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Introduction: Since the rise of molecular high-throughput technologies, many
diseases are now studied on multiple omics layers in parallel. Understanding
the interplay between microRNAs (miRNA) and their target mRNAs is important
to understand the molecular level of diseases. While much public data from
mRNA experiments are available for many diseases, few paired datasets with
both miRNA and mRNA expression profiles are available. This study aimed
to assess the possibility of predicting miRNA expression data based on
mRNA expression data, serving as a proof of principle that such cross-omics
predictions are feasible. Furthermore, current research relies on target databases
where information about miRNA–target relationships is provided based on
experimental and computational studies.

Methods: To make use of publicly available mRNA profiles, we investigate the
ability of artificial deep neural networks and linear least absolute shrinkage and
selection operator (LASSO) regression to predict unknown miRNA expression
profiles. We evaluate the approach using seven paired miRNA/mRNA expression
datasets, four from studies on West Nile virus infection in mouse tissues and
three from human immunodeficiency virus (HIV) infection in human tissues.
We assessed the performance of each model first by within-data evaluations
and second by cross-study evaluations. Furthermore, we investigated whether
data augmentation or separatemodels for data from diseased and non-diseased
samples can improve the prediction performance.

Results: In general, most settings achieved strong correlations at the Level
of individual samples. In some datasets and settings, correlations of log-fold
changes and p-values from differential expression analysis (DEA) between
true and predicted miRNA profiles can be observed. Correlation between
log fold changes could also be seen in a cross-study evaluation for the
HIV datasets. Data augmentation consistently improved performance in
neural networks, while its impact on LASSO models was not significant.
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Discussion: Overall, cross-omics prediction of expression profiles appears
possible, even with some correlations on the Level of the differential
expression analysis.
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1 Introduction

After microRNAs (miRNAs) were detected in 1993 (Lee et al.,
1993), it was widely shown that these molecules play an essential
role in the regulation of mRNA expression (Hammond, 2015).
Much research on miRNAs was done in the context of cancer
(Di Leva et al., 2014), but their role in neurodegenerative diseases
(Nelson et al., 2008) and—to a lesser extent—during infections
was also shown (Correia et al., 2017). miRNA biogenesis occurs
in both the nucleus and cytoplasm. Initially, RNA polymerase II
transcribes pri-miRNA (∼70 bp), which is processed by the Drosha-
DGCR8 complex into precursor miRNA (pre-miRNA). Exported
to the cytoplasm, pre-miRNAs are further processed by Dicer into
mature double-stranded miRNAs (∼22 nt). The functional strand
then integrates into the RNA-induced silencing complex (RISC),
enabling gene regulation. miRNAs exert control by binding target
mRNAs via partial complementarity, primarily through the seed
sequence (2–8 nt from the 5′-end), which pairs with the 3′-UTR of
target mRNAs, ensuring regulatory specificity (O’Brian et al., 2018).
Due to the requirement for only partial complementarity, a single
miRNA can regulate multiple mRNAs, ranging from a few to several
hundred. Additionally, target sets often overlap, allowingmiRNAs to
coordinate complex gene regulatory networks.

While an increasing number of studies on mRNA expression
have been conducted, either using microarray or RNA-seq
technology (Lowe et al., 2017), the number of studies on miRNA
expression is much lower. Furthermore, even fewer studies collect
parallel data of both mRNA and miRNA expression from the
same samples, and parallel data can sometimes be incomplete.
Although some approaches have been presented to impute missing
data in multi-omics settings (Dong et al., 2019; Song et al.,
2020), these approaches make little use of the special relationship
between miRNAs and mRNA targets. Because there are masses
of mRNA expression data available at public databases such as
NCBI Gene Expression Omnibus (GEO) (Clough and Barrett,
2016) or ArrayExpress (Kolesnikov et al., 2015), it would be
of great use if these data could be employed to infer by which
miRNAs the individual mRNAs were targeted, for example, during
a disease. Currently, this association is mostly made by relying
on information from target databases that connect miRNAs and
target mRNAs, where the information was either experimentally or
computationally validated (Ru et al., 2014). We recently presented a
simple approach to treat this problem by running gene-set tests
on mRNA target sets (Böge et al., 2024). For significant target
sets, we concluded that their corresponding miRNA was altered
by the disease. Overall, we found a significant but rather small
correlation between the p-values for the target set and the p-values
from differential miRNA testing.

Here, we present and evaluate an approach to directly infer
miRNA expression profiles from available mRNA expression
profiles using deep learning neural networks and linear least
absolute shrinkage and selection operator (LASSO) regression.
LASSO regression is one of the most popular regularization
techniques for analyzing high-dimensional datasets in the p >
n scenario (Tibshirani, 1996). It has been extensively used for
the development of sparse biomarker signatures from routine
patients (Zacharias et al., 2022), as well as (multi-)omics data
(Zacharias et al., 2019; Ma et al., 2022; Onwuka et al., 2024), and
likewise for multi-omics data integration (Sun et al., 2023). So far,
deep neural networks and other machine learning models trained
on mRNA expression profiles were mainly fitted for the purpose of
predicting class labels of samples—with the first attempts reaching
back 20 years (Van’t Veer et al., 2002; Zhu and Hastie, 2004)—but
not expression profiles from another omics layer. In addition,
in the context of integrating multi-omics data, most approaches
aimed at making joint use of different but parallel omics data to
classify sample labels (Kang et al., 2022). Specifically, Fuchs et al.
(2013) combined parallel miRNA and mRNA data for predicting
sample labels. Doing predictions on the miRNA level using mRNA
expression data has also been evaluated by Nielsen and Pedersen
(2021) andOlgun et al. (2022) but not yet with deep neural networks
or LASSO regression. The approach by Nielsen and Pederson is
similar to our approach presented in Böge et al. (2024): they used
motif enrichment analyses on the mRNA level to predict a score of
miRNA activity and evaluated the performance by correlating the
predicted score against the true miRNA expression levels. Olgun
et al., instead, trained miRNA-individual models using gradient
boosting combined with decision trees and single-cell RNA-seq
(scRNA-seq) data as input and finally correlated fold changes
derived from the predicted miRNA expression data against fold
changes derived from the true data.

In order to build on our previous work, we use expression
data from infection research: four datasets from studies on
West Nile virus (WNV) infections and three datasets on
human immunodeficiency virus (HIV) infections. MicroRNAs
(miRNAs) play a key role in WNV infection, replication, and
neuropathogenesis. In WNV strain 385-99-infected HEK293 and
SK-N-MC cells as well as mouse central nervous system tissues,
Hs_154 was upregulated, reducing viral replication and modulating
apoptosis by targeting CTCF and ECOP/VOPP1 (Smith et al., 2012).
Similarly, in WNV strain KUN-infected HEK293 cells, miR-532-
5p exhibited antiviral effects by suppressing SESTD1 and TAB3,
essential for viral replication (Slonchak et al., 2016). In WNV-
infected mouse brains, 139 miRNAs were altered, with miR-196a,
miR-202-3p, miR-449c, and miR-125a-3p regulating inflammation,
immune-cell trafficking, and apoptosis (Kumar andNerurkar, 2014).
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Even more information is available for HIV infection
and miRNAs (Chinniah et al., 2022). In brief, miRNAs influence
HIV infection by modulating viral replication, host immunity, and
disease progression. HIV exploits cellular miRNAs to enhance its
replication while also using viral-encoded miRNAs to regulate both
viral and host mRNAs, potentially controlling its replication and
latency. Specifically, miRNA expression in CD4+ T cells correlates
with HIV viral load. When viral load decreases, miR-146a, miR-
29a/b, miR-155, and Let-7c are upregulated, reducing CXCR4, gag,
nef, LEDGF, and p21, while miR-148a is downregulated, increasing
HLA-C expression. Conversely, when viral load increases, the
opposite occurs: miR-146a, miR-29a/b, miR-155, and Let-7c are
downregulated, promoting viral replication, while miR-148a is
upregulated, suppressingHLA-C.ThesemiRNA shifts play a key role
in HIV progression and immune response. Additionally, miRNAs
may affect HIV susceptibility in monocytes and macrophages.

The seven parallel datasets used for training and evaluation,
as well as the machine learning methods and the methods for
evaluation and DEA, are described in the following chapter. In
the results chapter, we present the performance of within-data
evaluation and of evaluation with independent data. Finally, we
discuss the benefits and limitations of our approach.

2 Methods

In this section, we first describe the data used for training
and evaluation of the machine learning models, as well as how
they were selected from the public databases. Next, we specify
the modeling process for the deep neural networks and the
LASSO approach. All data analyses were performed using the
R programming environment (V 4.4.2, www.r-project.org) and
bioinformatics packages from the Bioconductor repository (www.
bioconductor.org).

2.1 Identification of parallel miRNA/mRNA
expression data for training and evaluation

Data were sourced from the NCBI Gene Expression Omnibus
(GEO) (https://www.ncbi.nlm.nih.gov/geo/), a public database
for high-throughput functional genomics data, particularly data
from transcriptome studies. We searched for studies related to
zoonotic diseases in humans and mice as this continues our
previous work on transcriptomic changes under zoonotic diseases.
First, we searched for data on ArrayExpress (https://www.ebi.
ac.uk/biostudies/arrayexpress), a database for high-throughput
transcriptomics data. We searched for all studies related to mouse
and WNV (search term: {“West Nile” AND mouse}), yielding 19
search results from December 2023. Of these, three were removed
due to insufficient data or a flawed experimental setup. From the
remaining studies, we selected those studies containing bothmiRNA
andmRNA transcriptomic data. Among the 16 studies, five, all parts
of a super-series, contained bothmiRNA andmRNA transcriptomic
data. Both types of data were not available on ArrayExpress for
all five studies, but the data were available on the GEO database.
All five were microarray datasets. Dataset GSE68380-GSE68381 was
excluded due to low quality of the data, leaving four WNV parallel

datasets (Table 1). Second, we selected three HIV parallel datasets
from GEO, two of which were microarray data and one of which
was RNA-seq data (Table 2).

2.2 Data preprocessing and augmentation

Expression data of all WNV datasets (No. 1–4) were labeled
as normalized on the ArrayExpression database. According to the
original publication by Feng et al. (2021), quantile normalization of
the R package “limma” was used for these datasets. In fact, a check
by boxplots showed the same distribution for all samples of a dataset
and, therefore, we continued without additional normalization. Two
of the HIV datasets, No. 5 and No. 7, were also available in a
normalized form. As there is not yet a publication for dataset
No. 5, the normalization method is unknown, but boxplots again
suggested that the data were quantile normalized. According to
the original publication of dataset No. 7 by Shen et al. (2021), the
authors also employed quantile normalization, however, using the
R package “AgiMicroRna.” Only for the non-normalized dataset
No. 6 were expression data profiled by RNA-seq. We applied the
voom transformation (Law et al., 2014) combined with quantile
normalization, implemented in the R package “limma,” separately
for mRNA and miRNA data.

In addition to normalization and for better comparability
of datasets, all input and output data were compressed to have
expression levels between 0 and 1. Because we initially observed
that prediction can shift miRNA data compared to the true data, the
compression also had a positive effect on suppressing the shift and
making the true and predicted data more comparable.

For the data augmentation, we added Gaussian noise to the
expression data from both the control and diseased groups as
proposed by Kircher et al. (2022). Noise was added to each sample’s
feature label using a small standard deviation of 0.01. The process
was repeated until at least 100 samples were generated.

2.3 Deep neural networks and linear LASSO
regression models

2.3.1 Architecture of the deep neural network
All neural networks were trained using the R package “keras” (V

2.15), an implementation of the keras deep learning library (Gulli
and Pal, 2017). After probing different networks with different
numbers and types of layers, numbers of neurons, dropout rates, and
activation functions, we continued with the most promising setting
as follows. Each neural network trained in this study was structured
with four hidden dense layers. All started with an input layer of as
many neurons as there were relevant mRNA transcripts, reflecting
the input feature count. With the different datasets, the size of the
input layer varied between 14,977 and 60,623 neurons. Specifically
for the WNV datasets, the number of mRNA predictors is 39,429
features, and the number of miRNAs to be predicted is 3,105. In
the case of the HIV datasets, dataset No. 5 consists of 14,977 mRNA
features and 499 mRNAs, dataset No. 6 involves 60,623 mRNAs and
3,017 miRNAs, and finally, dataset No. 7 has 41,091 mRNAs and
2,027 miRNAs.
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TABLE 1 List of parallel WNV mRNA–miRNA expression datasets used to evaluate the aim of predicting miRNA expression frommRNA expression data.

Dataset no. Databank ID Organism Tissue Time after
infection

Sample size
(control +
WNV)

References Omics level

1 GSE77193 C57BL/6 Cortex 4 days 5 + 5 Feng et al. (2021) mRNA

1 GSE77161 C57BL/6 Cortex 4 days 5 + 5 Feng et al. (2021) miRNA

2 GSE77192 C57Bl/6 Cerebellum 4 days 5 + 5 Feng et al. (2021) mRNA

2 GSE77160 C57Bl/6 Cerebellum 4 days 5 + 5 Feng et al. (2021) miRNA

3 GSE78888 C57BL/6 Popliteal lymph
node

1 day 3 + 5 Feng et al. (2021) mRNA

3 GSE78887 C57BL/6 Popliteal lymph
node

2 days 3 + 5 Feng et al. (2021) miRNA

4 GSE67473 C57Bl/6 Cortical neuron 24 h 6 + 6 Feng et al. (2021) mRNA

4 GSE67474 C57Bl/6 Cortical neuron 12 h 5 + 6 Feng et al. (2021) miRNA

The table provides the GEO, database ID, organism, type of tissue, time after infection, sample sizes in the control and diseased group, literature reference, and omics level. For dataset no. 5,
mRNA and miRNA data were provided under the same accession number.

TABLE 2 List of parallel HIV mRNA–miRNA expression datasets used to evaluate the aim of predicting miRNA expression frommRNA expression data.

Dataset no. Databank ID Organism Tissue Time after
infection

Sample size
(control +

HIV)

References Omics level

5 GSE76246 Human Whole blood - 7 + 50 mRNA/miRNA

6 GSE247191 Human CD4+T cells 2 days 3 + 6 Bellini et al. (2024) mRNA

6 GSE247194 Human CD4+T cells 2 days 3 + 6 Bellini et al. (2024) miRNA

7 GSE140713 Human Whole blood - 8 + 50 Shen et al. (2021) mRNA

7 GSE140650 Human Whole blood - 8 + 50 Shen et al. (2021) miRNA

The table provides the GEO, database ID, organism, type of tissue, time after infection, sample sizes in the control and diseased group, literature reference, and the omics level. For dataset no. 5,
mRNA and miRNA data were provided under the same accession number.

For the number of knots per layer, we chose a hierarchical
reduction in layer size, with the layers containing 1,024, 512,
256, and 128 neurons, respectively. Each dense layer employs the
rectified linear unit (ReLU) activation function. To accelerate the
learning rate of themodel, we applied batch normalization after each
dense layer. To avoid overfitting of the model, each dense layer is
regularized with L2 penalties. In addition, we included a dropout
rate of 0.4. The final output layer is configured to reflect the output
feature count, that is, the number ofmiRNA features to be predicted,
and uses a linear activation function.

As the loss function, we chose mean squared error, and for
the performance metric, we chose mean absolute error. To improve
training efficiency and convergence, we used the Adam optimizer
with a learning rate of 0.001 to update the model’s parameters. We
further introduced adaptive learning rate adjustments, which reduce
the learning rate by a factor of 0.5 upon performance plateaus.
Each neural network is trained over a maximum of 150 epochs,

with a batch size of 32 and a validation split of 20% to ensure
generalization.

2.3.2 Linear LASSO regression models
For training linear LASSO regression models, the R package

“glmnet” (V 4.1.8, Hastie et al., 2020) was used. Here, an individual
model was trained for each miRNA. The whole data matrix of
mRNA expression levels was used as predictor variables. Due to
the small sample size of our datasets, we did not optimize λ by
cross-validation. Instead, we fitted models for a decreasing set of
λ-values that is automatically generated by the glmnet function.
For evaluation of the models, we first used those based on the
minimal λ-value, which results in a small mean squared error (MSE)
while bearing a strong risk for overfitting. Second, we chose models
trained with the 10th largest of the λ-values. Those models have a
largerMSE but aremore generalizable.We also checkedmodels with
even larger λ-values, but these did not result in good correlation
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FIGURE 1
Setup for within-data and cross-study evaluation of model
performance.

between true and predicted miRNA expression profiles. The idea of
the evaluation was not to find the optimal model but to check two
oppositional scenarios.

2.4 Differential expression analysis

Differential expression analysis (DEA) on the true and on the
predicted miRNA expression profiles was performed using the R
package “limma” (Ritchie et al., 2015) (V 3.6). Specifically, we used
these models to derive log2 fold changes (log2FC) and raw p-values
for each miRNA. We omitted adjustments for multiple testing as we
were only interested in studying the correlations between logFCs or
p-values from true and predicted data.

2.5 Evaluation of prediction performance

For all seven datasets, we first made a within-dataset
evaluation to check whether the models are in principle able to
produce expression profiles with a similar distribution to the
original data. That is, we used the same data for evaluation as
for training (Figure 1). Due to the small sample sizes of all datasets,
we also avoided within-data cross-validation procedures, being
aware that we will most likely overestimate the performance of the
models. Therefore, we also performed cross-study evaluations with
selected datasets. As the WNV mouse data were collected from
different tissues, we only used the two datasets obtained from the
cortex and cortical neurons (datasets no. 1 and 4), respectively. From
the HIV setting, we chose datasets no. 5 for training and either no.
6 or no. 7 for cross-study validation.

In each evaluation, we studied the sample-wise correlations
between predicted and true miRNA expression profiles. Next, we
correlated log2FCs and p-values as obtained from the DEA of the
predicted and true expression profiles. All correlation analyses were
performed using Pearson’s correlation coefficient R.

3 Results

In this section, we will first present the results obtained from
using the neural networks and then the results from training the data
with linear LASSO regression. For both types of models, we describe
first the results of the within-dataset evaluation and then the results
of the evaluation with independent datasets.

3.1 Performance of the deep neural
networks

3.1.1 Within-dataset evaluation
We used the four WNV and three HIV parallel miRNA/mRNA

datasets to analyze the capabilities of the neural networks to predict
miRNA expression profiles based on mRNA expression profiles. For
all seven datasets, we evaluated the performance of the networks
under four different settings, based on whether the datasets were
augmented or not and whether models were trained jointly or
separately for the infected and non-infected groups. That is, we
first investigated whether an insufficient quantity of training data
could be overcome through augmenting the training data with
artificially generated samples. Second, we investigated whether
training separate neural networks for healthy and diseased groups
would improve the prediction performance.

As detailed in the Methods section, we tested all WNV and
HIV datasets after training the neural network with a given dataset
using the samemRNA data to predict the relatedmiRNA expression
profile. We then analyzed the performance on the level of the
predicted data themselves and also on the level of the analyses with
these data. In particular, we first checked the correlation between
predicted and true miRNA expression levels for each individual
sample. Next, we performed DEA with both the predicted and the
true miRNA expression profiles and subsequently investigated the
correlation of the fold changes and p-values derived from the true
and predicted data.

With all four WNV datasets, no. 1 (Supplementary Figures
S1–S4), no. 2 (Supplementary Figures S5–S8), no. 3
(Supplementary Figures S1–S4), and no. 4 (Figure 2), significant
correlations of the miRNA expression levels of predicted versus true
datasets were observed at the level of individual samples. However,
further correlation between log2FCs or p-values of the DEA was
only observed for datasets no. 3 and no. 4. For dataset no. 3 (WNV,
GSE78887-GSE78888), the best performance was achieved when
using augmented data and training on an individual network for
the two study groups. With these settings, a correlation of R = 0.37
between log2FCs was reached. Dataset no. 4 (WNV, GSE67473-
GSE67474) yielded the best result. When training separate neural
networks for both conditions and using augmented data, themodel’s
ability to predict miRNA profiles that correlate with real miRNA
profiles reached R = 0.78 (Figure 2).

In the case of HIV, all three datasets, no. 5 (GSE76246), no.
6 (GSE247191-GSE247194), and no. 7 (GSE140713-GSE140650),
using separate neural networks on the augmented dataset no. 5
(GSE76246) yielded strong correlations of the miRNA expression
levels for individual samples. In addition, all HIV datasets also
showed strong correlations between the log2FCs, with dataset no.
5 achieving a correlation between the log2FCs of R = 0.93 (Figure 3)
when using separate neural networks and augmented data. The
graph also hinted at a possible extension of this trend to the
p-values. However, this was not substantiated as the correlation
of the p-values was R = −0.019. Overall, predictions in the
HIV datasets performed well, with dataset no. 6 (GSE247191-
GSE247194) achieving correlations of log2FCs of up to R =
0.57 (SF24) and dataset No.7 (GSE140713-GSE140650) achieving
correlations of R = 0.75 (SF28).
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FIGURE 2
(A–D) Illustrating the performance of separate neural networks trained for each condition (healthy, sick) in predicting an miRNA transcriptome based
on an augmented mRNA transcriptome. Dataset no. 4 (WNV, GSE67473-GSE67474) was used for training and testing. (A) Training loss and validation
loss of the neural network. (B) Depicts good miRNA expression-level correlation between predicted and true miRNA values for the first sample of the
dataset. (C) Shows a moderate correlation for log2FCs, (D) Indicates no correlation between the predicted and true DEA p-values.

After examining the overall performance of neural networks
across all seven datasets (Supplementary Figures S1–S12, S14–29), we
then checked whether data augmentation or training separate neural
networks for each condition could boost the performance. For data
augmentation, we compared the average correlation between log2FCs
of predicted and true miRNA transcriptomes when the training
data were augmented and when not across all settings of the seven
datasets. We found that augmentation on average increased Pearson’s
correlation coefficient R by 0.3 (minimum: −0.3, maximum: 1.12),
indicating that data augmentation increases performance.

While investigating whether separate neural networks for each
condition would enhance performance, we found that training
separate neural networks on not-augmented data showed a decrease
in correlation across all seven datasets. This is potentially due to
decreasing the already limited number of samples for training.
Therefore, we considered only augmented data when investigating
whether separate neural networks could enhance the performance.
We found that training separate neural networks on augmented
data rather than one single neural network on average decreased
the correlation of log2FCs between predicted and true miRNA
transcriptomes by 0.19 (minimum: −0.83, maximum: 0.64). This

indicates that, on average, separate neural networks have a negative
effect on the performance. However, in some instances, like dataset
no. 4, having trained two separate neural networks drastically
improved results (R = 0.64).

For dataset no. 3 (WNV, GSE78887-GSE78888), we further
evaluatedthestrategyoffilteringoutthe20%lowest-expressedmRNAs
andmiRNAsbecause these features can be supposed to be less affected
by thediseaseandthereforenot informative for theneuralnetwork.We
also assumed that this strategy could enhance the prediction accuracy
by reducing noise introduced by the minimally expressed features.
In the instance of the dataset no. 3, filtering improved performance
from R = 0.37 to R = 0.55. However, the same approach did not
yield consistent improvements in other datasets tested, such as the
HIV datasets no. 5–7, which all showed a decrease in correlation
for log2FCs. This suggests that the effectiveness of expression-based
filtering may depend on dataset-specific characteristics rather than
being a universally applicable strategy.

3.1.2 Cross-dataset predictions
With the neural network architecture optimized and

validated on single datasets, we proceeded to test the
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FIGURE 3
(A–D) Illustrating the performance of separate neural networks trained for each condition (healthy, sick) in predicting an miRNA transcriptome based
on an augmented mRNA transcriptome. Dataset no. 5 (HIV, GSE76246) was used for training and testing. (A) Training loss and validation loss of the
neural network. (B) Depicts strong miRNA expression-level correlation between predicted and true miRNA values for the first sample of the dataset. (C)
Shows a strong correlation for log2FCs. (D) Indicates a weak-to-moderate correlation between predicted and true differential expression p-values.

neural network performance on independent datasets for
validation (Supplementary Figures S30–S37). For WNV, we
encountered the challenge of having four datasets, each
corresponding to a different tissue type. To maintain biological
relevance, we trained the model using cortex tissue data (dataset
no. 1: GSE77161-GSE77193) and tested it on cortical neuron data
(dataset no. 4: GSE67473-GSE67474). However, the independent
validation failed to produce meaningful predictions for these
datasets. There was no correlation observed between the individual
samples regarding predicted and true miRNA expression levels. In
addition to dataset no. 4, dataset no. 3 also performed well in the
“within data” validation; however, no datasets with closely related
tissue types were available. Even when ignoring biological relevance
and training with dataset no. 3 (GSE78887-GSE78888), while testing
with any other WNV dataset, predictions also did not yield any
correlation, even on the sample level.

For HIV, we had three datasets, no. 5 (GSE76246), no. 6
(GSE247191-GSE247194), and no. 7 (GSE140713-GSE140650),
where no. 5 and 7 are based on whole blood samples and no.
6 is based on CD4+T cells. In addition, no. 5 and no. 7 were

Agilent microarray data, while no. 6 was RNA-seq data acquired
through an Illumina NovaSeq 6000. We tested two different dataset
combinations for training and validation: dataset no. 5 for training
combined with either of the other two datasets for cross-study
validation. Both approaches produced strong correlations at the
sample level. However, when using no. 7 for cross-study validation, a
strong correlation between the log2FCs of theDEAofR=0.59 can be
observed, demonstrating the model’s ability to generalize effectively
within datasets of the same tissue type (Figure 4).

3.2 Comparison with linear LASSO
regression models

To compare the performance of the neural network, we
compared its predictive capability to that of linear LASSO regression
models (Supplementary Figures S38–S49). In contrast to the neural
networks, we did not fit combined models; that is, we used separate
LASSO models for each condition (healthy, infected). For these
analyses, the same datasets as for the cross-data neural network
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FIGURE 4
(A–D) Illustrating the performance of a neural network on predicting an miRNA transcriptome based on an mRNA transcriptome. Augmented dataset
no. 5 (GSE76246) was used for training, and dataset no. 7 (GSE140713-GSE140650) was used for testing. (A) Training loss and validation loss of the
neural network. (B) Depicts good miRNA expression-level correlation between predicted and true miRNA values for the first sample of the dataset. (C)
Shows correlation for log2FCs. (D) Indicates no correlation between predicted and true differential expression p-values.

evaluations were used: dataset no. 1 and no. 4 for WNV, and
no. 5, no. 6, and no. 7 for HIV. We tested whether the strength
of the model regularization or the augmentation of the data had
a positive effect on the performance of the LASSO models. We
found that linear LASSO models had the ability to achieve sample-
level correlations of up to R = 0.78 between predicted and actual
miRNA expression profiles, even when using non-augmented data
(Supplementary Figure S49; Figure 5). However, upon examining
the results of the DEA, the LASSO model predictions showed
no meaningful correlations for the log2FCs or p-values of the
DEA. We further found that the performance was irrespective
of the λ regularization parameter used (minimal or 10th highest
λ) or whether the data was augmented or not. This pattern was
consistent across both the WNV and HIV datasets, highlighting
the limitation of linear LASSO regression models in capturing the
nuances of differential expression patterns in the framework of
predicted expression profiles, despite their strong performance in
sample-level correlations. When using dataset no. 5 (GSE76246)
for training and no. 7 (GSE140713-GSE140650) for testing, we
further investigated whether a voom transformation of the data
could increase themodel’s performance. However, this approach did

not improve the model’s capability to predict miRNA expression
profiles to the extent that it could get similar results to the actual
miRNA expression data.

4 Discussion

The rise of molecular high-throughput technologies enabled
the study of diseases on multiple omics layers in parallel.
This also allowed studying intricate biological mechanisms, for
example, the interplay between individual omics layers, such as
between the proteome and transcriptome (Ragno et al., 2001;
Wu et al., 2020; Barbato et al., 2009).

Another layer of major interest is the miRNA transcriptome. It
has been shown that miRNAs are involved in nearly all pathologies,
from viral infection to cancer and heart disease. This makes
miRNA a prime target for future therapeutics. However, there are
two challenges limiting practical applications of miRNAs: their
instability, making them very tedious to work with, and their
intricate and subtle interactions that are difficult to entangle with
current methods (Chen et al., 2015).
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FIGURE 5
(A–C) Illustrating the performance of separate LASSO regression models for each condition (healthy, sick) in predicting an miRNA transcriptome based
on an mRNA transcriptome. Dataset no. 5 (GSE76246) was used for training, and dataset no. 7 (GSE140713-GSE140650) was used for testing. The 10th
highest lambda was used. (A) Depicts strong miRNA expression-level correlation between predicted and true miRNA values for the first sample of the
dataset. (B) Shows no correlation for log2FCs. (C) Indicates no correlation between the predicted and true differential expression p-values.

Most existing studies on microRNA aim to identify their target
mRNAs, either by experimental studies (Thomson et al., 2011) or
by computational methods (Watanabe et al., 2007). In contrast, little
effort has been made concerning the reverse approach, predicting
miRNA profiles from mRNA data. In this work, we demonstrate
as a proof of principle that with deep neural networks and LASSO
regression, it is possible to predict the composition of one omics
layer based on another one.

It is important to note that in the case of cross-study validation,
we mostly observed correlations on the individual sample level.
Strong correlationsbetweenpredicted and truemiRNAtranscriptome
extending to the DEA could only be observed with dataset no. 5
for training and then testing it on no. 7. These two datasets were
comparably sized, were produced by the same study group, and used
thesamemicroarrayplatform.This indicates that thebestperformance
can be achieved by datasets with similar data size and sufficient size.
It seems plausible that a more generalizable neural network could be
achieved with substantially more data available for training.

Whencomparing theneuralnetworkapproachwith linearLASSO
regressionmodels, twokeyobservations standout. First, linearLASSO
regression models are capable of capturing sample-level correlations;

however, they struggle to predict miRNA expression profiles whose
DEA correlates with the ones of the actual miRNA profiles. Second,
in contrast to neural networks, LASSO regression models did not
benefit fromdata augmentation. In fact, the linear character of LASSO
regression might be causative for their limited performance. Non-
linear machine learning methods, such as random forest and other
tree-based approaches, might be a good alternative for further efforts
tomake cross-omics predictions. In fact,Olgun et al. (2022),whoused
gradient boosting combined with decision trees, reached very good
performance when comparing fold changes from true and predicted
miRNAprofiles.Theperformance theyobtained isdifficult tocompare
with the correlations we obtained because they used scRNA-seq
data with much more training data available than in our examples.
Random forest has already been used to integrate multi-omics data
from transcriptomics andproteomics (Acharjee et al., 2016). Fromour
findings, however, we consider that the architecture of artificial neural
networks might be better suited for predicting the complex nature
of expression matrices.

Thus, for future studies, a significant challenge will be obtaining
a sufficiently large sample size of high-quality training data. We
encountered a substantial difference in performance between the
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individual datasets that we tested. Specifically, lower performance
was observed with datasets no. 1 and no. 2. However, we
found that augmenting the training data can mitigate some
of the challenges introduced by the small datasets. Meanwhile,
further methods for data augmentation of transcriptomics data
have been published, which we will consider for our continued
research (Janakarajan et al., 2025; Kalimumbalo et al., 2025). Data
augmentation has not only been demonstrated to substantially
improve the prediction performance of neural networks in general,
but it is also known to prevent models from overfitting.

We also investigated the impact of excluding the 20% lowest-
expressedmiRNAs andmRNAs from the analysis to reduce potential
noise. This approach yielded only situational benefits. Similarly,
attempting to boost the performance by training separate neural
networks for each individual condition (healthy, diseased) yielded
only situational improvement.

It is important to emphasize that this approach has the potential
to be applied to any omics layer of interest. For example, predicting
protein expression profiles based on mRNA data would also be very
helpful to understand the cross-omics interplay. In addition, this
suggests that by analyzing only a single omics layer, one may infer
information about all other omics layers of a sample and thus the
state of the sample in its entirety.

Another application of interest that this approach provides is
that even if the model fails to reveal insights of the differential
expression directly, its performance can be a valuable indicator of
the correlation that exists between two omics layers.

Finally, machine learning models for cross-omics predictions
can be of great value for biological interpretation. For better
interpretability of the deep neural networks shown in Figures 2,
3, we additionally analyzed the weights obtained for the first
layer of these networks. In particular, we determined the average
weight with which the normalized mRNA expression levels are
forwarded to the second layer. We then studied what proportion of
transcription factors (TF) was among the top 5% of mRNA with the
largest average weight. For that purpose, we used the set of known
humanTFs, as reported on https://humantfs.ccbr.utoronto.ca/index.
php (Lambert et al., 2018).

For the networks trained with the WNV data, 2.7% (diseased
cases) and 2.8% (control cases) of the top 5% predictors were
classified as TFs, compared to 3.9% TFs in the whole mRNA dataset.
For the networks trained with the HIV data, 6.1% TFs were found in
the totalmRNAdataset, and 8.6% (diseased cases) and 8.6% (control
cases) were among the top 5% predictors.

Thus, in both scenarios, the proportion of TFs among the top
5% predictors did not strongly deviate from the proportion in
the whole dataset. Nevertheless, identifying these TFs can be an
important contribution to the interpretability of the models, as it
is well known that there is an overall strong interaction between
miRNAs and transcription factors during gene regulation (Chen and
Rajewsky, 2007).
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