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Background: Hepatocellular carcinoma (HCC) is the third leading cause of 
cancer-related mortality globally, and ranks fifth in terms of incidence. It 
primarily affects males and has a high prevalence in Asia. Risk factors include 
hepatitis B and C, liver cirrhosis, nonalcoholic fatty liver disease (NAFLD), and 
alcohol consumption. Late-stage diagnosis results in a poor survival rate of 
approximately 20%, underscoring the need for early detection methods to 
improve the survival rates. This study aimed to identify prognostic biomarkers 
for HCC through bioinformatic analysis of microarray datasets, providing insights 
into potential therapeutic targets.
Methods: We analyzed five microarray datasets, comprising 402 HCC samples 
and 121 control samples. To identify relevant biological pathways, we conducted 
differential gene expression, Gene Ontology (GO), and KEGG pathway 
enrichment analyses. We identified hub genes and quantitatively assessed 
transcription factors and microRNAs targeting these genes. Additionally, 
molecular docking and dynamic simulations (100 ns) were used to identify 
potential drug candidates capable of inhibiting the activity of differentially 
expressed hub genes.
Results: Our bioinformatic approach identified several promising HCC 
biomarkers. Among these, CDK1/CKS2 was identified as a key therapeutic 
target, with a regulatory role in HCC pathogenesis, suggesting its potential 
for further investigation. Digoxin (DB00390) has been highlighted as 
a potential repurposed drug candidate because of its favorable drug-
likeness and stability, as confirmed by virtual screening, ADMET analysis, 
molecular docking study and dynamic simulations. 
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Conclusion: This study enhances our understanding of HCC biology and offers 
new insights into drug interactions. It presents several promising biomarkers 
for the early diagnosis, prognosis, and therapy. Further investigation into 
CDK1/CKS2 as a therapeutic target and the role of the identified biomarkers 
could contribute to improved diagnostic and therapeutic strategies for HCC.

KEYWORDS

differential gene identification, PPI network, biomarkers, docking, molecular dynamics 
simulation 

Highlights

• Prognostic biomarkers for hepatocellular carcinoma (HCC) 
were identified by analyzing five microarray datasets containing 
402 cancer and 121 control samples.

• CDK1 has been observed to be upregulated in HCC samples 
and is considered a potential oncogene involved in various 
cellular functions and processes.

• Molecular docking studies indicated that Digoxin (DB00390) 
has a strong binding affinity for the CDK1/CKS2 protein.

• Root mean square deviation (RMSD) analysis confirmed 
the stability of the complexes throughout the 100 ns 
production period.

• Molecular dynamics simulations revealed the flexibility of the 
binding site, the binding free energy of the complexes, and 
region-specific residue contributions to ligand binding.

1 Background

Liver cancer primarily comprises of hepatocellular carcinoma 
(HCC) (Bray et al., 2024). It ranks third in cancer-related 
mortality globally, and is the fifth most common cancer worldwide 
(Wang et al., 2021). The incidence of HCC is notably higher 
in males than in females (Chidambaranathan-Reghupaty et al., 
2021; Singh et al., 2020), with most cases being reported in Asia 
(Marques et al., 2020). The risk factors for HCC are diverse, 
and include HBV or HCV infection, liver cirrhosis, nonalcoholic 
fatty liver disease (NAFLD), and alcoholism (Ghouri et al., 2017; 
Bray et al., 2024). HCC induced by HBV and HCV is believed to be 
particularly prevalent (Ghouri et al., 2017; Singh et al., 2020). Late-
stage diagnosis of HCC significantly contributes to early mortality, 
with survival rates of approximately 20% in patients diagnosed at 
advanced stages (Zhou et al., 2020). Conversely, early detection 
can improve survival rates by nearly 70% (Tsuchiya et al., 2015). 
Numerous pathological biomarkers associated with HCC have been 
identified, many of which serve as prognostic indicators for poor 
outcomes. These biomarkers include genes and non-coding RNAs 
that regulate pathways controlling both proliferative and non-
proliferative cellular activities, and may also function as immune 
checkpoint inhibitors (Marques et al., 2020).

Non-coding RNAs, including miRNAs, lncRNAs, and snoRNAs, 
play a significant role in cellular activities in hepatocellular 
carcinoma (HCC) by regulating oncogenes and associated signaling 
pathways (Arefnezhad et al., 2024). Identifying specific biomarkers 
for HCC is a critical area of research (Schlosser et al., 2022). 

Although numerous biomarkers have been implicated in the disease, 
microarray data analysis methods have become widely employed 
to predict causative biomarkers in various cancers, including HCC. 
Several studies have utilized bioinformatic approaches to investigate 
cancers (Shil et al., 2022; Mitra et al., 2023). These studies have 
adopted diverse methodologies to identify potential biomarkers 
and to examine their roles in disease prognosis. Most studies 
have focused on microarray datasets from the Gene Expression 
Omnibus (GEO) database to identify prognostic genes, miRNAs, 
and transcription factors associated with HCC.

Our study aimed to identify significant biomarkers that can 
act as prognostic indicators for hepatocellular carcinoma (HCC) 
through comprehensive bioinformatics analysis. We obtained five 
datasets from the Gene Expression Omnibus (GEO) database and 
performed differential gene expression analysis to identify common 
biomarkers between diseased and control samples. To further 
our investigation, we employed various bioinformatics tools for 
Gene Ontology (GO) and KEGG enrichment analyses, hub gene 
identification, and survival analysis. Additionally, we conducted a 
quantitative assessment of transcription factors (TFs) and miRNAs 
targeting the differentially expressed genes (DEGs). We also 
performed virtual screening and selected potential drug candidates 
based on ADMET analysis and found Digoxin (DB00390) as an 
inhibitor of CDK1. Digoxin, a purified digitalis preparation derived 
from the leaves of Digitalis lanata (foxglove), is primarily used in the 
therapy of congestive heart failure, breast cancer (Kurzeder et al., 
2025) and prostate cancer (Lin et al., 2004). Recently, in hypoxia-
induced mice models, HCC tumor size has been significantly 
reduced by administering Digoxin (Zhang M. S. et al., 2022). 
However, the detailed mechanism remains unknown. Following 
the identification of key biomarkers, we applied molecular docking 
and molecular dynamics simulation techniques to explore drug 
candidates that may inhibit gene activity, potentially hindering liver 
cancer progression and offering therapeutic options for patients with 
HCC. These in silico methods significantly reduce both the cost and 
time associated with drug discovery while ensuring a reasonable 
level of accuracy (Aghajani et al., 2022). 

2 Methods

2.1 Collection of datasets

The microarray datasets GSE41804 (Hodo et al., 2013), 
GSE45267 (Wang et al., 2013), GSE62232 (Schulze et al., 
2015), GSE112790 (Shimada et al., 2019), and GSE121248
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(Wang et al., 2007) were obtained from the Gene Expression 
Omnibus repository (https://www.ncbi.nlm.nih.gov/geo/). Each 
dataset belonged to the platform GPL570 (HG-U133_Plus_2) 
Affymetrix Human Genome U133 Plus 2.0. GSE41804 consists 
of 20 resected live tumor tissues and resected non-tumor liver 
tissues. GSE45267 contained 48 primary HCC samples and 39 
non-cancerous samples. GSE62232 contained 81 HCC solid 
tumors and 10 non-tumor liver tissues. GSE112790 contained 
183 liver cancer tumor tissues and 15 normal liver tissues. 
GSE121248 contained 70 tumor samples and 37 adjacent normal
samples. 

2.2 Differential gene expression analysis

Differential gene expression analysis was conducted using 
GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/) for the 
GSE41804, GSE45267, GSE62232, GSE112790, and GSE121248 
datasets. Statistically significant up- and downregulated genes were 
filtered based on an adjusted p-value (adj. P-value) < 0.05 and 
|Log2FC| > 2. To identify the common up- and downregulated genes, 
Venn diagrams were constructed using a Multiple List Comparator 
(https://molbiotools.com/listcompare.php). 

2.3. Gene ontology (GO) and KEGG 
pathway enrichment analysis

GO and KEGG enrichment analyses were performed using 
DAVID (DAVID Functional Annotation Tools ncifcrf.gov). The 
groups of common up-and downregulated genes were analyzed 
separately. An adjusted P-value <0.05 was considered to identify 
statistically significant terms and pathways. 

2.4 Construction of PPI network and hub 
gene selection

The protein-protein interaction network of the common up-and 
downregulated gene set was generated in the Integrated Interactions 
Database (IID utoronto.ca) and by selecting “Retrieve all PPIs of 
query proteins’ in the option ‘Select retrieval strategy.” Network 
analyses were performed using Cytoscape (https://cytoscape.org/) to 
identify the top 10 hub genes using the plugin Cytohubba (through 
the EPC algorithm). 

2.5 Identification of transcription factors 
(TF) associated the DEGs

The TF2DNA database (https://www.fiserlab.org/tf2dna_db/) 
was used to identify the Transcription factors (TFs) that regulate the 
transcription of upregulated and downregulated genes. The species 
chosen was Homo sapiens, Sources: TF2DNA (computational), and 
p-value = 0.0001. 

2.6 Identification of miRNA targets

The miRWalk database (http://mirwalk.umm.uni-
heidelberg.de/) was used to identify the miRNAs that target the 
mRNAs of the upregulated and downregulated genes. The top five 
upregulated and downregulated genes were chosen for analysis. 

2.7 Survival analysis and validation of hub 
genes

GEPIA (http://gepia.cancer-pku.cn/) was used to identify 
potential candidate biomarkers associated with liver Hepatocellular 
Carcinoma (LIHC) prognosis. For this purpose, we assessed the 
genes that showed statistically significant (p < 0.05) Overall Survival 
(OS) and Disease-Free survival of patients (DFS) affected with 
LIHC. The survival analysis was done using the “overall survival” 
method and the median group cutoff was set to 50% for both 
high and low and the hazards ratio was taken into consideration. 
The expression levels of these genes in LIHC-affected tissues were 
determined by comparing their expression levels in normal tissues. 
Analyses were based on the TCGA-LIHC cohort. 

2.8 Virtual screening and molecular 
docking

The necessary PDB file (PDB ID: 6GU7) was downloaded from 
the Protein Data Bank. This file contains the crystalized structure of 
CDK1, CDK1 regulatory subunit 2 and the co-crystallized molecule 
AZD-5438 (Wood et al., 2019). AZD-5438 is identified as a potential 
inhibitor of CDK1/CKS2 (Byth et al., 2009). CDK1 shows high co-
occurrence and co-expression with CKS2 (Zhang et al., 2019). The 
protein file was prepared by removing the water molecules and other 
ligand molecules, adding missing hydrogens and fixing the atom names 
in the Discovery Studio (2024) prior to virtual screening. The modified 
PDB file was submitted to the Drugrep (cao.labshare.cn) server for 
virtual screening using the databases of FDA approved drugs (contains 
4714 drugs) and experimental drugs (contains 6883 drugs) (Gan et al., 
2023) out of the three available drug libraries (FDA approved drug 
library, experimental drug library and traditional Chinese medicine). 
After screening, DB00390, DB00511, DB00696, DB00872, DB01396, 
DB09102, and DB11581 were selected for repurposing based on their 
binding affinity with CDK1/CKS2. These ligands were docked (blind 
docking) in the HDOCK server (http://hdock.phys.hust.edu.cn/) and 
used for further analysis. Additionally, AZD-5438 was docked with 
the CDK1/CKS2 to obtain its binding affinity and root mean square 
deviation (RMSD) for comparison. 

2.9 ADMET analysis

Properties, such as absorption, distribution, metabolism, 
excretion, and toxicity, were tested for the selected molecules to 
determine their competence as drug molecules. ADMET analysis 
was performed using the ADMETlab 3.0 web server (Fu et al., 2024). 
For the calculation of LD50, ProTox web server (Banerjee et al., 
2024) was used. Drug likeness was calculated using the pkCSM 
web server (Pires et al., 2015). 
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2.10 Molecular dynamics simulation

Necessary molecular dynamics simulations were performed 
to concretize the results of the molecular docking study. MD 
simulations were performed using Gromacs 2019 software and 
the Compute Unified Device Architecture (CUDA) API on 
NVIDIA graphics processors. CDK1/CKS2 and CDK1/CKS2-
Digoxin complex derived from molecular docking were imported 
into the gromacs and converted from∗.pdb to∗.gro format. Gromacs 
works with proteins, nucleic acids, and lipids, with predefined force 
field parameters available in the software itself. However, these 
required force field parameters are not available for the ligands in 
Gromacs. So, a third-party server, “Ligand parameter generator” or 
“Ligpargen” (Jorgensen and Tirado-Rives, 2005; Dodda et al., 2017a; 
Dodda et al., 2017b) was used to generate force field parameters 
for ligands. The output files from Ligpargen are used directly in 
gromacs, which define its topology and force-field parameters. 
The protein-ligand complexes were placed in a virtual 3D cube 
filled with water and simulated using the SPC/E water model. 
The entire system was then electrically neutralized by adding 
the necessary monovalent Na+ and Cl-ions, and a GROningen 
MOlecular Simulation (GROMOS) field was applied. A constant 
temperature (Akharume and Adedeji, 2023) of 300 K and 1.00 bar 
pressure was applied to the system using NPT and NVT as an 
ensemble class. A leapfrog integrator was used to compile the motion 
equations with a 2-fs time step size. A Verlet (buffered neighbor 
searching) cutoff scheme was used for non-bonded interactions, 
a modified Berendsen thermostat was applied to control the 
temperature, and the Parrinello-Rahman method was used to 
regulate pressure. Particle Mesh Ewald was used for calculations 
of long-range electrostatics. Both the short-range electrostatic and 
short-range Van der Waals cutoffs (Piana et al., 2012) were set to 
1.0 nm. Standard Gromacs protocols were used to minimize the 
energy of the system and perform the simulation for 100 ns. Similar 
parameters were used to simulate the apoprotein (CDK1/CKS2) for 
100 ns for comparison. Tools provided by Gromacs software were 
used to calculate the trajectories of individual atoms. The same 
software was used to plot the Root Mean Square Deviation (RMSD), 
Root Mean Square Fluctuation (RMSF), solvent-accessible surface 
area (SASA), Radius of Gyration (RoG) for both the CDK1/CKS2 
and CDK1/CKS2-Digoxin complex. SASA was calculated using the 
rolling ball algorithm (Richmond, 1984). Additionally, the number 
of hydrogen bonds, hydrogen bond angle and bond distance during 
simulation time (100 ns) were calculated for CDK1/CKS2-Digoxin 
complex. Another tool g_mmpbsa (Kumari et al., 2014) was used 
to calculate the Molecular Mechanics - Poisson-Boltzmann Surface 
Area or MM-PBSA from the topology and trajectory data of 
CDK1/CKS2-Digoxin complex generated from the simulation. 

3 Results

3.1 Common set of genes differentially 
expressed across the datasets

Differential gene expression analysis was performed on five 
datasets (GSE41804, GSE45267, GSE62232, GSE112790, and 
GSE121248) using the cut-off criteria of an adj. P-value <0.05 and 

|log2FC|> 2. Using the Venn diagram (Figure 1), we identified 19 
upregulated and 61 downregulated genes that were common among 
these datasets.

3.2 DEG enriched GO terms and KEGG 
pathways

From the GO and KEGG pathway enrichment analysis in 
DAVID, 18 GO terms and one pathway were enriched by the 
upregulated genes, whereas 54 GO terms and 9 KEGG pathways 
were enriched by the downregulated genes. The GO terms were 
Biological Process (BP), Cellular Components (CC), and Molecular 
Functions (MF). The results are shown in Supplementary Table S1. 

3.3 PPI network revealed hub genes

The PPI network of both up-and downregulated genes 
constructed in the Integrated Interactions Database (IID) was 
analyzed in Cytoscape using the plugin Cytohubba (EPC algorithm). 
We obtained the top 10 nodes among the upregulated and 
downregulated genes, as scored by Cytohubba. Since CDK1 and 
ESR1 in the up-and downregulated networks were the highest 
ranked, they were predicted to be hub genes. 

3.4 Transcription factors (TF) targeting the 
top DEGs

The TFs of the top five upregulated and downregulated genes 
were identified using the TF2DNA database. The upregulated genes, 
NEK2, CDK1, SULT1C2, RRM2, and ANLN, were regulated by 
22, 76, 7, 42, and 40 TFs, respectively. Similarly, the downregulated 
genes, ESR1, LIFR, CXCL12, ADRA1A, and IGF2, were regulated 
by 113, 30, 36, 11, and 136 TFs, respectively. The results are 
presented in Supplementary Table S2. 

3.6 Top DEGs targeted by miRNA

The top five upregulated and downregulated genes were 
subjected to analysis in the miRWalk database to identify miRNAs 
that participate in the post-transcriptional modification of these 
genes. The upregulated genes NEK2, CDK1, SULT1C2, RRM2, and 
ANLN were targeted by 12, 14, 10, 8, and 7 miRNAs, respectively. 
Similarly, the downregulated genes, ESR1, LIFR, CXCL12, 
ADRA1A, and IGF2 were targeted by 58, 36, 36, 32, and 31 miRNAs, 
respectively. The results are presented in Supplementary Table S3. 

3.7 Patient survivability affected due to hub 
gene expression

The top five upregulated and downregulated genes were analyzed 
for their association with overall and disease-free survival in LIHC 
using the TCGA-LIHC cohort, which was divided into high and 
low expression groups. Kaplan-Meier analysis of the upregulated 
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FIGURE 1
Venn diagrams of differential gene expression analysis across five microarray datasets. Common up and downregulated genes are circled in red.

genes NEK2, CDK1, SULT1C2, RRM2, and ANLN showed that the 
CDK1 high-expression group had significantly poorer OS and DFS 
than the low-expression group and all other upregulated gene groups 
(Figure 2). In contrast, among the downregulated genes ESR1, LIFR, 
CXCL12, ADRA1A, and IGF2, ESR1 had the poorest OS and DFS 
in the low-expression group of LIHC patients compared to the other 
downregulated gene groups (Figure 2).

The expression levels of the upregulated and downregulated 
genes in LIHC-affected and normal TCGA cohort data were 
also evaluated using GEPIA (Figure 3). All genes, except NEK2 
and ANLN, showed statistically significant upregulation in LIHC 
samples compared to normal samples. Similarly, except for LIFR, all 
other genes showed statistically significant downregulation in LIHC 
samples compared to that in normal samples.

3.8 Properties of drug molecules identified 
by ADMET analysis

ADMET analysis provides insight into various properties of 
drug molecules, such as absorption, distribution, metabolism, 
excretion, and toxicity (Tables 1–5). These properties help determine 
whether the drug should be taken orally, its absorption rate in 
the gastrointestinal tract, the likelihood of being metabolized by 
the cytochrome P450 group of enzymes, and the excretion rate 
of the drug molecule (Zhao et al., 2021). It also sheds light on 
potential toxic effects, such as hERG-inhibition, skin sensitization, 
hepatotoxicity, neurotoxicity, carcinogenicity, and various effects 
on the eyes.

Caco-2 is a monolayer cell line that is used as a model 
for the emulation of intestinal drug absorption (Van Breemen 
and Li, 2005). A high value (>−5.15 log unit) indicates that 
the drug is likely to be absorbed in the intestines upon oral 
administration (Flores‐Holguín et al., 2021). DB00390, DB00872, 
and DB11581 have high permeability, suggesting that these drugs 
have higher absorption rates than the rest. All drugs except DB00872 

and DB09102 can act as p-glycoprotein inhibitors (pgp-inhibitors), 
while only DB11581 can act as a pgp-substrate. This has a significant 
effect on drug fate.

The value of the volume of distribution (VDss) shows whether 
the drug is likely to be distributed in the plasma or tissue. 
Higher VDss values (>−0.45) suggest that the drug is distributed 
in the tissue (Han et al., 2019). All drugs, except DB09102 and 
DB11581, were estimated to be distributed in the plasma. DB00390, 
DB00696, DB00872, and DB11581 are more likely to cross the 
blood-brain barrier (Pires et al., 2015).

Drugs are typically metabolized by Cytochrome P450 enzymes 
including CYP3A4, CYP1A2, CYP2C1, CYP2C9, and CYP2D6 
(Ogu and Maxa, 2000). It is important for the drug to be 
metabolized by cytochrome P450 enzymes, as this phenomenon 
prohibits the accumulation of the drug in the system and causes 
side effects (Jindal et al., 2019). DB09102 and DB00390 have a high 
chance of being metabolized, whereas DB00696 and DB00872 are 
likely to accumulate in the body.

The CLplasma parameter shows the renal absorption rate 
of a drug (Horde and Gupta, 2024). DB00390, DB00511, DB00872, 
and DB09102 exhibited low renal clearance and DB01396 as well 
as DB11581 exhibited extremely low renal clearance. These drugs 
can have high efficiency as they are more likely to be reabsorbed 
by the kidneys. However, the T1/2 values, which indicate the half-
life of the drug inside the body, were favorable for DB00390 and
DB00511.

While assessing toxicity, it was found that except DB00390, all 
the other drugs exhibited some levels of carcinogenicity. None of the 
drugs caused eye corrosion, and only DB00872 caused eye irritation. 
However, all drugs displayed some levels of skin sensitization, 
Mutagenicity, and Hepatotoxicity. DB00390 alone showed no drug-
induced neurotoxicity. The lethal Dose 50 (LD50) parameter was 
used to show the amount of drug needed to be lethal to 50% of the 
test subjects. This value was calculated in mg/kg units. DB00390 and 
DB00511 are safe for oral administration (Gadaleta et al., 2019).
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FIGURE 2
(Continued).
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FIGURE 2
(Continued). Overall survival and Disease free survival of the top 5 up and downregulated genes in HCC.
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FIGURE 3
Expression level of the up and downregulated genes in log2 (TPM + 1) 
in LIHC patients compared to normal.

All the drugs were screened to estimate their drug-likeness 
based on their physicochemical characteristics (Table 6). DB00696 
and DB00872 fall within the range of 100–600 g/mol and satisfy 
rule-1 however all the other drugs slightly deviate from this 
range and have molecular weights of approximately 700 g/mol. 
DB00872 only follows rule 2 and shows a log P value within the 
0–3 log mol/L range. All drugs chosen here show 0-11 rotatable 
bonds and follow rule 3. DB00390, DB00696, and DB00872 show 
hydrogen bond acceptors less than 12, maintaining rule 4. All drugs 

showed less than seven hydrogen bond donors, upholding rule 5. 
However, no drug falls within the range of 0–140 A2 surface area 
and does not uphold rule 6 (Alsfouk et al., 2024). The six drug 
selection rules applied in this study should be regarded as flexible 
guidelines rather than rigid cutoffs, similar to the Rule of Five (RoF), 
which suggests that compounds failing two or more criteria may 
have poor oral bioavailability, though each criterion is often used 
individually as a filter (Yusof and Segall, 2013). Moreover, DB00390 
(Digoxin) is a well-established drug molecule, and digitalis-based 
drugs such as digitoxin and Digoxin are still in clinical use as 
oral medications for treating heart failure and atrial arrhythmias
(Zhou et al., 2023).

3.9 Candidate drugs selected by molecular 
docking analysis

Seven drug candidates were selected for molecular docking 
studies: DB00390, DB00511, DB00696, DB00872, DB01396, 
DB09102, and DB11581. The HDOCK server was used for the 
molecular docking study, and the results are summarized in Table 7. 
Four of the seven selected drugs, DB00390, DB00511, DB09102, and 
DB11581, showed high affinity for the receptor molecule. However, 
DB00511 had a high ligand RMSD, indicating that the drug is less 
likely to bind to the receptor compared to the other three drugs. 
DB00390 and DB00511 form two hydrogen bonds with the receptor, 
making the complexes more stable than the rest. DB09102 and 
DB11581 did not form any hydrogen bonds. DB00390 and DB00511 
showed a high number of hydrophobic interactions (17 and 14, 
respectively). The remaining candidates showed a moderate number 
of hydrophobic interactions (Figures 4, 6). Although DB00511, 
DB09102, and DBB11581 showed high affinity, low ligand RMSD, 
and a considerable number of interactions, they were not considered 
because of their potential carcinogenicity and high toxicity values 
obtained from the previous ADMET analysis. Therefore, DB00390 
was considered suitable for further molecular dynamic simulation
studies.

Moreover, a comparative study with a well known molecule 
(AZD-5438) was performed through successive molecular 
interactions to establish repurposed drug DB00390 as a potential 
inhibitor of CDK1/CKS2. While AZD-5438 showed nearly half 
affinity towards the CDK1/CKS2 complex compared to DB00390, 
the RMSD value of AZD-5438 was slightly less than DB00390. 
Furthermore, Ligplus analysis showed that the number of hydrogen 
bonds and hydrophobic interactions with CDK1/CKS2 dropped 
drastically (Figure 5) for AZD-5438, inferring Digoxin (DB00390) 
as a better inhibitor.

3.10 Validated receptor-drug interaction 
confirmed by molecular dynamics 
simulation

Based on molecular docking and ADMET analyses, DB00390 
(Digoxin) was used for the molecular dynamic simulation study. 
Various graphs i.e., RMSD, RMSF, RoG, SASA, MM-PBSA, 
Hydrogen bond number, angle and distance were derived from 
the molecular dynamics simulation results (Figure 6). Fluctuation 
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TABLE 1  Absorption properties of the drug candidates.

Absorption DB00390 DB00511 DB00696 DB00872 DB01396 DB09102 DB11581

Caco-2 Permeability −4.974 −5.21 −5.029 −4.931 −5.192 −5.002 −4.927

MDCK Permeability (10–6 cm/s) −4.892 −4.773 −4.748 −4.685 −4.763 −4.618 −4.734

PAMPA (logPeff) 0.26 0.411 0.108 0.017 0.954 0.574 0.811

Pgp-inhibitor 0.001 0.001 0.095 0.985 0.001 0.988 0.021

Pgp-substrate 0.933 0.998 1.0 0.812 1.0 0.306 0.058

HIA 0.0 0.0 0.019 0.0 0.005 0.001 0.0

TABLE 2  Distribution properties of the drug candidates.

Distribution DB00390 DB00511 DB00696 DB00872 DB01396 DB09102 DB11581

PPB (%) 91.751 95.179 94.243 98.012 95.487 98.201 97.635

VDss (L/kg) −0.393 −0.373 −0.287 −0.032 −0.395 0.076 0.114

BBB 0.977 0.043 0.85 0.809 0.019 0.0 0.598

OATP1B1 inhibitor 0.913 0.926 0.08 0.79 0.756 0.996 0.885

OATP1B3 inhibitor 0.0 0.001 0.007 0.39 0.069 0.994 0.69

BCRP inhibitor 0.0 0.0 0.001 0.064 0.00 0.269 0.0

MRP1 inhibitor 1.0 0.993 0.693 0.887 0.877 0.948 0.293

TABLE 3  Metabolic properties of the drug candidates.

Metabolism DB00390 DB00511 DB00696 DB00872 DB01396 DB09102 DB11581

CYP2D6 substrate yes yes yes no yes yes yes

CYP3A4 substrate yes yes no yes yes yes yes

CYP1A2 inhibitor yes yes no no yes yes no

CYP2C19 inhibitor no no no no no no yes

CYP2C9 inhibitor yes yes no no yes yes no

CYP2D6 inhibitor yes yes yes no yes yes yes

CYP3A4 inhibitor yes no no no no yes yes

TABLE 4  Excretion properties of the drug candidates.

Excretion DB00390 DB00511 DB00696 DB00872 DB01396 DB09102 DB11581

CLplasma (mL/min/kg) 3.56 2.136 7.853 4.619 1.705 3.578 1.003

T1/2 (hours) 2.583 2.053 0.946 0.506 2.339 1.103 1.355
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TABLE 5  Toxicity properties of the drug candidates.

Toxicity DB00390 DB00511 DB00696 DB00872 DB01396 DB09102 DB11581

hERG
Blockers

no no no no no yes no

hERG
Blockers (10um)

no no no yes no yes no

skin sensitization yes yes yes yes yes yes yes

AMES Mutagenicity yes yes yes yes yes yes yes

Carcinogenicity no yes yes yes yes yes yes

Eye
Corrosion

no no no no no no no

Eye
Irritation

no no no yes no no no

Human Hepatotoxicity yes yes yes yes yes yes yes

Drug-induced Neurotoxicity no yes yes yes yes yes yes

LD50 (mg/kg) 5105 5105 800 3550 650 700 2000

TABLE 6  Physicochemical properties to determine drug-likeness.

Name Molecular weight 
(g/mol)

LogP Rotatable bonds H-bond acceptors H-bond donors Surface area (A2)

DB00390 757.765 4.9059 3 11 2 315.675

DB00511 774.731 5.6738 6 14 2 323.322

DB00696 569.577 2.506 1 9 0 244.996

DB00872 496.570 4.86952 3 4 2 219.165

DB01396 732.694 5.3213 6 13 4 305.916

DB09102 722.762 5.6664 5 14 0 308.777

DB11581 852.329 9.6965 9 13 2 355.938

of RMSD around 0.25 nm and decreasing to 0.1 nm at 70–80 ns 
indicates that the CDK1/CKS2-Digoxin complex is fairly stable 
(Maruyama et al., 2023). Comparatively, the RMSD of the 
apoprotein remained at 0.5 nm with occasional spikes reaching 
up to 4.5–5.0 nm, reflecting instability in the absence of the 
ligand (Figure 6a). This implies that compared to CDK1/CKS2, the 
CDK1/CKS2-Digoxin complex is more stable and has enhanced 
inhibitory potential and potentially more biologically effective. 
The average RMSF of each residue was calculated to determine 
the residues that fluctuated during the simulation. The residues 
of CDK1/CKS2 generally showed higher fluctuation compared 
to the CDK1/CKS2-Digoxin complex implying higher instability 
(Figure 6b). The radius of gyration (RoG) of CDK1/CKS2-Digoxin 
also showed low fluctuation around 5 nm. The RoG of CDK1/CKS2 
stayed around 3.5 nm with two abrupt increases upto 5 nm and 

4.7 nm at 60 ns and 85 ns respectively (Figure 6c). The solvent-
accessible surface area is also a good indicator of protein complex 
compactness and stability. In our case, the SASA of CDK1/CKS2-
Digoxin was fluctuating between 75 and 95 square nm compared 
to 600 square nm of CDK1/CKS2 (Figure 6d), which indicates that 
the protein remained compact and stable during the simulation 
(Bagewadi et al., 2023). Higher value of RoG but lower values 
of RMSD, RMSF and SASA suggest possible shift in mass 
distribution rather than instability of the CDK1/CKS2-Digoxin 
complex (Miu et al., 2008). The MM-PBSA graph shows that 
the total binding free energy drops from initial −50 kJ/mol to 
−400 kJ/mol at 40 ns and 60 ns and stays around −200 kJ/mol at 
the end of the simulation (Figure 7a). This gradual reduction of 
the total binding free energy indicates that the whole complex 
achieves stability over time (Kumari et al., 2014). Molecular dynamic 
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TABLE 7  Docking score with CDK1/CKS2, RMSD and number of interacting bonds of DB00390, DB00511, DB00696, DB00872, DB01396, 
DB09102, DB11581.

Drug ID Docking score Ligand RMSD (Å) Number of H-bonds Number of hydrophobic interactions

DB00390 −245.01 50.77 2 17

DB00511 −245.66 64.29 2 14

DB00696 −201.7 65.35 1 10

DB00872 −177.17 62.12 1 10

DB01396 −222.61 43.71 1 8

DB09102 −247.75 43.46 0 12

DB11581 −247.75 43.46 0 12

AZD-5438 −129.94 64.62 0 8

simulation analysis shows 1–3 hydrogen bonds being generated 
between the protein and the drug during the simulation time period 
of 100 ns (Figure 7b). Hydrogen bond distances and angles show 
the fluctuation between 0.24 and 0.35 nm and 2–30° respectively, 
which infer a stable bonding between the protein and the drug
(Figures 7c,d).

4 Discussion

Hepatocellular carcinoma (HCC) is one of the most challenging 
cancers to treat owing to its late diagnosis and complex 
characteristics. It often affects males more than females. Numerous 
studies have focused on bioinformatic analyses to identify 
biomarkers for HCC. In our study, we conducted a differential 
gene expression analysis across five microarray datasets, identifying 
19 upregulated and 64 downregulated genes that were commonly 
observed in all datasets. These commonly upregulated and 
downregulated genes were then subjected to GO and pathway 
enrichment analyses. The number of significant GO terms 
and KEGG pathways enriched with the upregulated genes was 
significantly lower than that of their downregulated counterparts. 
Following this, we constructed a PPI network for the up-and 
downregulated gene sets of HCC and identified key hub genes 
through analysis of each of the gene sets. We selected CDK1 
and ESR1 as hub genes for our analysis. From the differentially 
expressed gene sets, we selected the top five upregulated (CDK1, 
NEK2, RRM2, SULT1C2, and ANLN) and downregulated genes 
(ESR1, IGF2, LIFR, CXCL12, and ADRA1A) for our studies related 
to gene-miRNA and TF gene targets, including patient survival 
analysis. We found that these genes including CDK1 and ESR1 
were targets of a large number of TFs and miRNAs. In addition, 
CDK1 and ESR1 showed significant and poor OS and DFS in 
patients with HCC, and they were validated to be upregulated 
and downregulated in patients with HCC. KEGG/GO enrichment 
analysis showed that various pathways can potentially be influenced 
by the upregulation of CDK1 gene, e.g., mitochondrial ATP 
synthesis coupled electron transport, G2/M transition of mitosis, 

protein serine/threonine kinase activity, etc. We found that ESR1 
is involved in proteoglycan mediated cell signaling pathways and 
shaping the tumor microenvironment. This finding is supported 
by earlier research of Dituri et al. (2022). SOX transcription 
factors (SOX4, SOX7, SOX15, SOX17) and FOXM1 downregulated 
the expression of ESR1 (Xiao et al., 2019) while FOXN2 and 
FOXS1 were involved in upregulation of CDK1 expression
(Liu et al., 2021).

The gene ESR1 encodes a transcription factor that is 
located in the chromosomal region chromosomal region 6q25.1 
(Tsiambas et al., 2011). Its protein structure comprises N- and C-
terminal domains, activation and ligand-binding domains, and 
DNA-binding domains. ESR1 has been proposed to play a regulatory 
role in liver, prostate, endometrial, and lung cancer (Hu et al., 2022). 
A cell line-based study found that ESR1 induces upregulation of 
lncRNA MEG3 under high glucose conditions, which hinders HCC 
progression (Cheng et al., 2022). A study found that miR-9-5p 
downregulates ESR1 gene activity in HCC, causing cancer cell 
proliferation, migration, and invasion (Wang et al., 2021). ESR1 
can also regulate the expression of MMAA, an obesity-metabolism 
differential gene, to prevent HCC, as shown in a study in females
(Zhang Y. et al., 2022).

CDK1 is a member of the serine-threonine protein kinase family, 
which is important during transitions from the G1/S or G2/M 
phase of the cell cycle (Enserink and Kolodner, 2010). Studies have 
shown that the gene activity of CDK1 is regulated by miR-582-
5p in pathways involving CDK1 and AKT3, which in turn induces 
cell cycle arrest in the G0/G1 phase. miR-582-5p is downregulated 
(Zhang et al., 2015). CDK1 also plays a role in immune infiltration 
in HCC (Zou et al., 2020). A bioinformatic study revealed that 
CDK1, FOXM1, TCF7L1, E2F4, and SIN3A can act as important 
transcriptional regulators in HBV-induced HCC (Wang et al., 
2018). Thus, CDK1 may act as a prognostic biomarker for HBV-
induced HCC.

We propose that CDK1 and ESR1, identified as upregulated 
and downregulated genes, respectively, could serve as potential 
biomarkers for HCC. However, we focused exclusively on 
the upregulated gene CDK1 as a candidate for molecular 
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FIGURE 4
Hydrophobic interactions of DB00390, DB00511, DB00696, DB00872, DB01396, DB09102, DB11581 and AZD-5438 with CDK1/CKS2 receptor. 
Hydrophobicity varies from +3 (brown) to −3 (blue).

docking and dynamics simulations, hypothesizing that a 
suitable drug could effectively inhibit CDK1 protein. In 
cancer, downregulated genes - particularly tumor suppressors-
are typically not targeted for inhibition; rather, therapeutic 
strategies aim to restore or enhance their expression and 
function. In some contexts, increasing the activity of such genes 
may involve inhibiting their negative regulators instead. ESR1 
(estrogen receptor 1) exhibits tumor-suppressive behavior in 
liver cancer, where its downregulation is associated with disease 
progression (Hishida et al., 2013). Studies have shown that 
ESR1 knockout in mouse models increases susceptibility to 
liver tumorigenesis (O’Brien et al., 2021), while its activation 
through estrogen signaling suppresses tumor growth (Fuentes 

and Silveyra, 2019). Given this tumor-suppressive role, ESR1 
was excluded from further analysis focused on drug inhibition
effects.

Other bioinformatic studies on HCC have identified CDK1 and 
ESR1 as potential hub genes (Table 8). For instance, Zhang et al. 
(2021) found that these genes were upregulated and downregulated, 
respectively, in HCC using a different set of microarray samples 
than those used in our study. Another study highlighted CDK1 
and ESR1 as hub genes, both of which are associated with poor 
survival outcomes (Ni et al., 2019). In spite of some earlier research 
findings showing CDK1 as a prominent regulator of liver cancer 
(Ni et al., 2019; Sun and Zhang, 2020; Hao et al., 2021; Su et al., 
2023), molecular docking studies have identified treatment options 
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FIGURE 5
Hydrophobic interactions and hydrogen bonds of DB00390, DB00511, DB00696, DB00872, DB01396, DB09102, DB11581 and AZD-5438 with 
CDK1/CKS2 receptor (Ligplot analysis).

such the Phellodendron and Anemarrhena drug pair (PADP) as 
a promising inhibitor of CDK1 (Ruan et al., 2022). However, 
molecular dynamics modelling has not yet shown Digoxin and 
CDK1’s interaction behaviour. To bridge this gap, further evaluation 
of Digoxin’s mechanism of action inside cancer cells is necessary to 
understand its potential as a CDK1 inhibitor.

A comprehensive study of the chemical drug-likeness of 
the seven drugs obtained through virtual screening, detailed 
ADME analysis and toxicity calculations. These parameters were 
instrumental in ranking the selected drugs for further docking and 
simulation studies, ultimately guiding the prediction of potential 
candidates. Key assessments include the PAMPA assay, which 
measures drug permeability and passive diffusion across an artificial 
membrane (Di et al., 2003). This metric, combined with Caco2 
permeability, provides insights into the absorption and distribution 

of drugs within critical human physiological areas, such as the 
gastrointestinal tract, olfactory epithelium, blood-brain barrier 
(BBB), and nasal mucosa. The role of P-glycoproteins further 
complicates this landscape; these proteins can either enhance 
drug efficacy by transporting molecules or inhibit their action 
as Pgp inhibitors, ultimately influencing therapeutic outcomes 
(Wu et al., 2023; Wang et al., 2019).

In addition to these parameters, plasma protein binding (PPB) 
plays a crucial role in drug distribution after administration. This 
aspect assesses how compounds interact with plasma proteins 
like serum albumin and glycoproteins, significantly affecting their 
bioavailability and therapeutic effectiveness (Li et al., 2022). The 
BBB parameter also indicates the likelihood that a drug can 
successfully penetrate the central nervous system (CNS) through 
endothelial cells, highlighting its importance in neuropharmacology 
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FIGURE 6
(a) RMSD, (b) RMSF comparison of CDK1/CKS2 (black) and CDK1/CKS2-Digoxin complex (red) (c) Radius of Gyration, (d) Solvent Accessible 
Surface Area.

(Cheng et al., 2012; Daneman and Prat, 2015). Furthermore, cardiac 
rhythm regulation, influenced by hERG blockers, which control 
potassium ion channels in the heart, presents another layer of 
consideration for drug safety (Choi et al., 2020). This parameter, 
along with assessments of carcinogenicity, eye corrosion, irritation, 
hepatotoxicity, and neurotoxicity, provides a comprehensive view of 
the potential risks associated with each drug candidate.

Building on a comprehensive study of the chemical drug-
likeness of selected drugs, molecular docking studies present 
additional challenges, particularly in determining the necessary 
flexibility of the receptor backbone. This flexibility is crucial for 
accurately predicting the interactions of ligands with their targets. 
Although several methods exist to address this issue, they often 
fall short with certain types of molecules (Meng et al., 2011). 

To overcome this challenge, the HDOCK server was used for 
docking analysis. This platform predicts various conformers of the 
same ligand and assesses their binding potential with the active 
site(s) of the receptor molecule, thereby reducing computational 
costs while still delivering reliable results (Martí-Renom et al., 
2000). Docking scores were derived from a knowledge-based 
iterative scoring function, ITScorePP, which facilitates the effective 
ranking of conformers (Sievers et al., 2011; Remmert et al., 
2012). The whole CDK1/CKS2 surface and the residues adjacent 
to the binding pockets of the ligands show polarity around 
either +0.1 or −0.1 charge (Supplementary Figures S1, S2). Intra-
molecular interactions among the chains of CDK1 and CKS2 show 
a high number of salt bridges, hydrogen bonds and hydrophobic 
interactions (Supplementary Table S4; Supplementary Figure S3). 
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FIGURE 7
(Continued).

This makes the protein somewhat rigid and may explain the 
phenomenon of no physical change inside the protein before and 
after binding with the ligands (Gunasekaran and Nussinov, 2007). 
Additionally, the final conformer structures were aligned with the 

initial model to compute the ligand root mean square deviation 
(RMSD).

Based on comprehensive ADMET analysis and docking studies, 
we identified Digoxin (DB00390) as the most promising candidate 
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FIGURE 7
(Continued). (a) MM-PBSA graph representing the total binding energy of the CDK1/CKS2-DB00390 complex, (b) Number of Hydrogen bonds, (c)
Distribution of Hydrogen bond distance and (d) Distribution of Hydrogen bond angle during the 100 ns simulation.

for further investigation. Digoxin has demonstrated anticancer 
activity against various human cancers. In the BALB/c nude mouse 
xenograft model, it inhibits lung cancer by inhibiting both DNA 

DSB and SSB repairs (Wang et al., 2020). Similarly, it shows 
its potential in arresting cervical cancer cells (Gan et al., 2020). 
Earlier researchers showed that various cardiac glycosides, including 

Frontiers in Bioinformatics 16 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1567748
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Ghosh et al. 10.3389/fbinf.2025.1567748

TABLE 8  A brief review of previous studies in connection to our study.

References Dataset used Key methodology Status of CDK1 and ESR1 in 
the study

Ni et al. (2019) GSE27635, GSE28248 Differential gene expression analysis, PPI 
network analysis, Hub gene selection and 
survival analysis, experimental validation

Six genes identified as hub genes 
including CDK1 in HCC.

Sun and Zhang (2020) GSE45436 Differential gene expression, Survival 
analysis, Validation

CDK1 and ESR1 were among the 
significant Differentially expressed genes. 
However, they were not considered 
significant gene based on further analysis

Hao et al. (2021) GSE62232
GSE40744

Differential gene expression analysis, 
Validation of hub gene expression, 
Construction of miRNA-mRNA 
regulatory network

CDK1 and ESR1 were predicted as hub 
genes for HCV related HCC and were 
found to be regulated by miR-122-5p and 
miR-221-3p

Zhang et al. (2021) GSE14520, GSE25097, GSE36376, 
GSE57957, GSE76427, GSE121248

Differential Gene expression analysis, PPI 
network analysis, survival analysis, hub 
gene identification

88 upregulated and 40 downregulated 
genes were identified as hub genes, 
including CDK1 and ESR1 in HCC.

Ruan et al. (2022) GSE62232 Differential gene expression analysis, 
Acquisition of Chemical Components and 
Targets of PADP, Construction of 
Traditional Chinese Medicine Compound 
Regulation Network, Molecular Docking 
Verification of Core Compounds and 
Core Target Genes, Survival Analyses for 
Hub Genes, Experimental validation

In HCC, ESR1 and CDK1 were both 
predicted as hub genes and targets of 
PADP.

Su et al. (2023) GSE101685
GSE62232
GSE46408
GSE45627

Differential Gene expression analysis, PPI 
network analysis, Validation and survival 
analysis, MiRNA-Hub gene network 
construction, Drug-gene interaction 
analysis

CDK1 was predicted as one of the hub 
genes and 32 potential therapeutic 
targeting drugs for hub genes in HCC.

Moghimi et al. (2024) GSE45267 Differential gene expression analysis, PPI 
network and modular analysis, Analysis 
of gene-disease association, Prediction of 
Pharmacological targets

CDK1 and ESR1 were among the 
significant DEGs in HCC. However, they 
were not among the hub genes upon 
further analysis

Ren and Feng (2024) GSE84402
GSE12148
E-GEOD-19665

Differential gene expression analysis, PPI 
network analysis, Hub gene validation 
and survival analysis. Drug-target 
interaction analysis

CDK1 was associated with poor prognosis 
in HBV associated with HCC. Identified 6 
drugs associated with CDK1

Ghosh et al., 2025 (present study) GSE41804
GSE45267
GSE62232
GSE112790
GSE121248

Differential gene expression analysis, PPI 
network analysis and hub gene selection, 
gene selection based on Transcription 
Factor and miRNA targets, Survival 
analysis and validation of hub genes, 
Virtual screening
ADMET analysis, molecular docking, 
Molecular Dynamics Simulation

Our bioinformatics approach, involving 
transcriptomics data analysis predicted 
CDK1 and ESR1 as hub genes associated 
with HCC as well as further exploration 
with computational drug discovery 
methods predicted Digoxin as a 
promising candidate for CDK1/CKS2 
inhibition

Digoxin and digitoxin, increased toxicity against melanoma cells 
as compared to normal human melanocytes and umbilical cord 
blood cells (Eskiocak et al., 2016). There have been reports in 
the last few years of clinical studies of Digoxin as an anticancer 
medicine, either by itself or with other chemotherapy drugs 
(Menger et al., 2013; Frankel et al., 2017; Huang et al., 2018). 
But researchers still don’t know exactly how Digoxin works to 
fight cancer. Very recently, Kangra et al. reported that Digoxin 
has been explored in 27 clinical trials so far, reflecting ongoing 

interest in its potential beyond heart conditions (Kangra et al., 
2025). Of these, 11 have been completed, 7 are currently recruiting, 
and a few are in early or uncertain stages. Some trials were even 
terminated or withdrawn. These studies have tested Digoxin either 
alone or in combination with drugs like enzalutamide, rosuvastatin, 
capecitabine, lapatinib, metformin, and simvastatin. They span 
a range of cancer types - including prostate, breast, pancreatic, 
lung, and head and neck cancers - as well as solid tumors and
neoplasms.
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To learn more about Digoxin - CDK1 interaction, we 
performed subsequent simulations and evaluated the stability 
of the drug-receptor complex. Molecular dynamics simulations 
provide a detailed understanding of the receptor-ligand complex 
stability by examining various parameters, including RMSD, 
root mean square fluctuation (RMSF), radius of gyration (RoG), 
solvent-accessible surface area (SASA), MM-PBSA and various 
characteristics of the generated Hydrogen bonds between the 
protein and ligand. The study was carefully designed to address 
specific questions, ensure robust simulation setups, and thoroughly 
analyze the results (Hollingsworth and Dror, 2018). The findings 
demonstrated that the CDK1/CKS2-Digoxin complex maintained 
a stable conformation throughout the 100 ns simulation, with only 
minor instabilities and fluctuations occurring intermittently. These 
brief episodes of instability did not compromise the overall integrity 
of the complex, which remained compact until the simulation 
was finished.

In this study, we emphasize several aspects that contribute to 
the novelty and potential translational value of our findings. First, 
the integration of multiple, well-curated datasets enabled a robust 
and comprehensive analysis, strengthening the reliability of the 
identified candidate genes (Table 8). Second, we employed a target 
prioritization strategy based on regulatory complexity, selecting genes 
that are regulated by the highest number of transcription factors 
and miRNAs. Notably, genes targeted by multiple miRNAs were 
considered particularly promising, as such regulation often reflects 
their centrality and importance in disease-related biological pathways 
(Okada et al., 2016). Furthermore, the identification of Digoxin 
as a potential repurposable drug through computational analysis 
demonstrates the effectiveness of our method in revealing novel 
drug-disease connections. Although our in silico findings suggest 
that Digoxin may inhibit liver cancer growth via CDK1 regulation, 
its therapeutic use remains limited due to several factors. Firstly, 
Digoxin has a narrow therapeutic index, making dosing challenging 
without risking cardiotoxicity. Its known systemic toxicity, notably 
cardiac side effects, raises serious safety concerns. Furthermore, poor 
cancer cell selectivity and limited tumor-specific delivery impede 
successful targeting. Lastly, the lack of robust in vivo and clinical 
data in oncology restricts its immediate translational potential. To 
better understand how Digoxin might help treat liver cancer, future 
research should include more experimental repetitions and make use 
of advanced tools - like multi-omics data and clinical sample analysis. 
Studies such as Western blotting, nuclear/cytoplasmic fraction, 
immunofluorescence, and FACS (Lu et al., 2025), as well as in-vivo and 
ex-vivo experiments (Kurzeder et al., 2025), may be designed to validate 
these computational predictions and further explore the therapeutic 
potential of Digoxin in liver cancer. Overall, our in silico study 
demonstrates Digoxin’s strong impact on the CDK1/CSK2 complex 
and offers important insights for the development of more effective and 
selective therapies against liver cancer. These approaches can uncover 
the precise mechanisms behind Digoxin’s action and provide clearer 
insights into its potential as a safe and effective cancer therapy. 

5 Conclusion

In conclusion, identifying reliable biomarkers is crucial for 
early diagnosis, prognosis, and effective treatment of hepatocellular 

carcinoma (HCC). By analyzing five microarray datasets, we 
identified 19 upregulated and 64 downregulated genes associated 
with HCC. Gene Ontology (GO) and KEGG pathway analyses 
revealed that downregulated genes play a significant role in HCC 
pathology. Notably, CDK1/CKS2 and ESR1 emerged as hub genes 
that correlated with poor overall and disease-free survival in 
patients, underscoring their potential as biomarkers for HCC. 
We further investigated CDK1/CKS2 using molecular docking 
and dynamic simulations to explore its therapeutic potential. 
Additionally, our study identifies Digoxin (DB00390) as a promising 
repurposed drug candidate to overcome the limitations of existing 
drugs. Overall, this study contributes to a deeper understanding of 
HCC biology and drug interactions, paving the way for improved 
therapeutic strategies.

Data availability statement

The original contributions presented in the study are included 
in the article/Supplementary Material, further inquiries can be 
directed to the corresponding authors.

Author contributions

JG: Formal Analysis, Software, Visualization, Writing – original 
draft. AA: Formal Analysis, Funding acquisition, Writing – review 
and editing. AP: Resources, Software, Writing – original draft. 
DB: Data curation, Resources, Writing – original draft. SD: Data 
curation, Formal Analysis, Resources, Writing – original draft. SM: 
Formal Analysis, Investigation, Methodology, Supervision, Writing 
– review and editing. AK: Formal Analysis, Writing – review 
and editing. SA: Formal Analysis, Writing – review and editing. 
CM: Conceptualization, Formal Analysis, Methodology, Project 
administration, Supervision, Writing – original draft, Writing – 
review and editing. 

Funding

The author(s) declare that financial support was received 
for the research and/or publication of this article. The authors 
extend their appreciation to the Deanship of Research and 
Graduate Studies at King Khalid University for funding this 
work through Large Research Project under grant number
RGP.2/604/45.

Acknowledgments

All authors acknowledge their parent institute for providing 
computational facilities. Dr. Sunil Kanti Mondal gratefully 
acknowledges the supercomputing facility available at IIT Delhi 
and Shashank Shekhar, Principal Research Scientist, IIT Delhi, for 
his generous support to access the facility.

Frontiers in Bioinformatics 18 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1567748
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Ghosh et al. 10.3389/fbinf.2025.1567748

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could be 
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those 
of the authors and do not necessarily represent those of 
their affiliated organizations, or those of the publisher, 
the editors and the reviewers. Any product that may be 
evaluated in this article, or claim that may be made by 
its manufacturer, is not guaranteed or endorsed by the
publisher.

Supplementary material

The Supplementary Material for this article can be 
found online at: https://www.frontiersin.org/articles/10.3389/
fbinf.2025.1567748/full#supplementary-material

References

Aghajani, J., Farnia, P., Farnia, P., Ghanavi, J., and Velayati, A. A. (2022). Molecular 
dynamic simulations and molecular docking as a potential way for designed new 
inhibitor drug without resistance. Tanaffos 21 (1), 1–14.

Akharume, F., and Adedeji, A. (2023). Molecular dynamic (in silico) modeling of 
structure-function of glutelin type-B 5-like from proso millet storage protein: effects 
of temperature and pressure. J. food Sci. Technol. 60 (1), 114–122. doi:10.1007/s13197-
022-05594-y

Alsfouk, A. A., Faris, A., Cacciatore, I., and Alnajjar, R. (2024). Development of novel 
CDK9 and CYP3A4 inhibitors for cancer therapy through field and computational 
approaches. Front. Chem. 12, 1473398. doi:10.3389/fchem.2024.1473398

Arefnezhad, R., Ashna, S., Rezaei-Tazangi, F., Arfazadeh, S. M., Seyedsalehie, 
S. S., Yeganeafrouz, S., et al. (2024). Noncoding RNAs and programmed cell 
death in hepatocellular carcinoma: significant role of epigenetic modifications in 
prognosis, chemoresistance, and tumor recurrence rate. Cell. Biol. Int. 48 (5), 556–576. 
doi:10.1002/cbin.12145

Bagewadi, Z. K., Khan, T. Y., Gangadharappa, B., Kamalapurkar, A., Shamsudeen, S. 
M., and Yaraguppi, D. A. (2023). Molecular dynamics and simulation analysis against 
superoxide dismutase (SOD) target of Micrococcus luteus with secondary metabolites 
from Bacillus licheniformis recognized by genome mining approach. Saudi J. Biol. Sci.
30 (9), 103753. doi:10.1016/j.sjbs.2023.103753

Banerjee, P., Kemmler, E., Dunkel, M., and Preissner, R. (2024). ProTox 3.0: a 
webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. gkae303. 
doi:10.1093/nar/gkae303

Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. L., Soerjomataram, I., et al. 
(2024). Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality 
worldwide for 36 cancers in 185 countries. CA a Cancer J. Clin. 74 (3), 229–263. 
doi:10.3322/caac.21834

Byth, K. F., Thomas, A., Hughes, G., Forder, C., McGregor, A., Geh, C., et al. (2009). 
AZD5438, a potent oral inhibitor of cyclin-dependent kinases 1, 2, and 9, leads to 
pharmacodynamic changes and potent antitumor effects in human tumor xenografts. 
Mol. Cancer Ther. 8 (7), 1856–1866. doi:10.1158/1535-7163.mct-08-0836

Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., et al. (2012). admetSAR: a 
comprehensive source and free tool for assessment of chemical ADMET properties. J. 
Chem. Inf. Model. 52, 3099–3105. doi:10.1021/ci300367a

Cheng, T., Bai, Y., Huang, S., Wang, Y., Zhou, S., Liu, H., et al. (2022). Estrogen 
receptor 1 inhibits the progression of hepatocellular carcinoma via positively regulating 
lncRNA maternally expressed gene 3 under high glucose conditions. J. Gastrointest. 
Oncol. 13 (5), 2485–2496. doi:10.21037/jgo-22-825

Chidambaranathan-Reghupaty, S., Fisher, P. B., and Sarkar, D. (2021). Hepatocellular 
carcinoma (HCC): epidemiology, etiology and molecular classification. Adv. Cancer Res.
149, 1–61. doi:10.1016/bs.acr.2020.10.001

Choi, K. E., Balupuri, A., and Kang, N. S. (2020). The study on the hERG 
blocker prediction using chemical fingerprint analysis. Molecules 25 (11), 2615. 
doi:10.3390/molecules25112615

Daneman, R., and Prat, A. (2015). The blood–brain barrier. Cold Spring Harb. 
Perspect. Biol. 7 (1), a020412. doi:10.1101/cshperspect.a020412

Di, L., Kerns, E. H., Fan, K., McConnell, O. J., and Carter, G. T. (2003). High 
throughput artificial membrane permeability assay for blood–brain barrier. Eur. J. Med. 
Chem. 38 (3), 223–232. doi:10.1016/s0223-5234(03)00012-6

Dituri, F., Gigante, G., Scialpi, R., Mancarella, S., Fabregat, I., and Giannelli, G. 
(2022). Proteoglycans in cancer: friends or enemies? A special focus on hepatocellular 
carcinoma. Cancers 14 (8), 1902. doi:10.3390/cancers14081902

Dodda, L. S., Cabeza de Vaca, I., Tirado-Rives, J., and Jorgensen, W. L. 
(2017a). LigParGen web server: an automatic OPLS-AA parameter generator 
for organic ligands. Nucleic acids Res. 45 (W1), W331–W336. doi:10.1093/
nar/gkx312

Dodda, L. S., Vilseck, J. Z., Tirado-Rives, J., and Jorgensen, W. L. (2017b). 
1.14∗CM1A-LBCC: localized bond-charge corrected CM1A charges for condensed-
phase simulations. J. Phys. Chem. B 121 (15), 3864–3870. doi:10.1021/acs.jpcb.7b00272

Enserink, J. M., and Kolodner, R. D. (2010). An overview of CDK1/CKS2-controlled 
targets and processes. Cell. Div. 5, 1–41. doi:10.1186/1747-1028-5-11

Eskiocak, U., Ramesh, V., Gill, J. G., Zhao, Z., Yuan, S. W., Wang, M., et al. (2016). 
Synergistic effects of ion transporter and MAP kinase pathway inhibitors in melanoma. 
Nat. Commun. 7 (1), 12336. doi:10.1038/ncomms12336

Flores-Holguín, N., Frau, J., and Glossman-Mitnik, D. (2021). Computational 
Pharmacokinetics report, ADMET study and conceptual DFT‐based estimation of 
the chemical Reactivity properties of Marine Cyclopeptides. ChemistryOpen 10 (11), 
1142–1149. doi:10.1002/open.202100178

Frankel, A. E., Eskiocak, U., Gill, J. G., Yuan, S., Ramesh, V., Froehlich, 
T. W., et al. (2017). Digoxin plus trametinib therapy achieves disease control 
in BRAF wild-type metastatic melanoma patients. Neoplasia 19 (4), 255–260. 
doi:10.1016/j.neo.2017.01.010

Fu, L., Shi, S., Yi, J., Wang, N., He, Y., Wu, Z., et al. (2024). ADMETlab 3.0: an updated 
comprehensive online ADMET prediction platform enhanced with broader coverage, 
improved performance, API functionality and decision support. Nucleic Acids Res. 52, 
W422–W431. doi:10.1093/nar/gkae236

Fuentes, N., and Silveyra, P. (2019). Estrogen receptor signaling mechanisms. Adv. 
protein Chem. Struct. Biol. 116, 135–170. doi:10.1016/bs.apcsb.2019.01.001

Gadaleta, D., Vuković, K., Toma, C., Lavado, G. J., Karmaus, A. L., Mansouri, K., et al. 
(2019). SAR and QSAR modeling of a large collection of LD 50 rat acute oral toxicity 
data. J. Cheminformatics 11, 58–16. doi:10.1186/s13321-019-0383-2

Gan, H., Qi, M., Chan, C., Leung, P., Ye, G., Lei, Y., et al. (2020). Digitoxin inhibits 
HeLa cell growth through the induction of G2/M cell cycle arrest and apoptosis in vitro
and in vivo. Int. J. Oncol. 57 (2), 562–573. doi:10.3892/ijo.2020.5070

Gan, J. H., Liu, J. X., Liu, Y., Chen, S. W., Dai, W. T., Xiao, Z. X., et al. (2023). DrugRep: 
an automatic virtual screening server for drug repurposing. Acta Pharmacol. Sin. 44 (4), 
888–896. doi:10.1038/s41401-022-00996-2

Ghouri, Y. A., Mian, I., and Rowe, J. H. (2017). Review of hepatocellular carcinoma: 
Epidemiology, etiology, and carcinogenesis. J. Carcinog. 16, 1. doi:10.4103/jcar.jcar_9_
16

Gunasekaran, K., and Nussinov, R. (2007). How different are structurally flexible and 
rigid binding sites? Sequence and structural features discriminating proteins that do 
and do not undergo conformational change upon ligand binding. J. Mol. Biol. 365 (1), 
257–273. doi:10.1016/j.jmb.2006.09.062

Han, Y., Zhang, J., Hu, C. Q., Zhang, X., Ma, B., and Zhang, P. (2019). In silico ADME 
and toxicity prediction of ceftazidime and its impurities. Front. Pharmacol. 10, 434. 
doi:10.3389/fphar.2019.00434

Frontiers in Bioinformatics 19 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1567748
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1567748/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1567748/full#supplementary-material
https://doi.org/10.1007/s13197-022-05594-y
https://doi.org/10.1007/s13197-022-05594-y
https://doi.org/10.3389/fchem.2024.1473398
https://doi.org/10.1002/cbin.12145
https://doi.org/10.1016/j.sjbs.2023.103753
https://doi.org/10.1093/nar/gkae303
https://doi.org/10.3322/caac.21834
https://doi.org/10.1158/1535-7163.mct-08-0836
https://doi.org/10.1021/ci300367a
https://doi.org/10.21037/jgo-22-825
https://doi.org/10.1016/bs.acr.2020.10.001
https://doi.org/10.3390/molecules25112615
https://doi.org/10.1101/cshperspect.a020412
https://doi.org/10.1016/s0223-5234(03)00012-6
https://doi.org/10.3390/cancers14081902
https://doi.org/10.1093/-✐nar/gkx312
https://doi.org/10.1093/-✐nar/gkx312
https://doi.org/10.1021/acs.jpcb.7b00272
https://doi.org/10.1186/1747-1028-5-11
https://doi.org/10.1038/ncomms12336
https://doi.org/10.1002/open.202100178
https://doi.org/10.1016/j.neo.2017.01.010
https://doi.org/10.1093/nar/gkae236
https://doi.org/10.1016/bs.apcsb.2019.01.001
https://doi.org/10.1186/s13321-019-0383-2
https://doi.org/10.3892/ijo.2020.5070
https://doi.org/10.1038/s41401-022-00996-2
https://doi.org/10.4103/jcar.jcar_9_16
https://doi.org/10.4103/jcar.jcar_9_16
https://doi.org/10.1016/j.jmb.2006.09.062
https://doi.org/10.3389/fphar.2019.00434
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Ghosh et al. 10.3389/fbinf.2025.1567748

Hao, R., Lu, H., Guo, Y., Liu, Q., Wang, L., Wang, Y., et al. (2021). Bioinformatics 
analysis of constructing a HCV-related hepatocellular carcinoma miRNA–mRNA 
regulation network. Medicine 100 (33), e26964. doi:10.1097/md.0000000000026964

Hishida, M., Nomoto, S., Inokawa, Y., Hayashi, M., Kanda, M., Okamura, Y., 
et al. (2013). Estrogen receptor 1 gene as a tumor suppressor gene in hepatocellular 
carcinoma detected by triple-combination array analysis. Int. J. Oncol. 43 (1), 88–94. 
doi:10.3892/ijo.2013.1951

Hodo, Y., Honda, M., Tanaka, A., Nomura, Y., Arai, K., Yamashita, T., et al. 
(2013). Association of interleukin-28B genotype and hepatocellular carcinoma 
recurrence in patients with chronic hepatitis C. Clin. Cancer Res. 19 (7), 1827–1837. 
doi:10.1158/1078-0432.CCR-12-1641

Hollingsworth, S. A., and Dror, R. O. (2018). Molecular dynamics simulation for all. 
Neuron 99 (6), 1129–1143. doi:10.1016/j.neuron.2018.08.011

Horde, G. W., and Gupta, V. (2024). Drug clearance. Treasure Island (FL): StatPearls 
Publishing. Available online at:  https://www.ncbi.nlm.nih.gov/books/NBK557758/.

Hu, X., Pan, H., Zhou, S., Pang, Q., Wang, Y., Zhu, C., et al. (2022). HS1BP3, 
transcriptionally regulated by ESR1, promotes hepatocellular carcinoma progression. 
Biochem. Biophysical Res. Commun. 623, 111–119. doi:10.1016/j.bbrc.2022.07.047

Huang, L., Garrett Injac, S., Cui, K., Braun, F., Lin, Q., Du, Y., et al. (2018). 
Systems biology–based drug repositioning identifies digoxin as a potential therapy 
for groups 3 and 4 medulloblastoma. Sci. Transl. Med. 10 (464), eaat0150. 
doi:10.1126/scitranslmed.aat0150

Jindal, A., Thadi, A., and Shailubhai, K. (2019). Hepatocellular carcinoma: 
etiology and current and future drugs. J. Clin. Exp. hepatology 9 (2), 221–232. 
doi:10.1016/j.jceh.2019.01.004

Jorgensen, W. L., and Tirado-Rives, J. (2005). Potential energy functions for atomic-
level simulations of water and organic and biomolecular systems. Proc. Natl. Acad. Sci.
102 (19), 6665–6670. doi:10.1073/pnas.0408037102

Kangra, K., Kakkar, S., Mittal, V., Kumar, V., Aggarwal, N., Chopra, H., et al. 
(2025). Incredible use of plant-derived bioactives as anticancer agents. RSC Adv. 15 (3), 
1721–1746. doi:10.1039/d4ra05089d

Kumari, R., Kumar, R., and Lynn, A. (2014). g_mmpbsa A GROMACS tool for 
high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54 (7), 1951–1962. 
doi:10.1021/ci500020m

Kurzeder, C., Nguyen-Sträuli, B. D., Krol, I., Ring, A., Castro-Giner, F., Nüesch, 
M., et al. (2025). Digoxin for reduction of circulating tumor cell cluster size in 
metastatic breast cancer: a proof-of-concept trial. Nat. Med. 31 (4), 1120–1124. 
doi:10.1038/s41591-024-03486-6

Li, J., Yanagisawa, K., Yoshikawa, Y., Ohue, M., and Akiyama, Y. (2022). 
Plasma protein binding prediction focusing on residue-level features and 
circularity of cyclic peptides by deep learning. Bioinformatics 38 (4), 1110–1117. 
doi:10.1093/bioinformatics/btab726

Lin, H., Juang, J. L., and Wang, P. S. (2004). Involvement of Cdk5/p25 in Digoxin-
triggered prostate cancer cell apoptosis. J. Biol. Chem. 279 (28), 29302–29307. 
doi:10.1074/jbc.m403664200

Liu, X. H., Liu, L. P., Xu, X. M., Hua, M., Kang, Q., Li, A., et al. (2021). FOXN2 
suppresses the proliferation and invasion of human hepatocellular carcinoma cells. 
Eur. Rev. Med. and Pharmacol. Sci. 25 (2), 731–737. doi:10.26355/eurrev_202101_
24634

Lu, D., Huang, L., and Weng, C. (2025). Unveiling the novel Anti-tumor potential 
of Digitonin, a Steroidal Saponin, in gastric cancer: a network pharmacology 
and experimental validation study. Drug Des. Dev. Ther. Vol. 19, 2653–2666. 
doi:10.2147/dddt.s504671

Marques, H. P., da Silva, S. G., De Martin, E., Agopian, V. G., and Martins, P. N. 
(2020). Emerging biomarkers in HCC patients: current status. Int. J. Surg. 82, 70–76. 
doi:10.1016/j.ijsu.2020.04.043

Martí-Renom, M. A., Stuart, A. C., Fiser, A., Sánchez, R., Melo, F., and 
Šali, A. (2000). Comparative protein structure modeling of genes and genomes. 
Annu. Rev. biophysics Biomol. Struct. 29 (1), 291–325. doi:10.1146/annurev.biophys.
29.1.291

Maruyama, Y., Igarashi, R., Ushiku, Y., and Mitsutake, A. (2023). Analysis of protein 
folding simulation with moving root mean square deviation. J. Chem. Inf. Model. 63 (5), 
1529–1541. doi:10.1021/acs.jcim.2c01444

Meng, X. Y., Zhang, H. X., Mezei, M., and Cui, M. (2011). Molecular docking: a 
powerful approach for structure-based drug discovery. Curr. computer-aided drug Des.
7 (2), 146–157. doi:10.2174/157340911795677602

Menger, L., Vacchelli, E., Kepp, O., Eggermont, A., Tartour, E., Zitvogel, L., et al. 
(2013). Trial watch: cardiac glycosides and cancer therapy. Oncoimmunology 2 (2), 
e23082. doi:10.4161/onci.23082

Mitra, A., Ghosh, S., Porey, S., and Mal, C. (2023). GBP5 and ACSS3: 
two potential biomarkers of high-grade ovarian cancer identified through 
downstream analysis of microarray data. J. Biomol. Struct. Dyn. 41 (10), 4601–4613. 
doi:10.1080/07391102.2022.2069866

Miu, L., Bogatyreva, N. S., and Galzitskaia, O. V. (2008). Radius of gyration is 
indicator of compactness of protein structure. Mol. Biol. 42 (4), 701–706.

Moghimi, A., Bani Hosseinian, N., Mahdipour, M., Ahmadpour, E., Miranda-Bedate, 
A., and Ghorbian, S. (2024). Deciphering the molecular complexity of hepatocellular 
carcinoma: unveiling novel biomarkers and therapeutic targets through advanced 
bioinformatics analysis. Cancer Rep. 7 (8), e2152. doi:10.1002/cnr2.2152

Ni, W., Zhang, S., Jiang, B. O., Ni, R., Xiao, M., Lu, C., et al. (2019). Identification of 
cancer-related gene network in hepatocellular carcinoma by combined bioinformatic 
approach and experimental validation. Pathology-Research Pract. 215 (6), 152428. 
doi:10.1016/j.prp.2019.04.020

Ogu, C. C., and Maxa, J. L. (2000). “Drug interactions due to cytochrome P450,”Bayl. 
Univ. Med. Cent. Proc., 13. 421–423. doi:10.1080/08998280.2000.11927719

Okada, Y., Muramatsu, T., Suita, N., Kanai, M., Kawakami, E., Iotchkova, V., et al. 
(2016). Significant impact of miRNA–target gene networks on genetics of human 
complex traits. Sci. Rep. 6, 22223. doi:10.1038/srep22223

O’Brien, M. H., Pitot, H. C., Chung, S. H., Lambert, P. F., Drinkwater, N. R., and 
Bilger, A. (2021). Estrogen receptor-α suppresses liver carcinogenesis and establishes 
sex-specific gene expression. Cancers 13 (10), 2355. doi:10.3390/cancers13102355

Piana, S., Lindorff-Larsen, K., Dirks, R. M., Salmon, J. K., Dror, R. O., and Shaw, D. 
E. (2012). Evaluating the effects of cutoffs and treatment of long-range electrostatics in 
protein folding simulations. PLoS One 7 (6), e39918. doi:10.1371/journal.pone.0039918

Pires, D. E., Blundell, T. L., and Ascher, D. B. (2015). pkCSM: predicting small-
molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. 
Chem. 58 (9), 4066–4072. doi:10.1021/acs.jmedchem.5b00104

Remmert, M., Biegert, A., Hauser, A., and Söding, J. (2012). HHblits: lightning-fast 
iterative protein sequence searching by HMM-HMM alignment. Nat. Methods 9 (2), 
173–175. doi:10.1038/nmeth.1818

Ren, X., and Feng, N. (2024). Unveiling novel prognostic biomarkers and therapeutic 
targets for HBV-associated hepatocellular carcinoma through integrated bioinformatic 
analysis. Medicine 103 (43), e40134. doi:10.1097/md.0000000000040134

Richmond, T. J. (1984). Solvent accessible surface area and excluded volume 
in proteins: Analytical equations for overlapping spheres and implications for the 
hydrophobic effect. J. Mol. Biol. 178 (1), 63–89. doi:10.1016/0022-2836(84)90231-6

Ruan, X., Li, W., Du, P., and Wang, Y. (2022). Mechanism of Phellodendron 
and Anemarrhena drug pair on the treatment of liver cancer based on 
network pharmacology and bioinformatics. Front. Oncol. 12, 838152. 
doi:10.3389/fonc.2022.838152

Schlosser, S., Tümen, D., Volz, B., Neumeyer, K., Egler, N., Kunst, C., et al. 
(2022). HCC biomarkers–state of the old and outlook to future promising biomarkers 
and their potential in everyday clinical practice. Front. Oncol. 12, 1016952. 
doi:10.3389/fonc.2022.1016952

Schulze, K., Imbeaud, S., Letouzé, E., Alexandrov, L. B., Calderaro, J., Rebouissou, 
S., et al. (2015). Exome sequencing of hepatocellular carcinomas identifies new 
mutational signatures and potential therapeutic targets. Nat. Genet. 47 (5), 505–511. 
doi:10.1038/ng.3252

Shil, R., Ghosh, R., Banerjee, A. K., and Mal, C. (2022). LncRNA, miRNA and 
transcriptional co-regulatory network of breast and ovarian cancer reveals hub 
molecules. Hum. Gene 32, 101024. doi:10.1016/j.mgene.2022.101024

Shimada, S., Mogushi, K., Akiyama, Y., Furuyama, T., Watanabe, S., Ogura, 
T., et al. (2019). Comprehensive molecular and immunological characterization 
of hepatocellular carcinoma. EBioMedicine 40, 457–470. doi:10.1016/j.ebiom.
2018.12.058

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., et al. (2011). Fast, 
scalable generation of high‐quality protein multiple sequence alignments using Clustal 
Omega. Mol. Syst. Biol. 7 (1), 539. doi:10.1038/msb.2011.75

Singh, G., Yoshida, E. M., Rathi, S., Marquez, V., Kim, P., Erb, S. R., et al. 
(2020). Biomarkers for hepatocellular cancer. World J. Hepatology 12 (9), 558–573. 
doi:10.4254/wjh.v12.i9.558

Su, Q., Li, W., Zhang, X., Wu, R., Zheng, K., Zhou, T., et al. (2023). Integrated 
bioinformatics analysis for the screening of hub genes and therapeutic drugs 
in hepatocellular carcinoma. Curr. Pharm. Biotechnol. 24 (8), 1035–1058. 
doi:10.2174/1389201023666220628113452

Sun, Y., and Zhang, Z. (2020). In silico identification of crucial genes and specific 
pathways in hepatocellular cancer. Genet. Test. Mol. biomarkers 24 (5), 296–308. 
doi:10.1089/gtmb.2019.0242

Tsiambas, E., Georgiannos, S. N., Salemis, N., Alexopoulou, D., Lambropoulou, S., 
Dimo, B., et al. (2011). Significance of estrogen receptor 1 (ESR-1) gene imbalances in 
colon and hepatocellular carcinomas based on tissue microarrays analysis. Med. Oncol.
28, 934–940. doi:10.1007/s12032-010-9554-8

Tsuchiya, N., Sawada, Y., Endo, I., Saito, K., Uemura, Y., and Nakatsura, T. 
(2015). Biomarkers for the early diagnosis of hepatocellular carcinoma. World J. 
Gastroenterology 21 (37), 10573–10583. doi:10.3748/wjg.v21.i37.10573

Van Breemen, R. B., and Li, Y. (2005). Caco-2 cell permeability assays to 
measure drug absorption. Expert Opin. Drug Metabolism and Toxicol. 1 (2), 175–185. 
doi:10.1517/17425255.1.2.175

Wang, S. M., Ooi, L. L., and Hui, K. M. (2007). Identification and validation of a 
novel gene signature associated with the recurrence of human hepatocellular carcinoma. 

Frontiers in Bioinformatics 20 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1567748
https://doi.org/10.1097/md.0000000000026964
https://doi.org/10.3892/ijo.2013.1951
https://doi.org/10.1158/1078-0432.CCR-12-1641
https://doi.org/10.1016/j.neuron.2018.08.011
https://www.ncbi.nlm.nih.gov/books/NBK557758/
https://doi.org/10.1016/j.bbrc.2022.07.047
https://doi.org/10.1126/scitranslmed.aat0150
https://doi.org/10.1016/j.jceh.2019.01.004
https://doi.org/10.1073/pnas.0408037102
https://doi.org/10.1039/d4ra05089d
https://doi.org/10.1021/ci500020m
https://doi.org/10.1038/s41591-024-03486-6
https://doi.org/10.1093/bioinformatics/btab726
https://doi.org/10.1074/jbc.m403664200
https://doi.org/10.26355/eurrev_202101_-✐24634
https://doi.org/10.26355/eurrev_202101_-✐24634
https://doi.org/10.2147/dddt.s504671
https://doi.org/10.1016/j.ijsu.2020.04.043
https://doi.org/10.1146/annurev.biophys.-✐29.1.291
https://doi.org/10.1146/annurev.biophys.-✐29.1.291
https://doi.org/10.1021/acs.jcim.2c01444
https://doi.org/10.2174/157340911795677602
https://doi.org/10.4161/onci.23082
https://doi.org/10.1080/07391102.2022.2069866
https://doi.org/10.1002/cnr2.2152
https://doi.org/10.1016/j.prp.2019.04.020
https://doi.org/10.1080/08998280.2000.11927719
https://doi.org/10.1038/srep22223
https://doi.org/10.3390/cancers13102355
https://doi.org/10.1371/journal.pone.0039918
https://doi.org/10.1021/acs.jmedchem.5b00104
https://doi.org/10.1038/nmeth.1818
https://doi.org/10.1097/md.0000000000040134
https://doi.org/10.1016/0022-2836(84)90231-6
https://doi.org/10.3389/fonc.2022.838152
https://doi.org/10.3389/fonc.2022.1016952
https://doi.org/10.1038/ng.3252
https://doi.org/10.1016/j.mgene.2022.101024
https://doi.org/10.1016/j.ebiom.-✐2018.12.058
https://doi.org/10.1016/j.ebiom.-✐2018.12.058
https://doi.org/10.1038/msb.2011.75
https://doi.org/10.4254/wjh.v12.i9.558
https://doi.org/10.2174/1389201023666220628113452
https://doi.org/10.1089/gtmb.2019.0242
https://doi.org/10.1007/s12032-010-9554-8
https://doi.org/10.3748/wjg.v21.i37.10573
https://doi.org/10.1517/17425255.1.2.175
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Ghosh et al. 10.3389/fbinf.2025.1567748

Clin. cancer Res. official J. Am. Assoc. Cancer Res. 13 (21), 6275–6283. doi:10.1158/1078-
0432.CCR-06-2236

Wang, H. W., Hsieh, T. H., Huang, S. Y., Chau, G. Y., Tung, C. Y., Su, C. W., et al. 
(2013). Forfeited hepatogenesis program and increased embryonic stem cell traits in 
young hepatocellular carcinoma (HCC) comparing to elderly HCC. BMC genomics 14, 
736–11. doi:10.1186/1471-2164-14-736

Wang, J., Tian, Y., Chen, H., Li, H., and Zheng, S. (2018). Key signaling pathways, 
genes and transcription factors associated with hepatocellular carcinoma. Mol. Med. 
Rep. 17 (6), 8153–8160. doi:10.3892/mmr.2018.8871

Wang, P. H., Tu, Y. S., and Tseng, Y. J. (2019). PgpRules: a decision tree based 
prediction server for P-glycoprotein substrates and inhibitors. Bioinformatics 35 (20), 
4193–4195. doi:10.1093/bioinformatics/btz213

Wang, Y., Ma, Q., Zhang, S., Liu, H., Zhao, B., Du, B., et al. (2020). Digoxin enhances 
the anticancer effect on non-small cell lung cancer while reducing the cardiotoxicity of 
adriamycin. Front. Pharmacol. 11, 186. doi:10.3389/fphar.2020.00186

Wang, L., Cui, M., Cheng, D., Qu, F., Yu, J., Wei, Y., et al. (2021). miR-9-5p facilitates 
hepatocellular carcinoma cell proliferation, migration and invasion by targeting ESR1. 
Mol. Cell. Biochem. 476, 575–583. doi:10.1007/s11010-020-03927-z

Wood, D. J., Korolchuk, S., Tatum, N. J., Wang, L. Z., Endicott, J. A., Noble, M. E., 
et al. (2019). Differences in the conformational energy landscape of CDK1 and CDK2 
suggest a mechanism for achieving selective CDK inhibition. Cell. Chem. Biol. 26 (1), 
121–130.e5. doi:10.1016/j.chembiol.2018.10.015

Wu, P., Zhao, J., Shen, X., Liang, X., He, C., Yin, L., et al. (2023). Research progress on 
the structure and biological diversities of 2-phenylindole derivatives in recent 20 years. 
Bioorg. Chem. 132, 106342. doi:10.1016/j.bioorg.2023.106342

Xiao, B., Zhang, W., Kuang, Z., Lu, J., Li, W., Deng, C., et al. (2019). SOX9 promotes 
nasopharyngeal carcinoma cell proliferation, migration and invasion through BMP2 
and mTOR signaling. Gene 715, 144017. doi:10.1016/j.gene.2019.144017

Yusof, I., and Segall, M. D. (2013). Considering the impact drug-like properties 
have on the chance of success. Drug Discov. Today 18 (13-14), 659–666. 
doi:10.1016/j.drudis.2013.02.008

Zhang, Y., Huang, W., Ran, Y., Xiong, Y., Zhong, Z., Fan, X., et al. (2015). miR-582-5p 
inhibits proliferation of hepatocellular carcinoma by targeting CDK1 and AKT3. Tumor 
Biol. 36, 8309–8316. doi:10.1007/s13277-015-3582-0

Zhang, J., Song, Q., Liu, J., Lu, L., Xu, Y., and Zheng, W. (2019). Cyclin‐dependent 
kinase regulatory subunit 2 indicated poor prognosis and facilitated aggressive 
phenotype of hepatocellular carcinoma. Dis. Markers 2019 (1), 1–13. 
doi:10.1155/2019/8964015

Zhang, X., Luo, X., Liu, W., and Shen, A. (2021). Identification of hub genes associated 
with hepatocellular carcinoma prognosis by bioinformatics analysis. J. Cancer Ther. 12 
(04), 186–207. doi:10.4236/jct.2021.124019

Zhang, M. S., Cui, J. D., Lee, D., Yuen, V. W. H., Chiu, D. K. C., Goh, C. C., 
et al. (2022a). Hypoxia-induced macropinocytosis represents a metabolic route for liver 
cancer. Nat. Commun. 13 (1), 954. doi:10.1038/s41467-022-28618-9

Zhang, Y., Cheng, J., Zhong, C., Xia, Q., Li, Y., Chen, P., et al. (2022b). 
ESR1 regulates the obesity-and metabolism-differential gene MMAA to inhibit the 
occurrence and development of hepatocellular carcinoma. Front. Oncol. 12, 899969. 
doi:10.3389/fonc.2022.899969

Zhao, M., Ma, J., Li, M., Zhang, Y., Jiang, B., Zhao, X., et al. (2021). Cytochrome 
P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci. 22 (23), 12808. 
doi:10.3390/ijms222312808

Zhou, T. H., Su, J. Z., Qin, R., Chen, X., Ju, G. D., and Miao, S. (2020). Prognostic and 
predictive value of a 15 transcription factors (TFs) Panel for hepatocellular carcinoma. 
Cancer Manag. Res. 12, 12349–12361. doi:10.2147/CMAR.S279194

Zhou, M., Boulos, J. C., Klauck, S. M., and Efferth, T. (2023). The cardiac 
glycoside ZINC253504760 induces parthanatos-type cell death and G2/M arrest via 
downregulation of MEK1/2 phosphorylation in leukemia cells. Cell. Biol. Toxicol. 39, 
2971–2997. doi:10.1007/s10565-023-09813-w

Zou, Y., Ruan, S., Jin, L., Chen, Z., Han, H., Zhang, Y., et al. (2020). CDK1, CCNB1, 
and CCNB2 are prognostic biomarkers and correlated with immune infiltration in 
hepatocellular carcinoma. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 26, e925289. 
doi:10.12659/msm.925289

Frontiers in Bioinformatics 21 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1567748
https://doi.org/10.1158/1078-0432.CCR-06-2236
https://doi.org/10.1158/1078-0432.CCR-06-2236
https://doi.org/10.1186/1471-2164-14-736
https://doi.org/10.3892/mmr.2018.8871
https://doi.org/10.1093/bioinformatics/btz213
https://doi.org/10.3389/fphar.2020.00186
https://doi.org/10.1007/s11010-020-03927-z
https://doi.org/10.1016/j.chembiol.2018.10.015
https://doi.org/10.1016/j.bioorg.2023.106342
https://doi.org/10.1016/j.gene.2019.144017
https://doi.org/10.1016/j.drudis.2013.02.008
https://doi.org/10.1007/s13277-015-3582-0
https://doi.org/10.1155/2019/8964015
https://doi.org/10.4236/jct.2021.124019
https://doi.org/10.1038/s41467-022-28618-9
https://doi.org/10.3389/fonc.2022.899969
https://doi.org/10.3390/ijms222312808
https://doi.org/10.2147/CMAR.S279194
https://doi.org/10.1007/s10565-023-09813-w
https://doi.org/10.12659/msm.925289
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	Highlights
	1 Background
	2 Methods
	2.1 Collection of datasets
	2.2 Differential gene expression analysis
	2.3. Gene ontology (GO) and KEGG pathway enrichment analysis
	2.4 Construction of PPI network and hub gene selection
	2.5 Identification of transcription factors (TF) associated the DEGs
	2.6 Identification of miRNA targets
	2.7 Survival analysis and validation of hub genes
	2.8 Virtual screening and molecular docking
	2.9 ADMET analysis
	2.10 Molecular dynamics simulation

	3 Results
	3.1 Common set of genes differentially expressed across the datasets
	3.2 DEG enriched GO terms and KEGG pathways
	3.3 PPI network revealed hub genes
	3.4 Transcription factors (TF) targeting the top DEGs
	3.6 Top DEGs targeted by miRNA
	3.7 Patient survivability affected due to hub gene expression
	3.8 Properties of drug molecules identified by ADMET analysis
	3.9 Candidate drugs selected by molecular docking analysis
	3.10 Validated receptor-drug interaction confirmed by molecular dynamics simulation

	4 Discussion
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

