, whereas the reference compound displayed hepatotoxicity.
These computational data align with the previously reported in
vivo toxicity studies conducted in Sprague–Dawley rats, which
suggest that the Triphala extract administration is not associated
with hepatotoxicity. This was evidenced by the normal serum levels
of hepatic biomarkers, including aspartate aminotransferase (AST),
alanine aminotransferase (ALT), and alkaline phosphatase (ALP)
levels (Arpornchayanon et al., 2022). The predicted maximum
tolerated doses for punicalagin, chebulagic acid, and sennoside C
were 0.438, 0.438, and 0.458 log mg/kg/day, respectively, while the
reference drug had a higher tolerated dose of 0.505 log mg/kg/day
(Pires et al., 2015). Rat oral acute and chronic toxicities were also
evaluated with the pkCSM predictive model; the lethal dose LD50
for all the polyphenols was commonly in the acute toxicity range of
2.482 mol/kg, whereas the reference compound had a slightly higher
LD50 value at 2.66 mol/kg. The lowest observed adverse effect level
(LOAEL) in rat models was predicted for all the Triphala-derived
polyphenols and the reference drug to study the oral chronic toxicity.
The LOAEL values for punicalagin, chebulagic acid, and sennoside
C were 12.221, 10.72, and 7.099 (log mg/kg_bw/day), respectively
(Table 4) (Pires et al., 2015). TJ-M2010-5 exhibited a significantly
lower LOAEL of 1.112 compared to the polyphenols, suggesting a
higher potential for chronic toxicity. Although these polyphenols
are broadly recognized for their anti-inflammatory properties, and
numerous in vitro and in vivo studies have demonstrated their
efficacy in inflammatory models, significant limitations still persist.
To overcome these challenges, prodrug strategies can be employed to
enhance their ADME profiles. Additionally, advanced drug delivery
platforms such as nanocarrier-based formulations offer promising
approaches to improve the target delivery and bioavailability of
the polyphenols, thereby increasing their therapeutic potential
(Rautio et al., 2008; Sun et al., 2024).

Discussion

The first line of defense in the human body is provided by
the innate immune response, which is a nonspecific protective
mechanism that involves numerous signaling pathways. Among
these, NF-κB is one of the most important pathways, which involves
the adaptor protein MyD88. MyD88 mediates the downstream
signaling of the NF-κB pathway, leading to the subsequent
release of pro-inflammatory cytokines. MyD88 comprises three
domains, namely, the death domain (DD) at the N-terminal, the
Toll/interleukin-1 receptor (TIR) domain at the C-terminal, and
an intermediary domain (INT) (Ohnishi et al., 2009; Saikh, 2021).
The TIR domain (155–296 aa) facilitates MyD88 to interact with
the TIR domain of Toll-like receptors (TLRs) or interleukin-1
receptors (IL-1Rs) to form higher-order complexes by recruiting
more TIR domains of MyD88 to the vicinity. DD (54–109 aa)

activates interleukin-1R (IL-1R)-associated kinase (IRAK) 1–4,
subsequently undergoing various phosphorylation procedures and
releasing the transcription factor NF-κB. The INT (110–155 aa)
domain forms a link between the TIR domain and DD. Studies
show that INT is essential for IRAK phosphorylation, and its
absence is associated with the inability of MyD88 in downstream
signaling (Clabbers et al., 2021). Since the TIR domain of MyD88
plays an important role in the triggered immune response, many
synthetic drugs have been used for targeting this domain, which
were found to have harmful side effects. Polyphenols are naturally
occurring phytochemicals in all plant-based foods, known for their
anti-inflammatory properties and toxin-free nature. A search for
a toxin-free Ayurvedic drug with significant anti-inflammatory
properties has led to the drug named Triphala, which is made
from three fruits. These fruits are rich in polyphenols that can
work synergistically to provide health benefits, including anti-
inflammatory properties. Hence, the 33 major polyphenols were
selected, and their crystal structures were optimized with the
MMFF94 force field for docking studies with the TIR domain of
MyD88. Our docking studies revealed that the polyphenols had
good binding affinity toward the TIR domain of the adaptor protein,
which was expressed in binding energy. In particular, punicalagin,
chebulagic acid, and sennoside C demonstrated the highest binding
affinities for the target protein, with more negative scores. In
molecular docking, high negative scores indicate efficient binding;
however, the interaction, stability, and conformational changes of
these complexes were further confirmed by studying their non-
covalent bonds and by subjecting them to an MD simulation for
200 ns (Ghosh et al., 2021; Rudrapal et al., 2022). MD simulation
is a computational approach that aids in the real-time simulation
of the movements of atoms, providing insights into the kinetic
and thermodynamic characteristics of biomolecules (Gelpi et al.,
2015; Hollingsworth and Dror, 2018). Key integrity parameters,
such as RMSD, RMSF, SASA, Rg, and H-bonds, were evaluated
for the stability and dynamicity of atoms present in protein–ligand
complexes. Notably, in our study, the punicalagin and chebulagic
acid complexes exhibited a stable graph of RMSD, SASA, and Rg,
while the protein–TJ-M2010-5 and protein–sennoside C complexes
demonstrated more fluctuations in the RMSD, SASA, and Rg,
suggesting structural instability compared to other complexes and
the target protein. In general, the RMSD is a key metric that helps
in assessing the stability of molecular structure, and a higher RMSD
value indicates less stability. SASA measures the extent of protein
exposure to the solvent. A high SASA value indicates that a large
portion of the protein is exposed to the solvent, suggesting that the
ligands are not properly bound to the protein (Arooj et al., 2020;
Ghosh et al., 2021; Rudrapal et al., 2022). Rg provides insights into
the compactness and rigidness of atoms in biomolecules. Higher
Rg values indicate the increased flexibility of a protein with weaker
interactions between the protein and ligand. RMSF provides insights
into the atomic-level modifications in the protein chain, which aids
in studying the flexibility and stability of residues present in the
protein. RMSF has a direct influence on the affinity and specificity of
ligand binding. A protein–ligand complex with lower RMSF denotes
the strong interaction between them (Arooj et al., 2020; Ghosh et al.,
2021; Rudrapal et al., 2022). Our study showed that the RMSF
of the reference drug complex had higher fluctuations than the
polyphenol complexes. Overall, our MD trajectories demonstrated
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TABLE 4 Drug likeness and pharmacokinetic properties of the top three Triphala-derived polyphenols along with the reference molecule.

Drug likeness and
pharmacokinetic properties

Ligands

Punicalagin Chebulagic acid Sennoside C TJ-M2010-5

Lipinski’s rule of five 3 Violations 3 Violations 3 Violations 0 Violations

Bioavailability score 0.17 0.11 0.11 0.55

Water solubility (log mol/L) −2.892 −2.892 −2.892 −3.812

Intestinal absorption (%) 100 93.835 0 91.865

BBB permeability (log BB)
∗

−4.981 −3.889 −2.44 0.287

CYP450 substrate No No No Yes (CYP2D6 substrate, CYP3A4 substrate)

CYP450 inhibitors No No No Yes (CYP2D6 inhibitor, CYP3A4 inhibitor)

Total clearance (log mL/min/kg) −0.246 −2,632 −1.06 0.813

Renal OCT2 substrate No No No Yes

AMES toxicity No No No No

Max. Tolerated dose (log mg/kg/day) 0.438 0.438 0.458 0.505

Oral rat acute toxicity (LD50) (mol/kg) 2.482 2.482 2.482 2.66

Oral rat chronic toxicity (LOAEL) (log
mg/kg_bw/day)

12.221 10.72 7.099 1.112

Hepatotoxicity No No No Yes

Note: blood–brain barrier (BBB) permeability is typically expressed as log BB. If the log BB is below −1, the drug is considered to have poor BBB permeability and is unlikely to cross into the
central nervous system (CNS), suggesting low therapeutic effects or adverse toxicities in the CNS. To overcome the poor BBB permeability of polyphenols, they can be encapsulated with
nano-carrier-based drug delivery systems.

that the binding of polyphenols increased the stability of the protein
structure more than the reference drug. Notably, the strength
of ligand binding was governed by the non-covalent hydrogen
bonds. Initially, the proteins may display numerous intramolecular
H-bonds in their naïve state to stabilize their secondary and
tertiary structures. Upon binding of ligand molecules, some of the
intramolecular bonds are degraded and replaced by intermolecular
H-bonds (Arooj et al., 2020; Ghosh et al., 2021; Rudrapal et al.,
2022). Intermolecular H-bonds were quantified after docking and
MD simulation. Notably, the H-bond in the punicalagin complex
remained the same after docking and MD simulation, whereas
the chebulagic acid complex showed increased H-bonds after MD
simulation. Additional H-bond formation during MD simulation
suggests that the protein–ligand system has explored multiple
conformations under dynamic conditions.

The binding free energy was calculated with MM-PBSA, which
provided insights into the energy contributed to the binding of
the target protein and ligands (Rifai et al., 2019; Murugesan et al.,
2021). In general, the higher the binding free energy, the lower the
binding affinity. Our findings revealed that the reference drug has a
higher binding free energy than the tested polyphenols. Meanwhile,
the chebulagic acid and punicalagin complexes displayed very low
binding free energies in MM-PBSA, which correlates with the
other MD trajectories. Overall, MD simulation data corroborated

the findings of molecular docking, suggesting that the binding
of punicalagin and chebulagic acid has enhanced the stability
and integrity of the target protein, with significant stabilization
observed after 145–150 ns, as evidenced by a peak reduction
in RMSD, Rg, and SASA values. In addition, evaluation of the
drug-likeness and pharmacokinetic properties was essential for
knowing the druggability of a therapeutic compound to avoid
drug rejection during the clinical trials (Aljarba et al., 2022).
Here, the selected polyphenols exhibited limitations in ADME
properties, particularly in absorption and metabolism. Unlike
the reference compound, the polyphenols have not exhibited
hepatotoxicity or mutagenicity. Incorporation of sustained drug
delivery systems can improve the pharmacokinetic performance
of these polyphenols. However, direct experimental evidence of
these polyphenols interacting with the TIR domain of the MyD88
adaptor protein was not conclusively demonstrated. Studies on in
vitro and in vivo inflammatorymodels concluded that usingTriphala
extracts can suppress the inflammatory biomarkers, including
TNF-α, IL-1β, and IL-6, suggesting the indirect modulation of
MyD88-mediatedNF-κB expression (Kalaiselvan andRasool, 2016).
Further in vitro studies are needed to elucidate the precise
mechanism of polyphenol interactions with MyD88. Overall, our
findings provide strong evidence for supporting the hypothesis
that Triphala-derived polyphenols modulate the triggered immune
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response by interacting with the TIR domain of MyD88, thereby
inhibiting homodimerization, which may further suppress the
downstream immune signaling pathways. This result highlights
the therapeutic potential of Triphala-derived polyphenols in the
management of inflammatory diseases.

Conclusion

In conclusion, this study employed a computational approach
to provide insights into the molecular mechanisms underlying
the anti-inflammatory potential of Triphala-derived polyphenols.
The findings highlighted the non-toxic nature of polyphenols and
their favorable interaction profiles with the TIR domain of the
MyD88 adaptor protein. Compounds such as chebulagic acid and
punicalagin have shown the maximum interaction with the target
protein, which could act as promising scaffolds for drug design.
However, to comprehensively evaluate the proposed hypothesis,
further in vitro investigations using cell lines such as RAW 264.7 or
THP-1 are required to validate the mechanism of NF-κB inhibition
and cytokine reduction. Additionally, in vivo inflammatory models
could provide mechanistic insights into the pharmacodynamics
of these compounds, thereby supporting the formulation of
potential therapeutic agents to combat chronic inflammatory
conditions.
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