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Background: Hepatocellular carcinoma (HCC) is the third leading cause of
cancer-related mortality globally, and ranks fifth in terms of incidence. It
primarily affects males and has a high prevalence in Asia. Risk factors include
hepatitis B and C, liver cirrhosis, nonalcoholic fatty liver disease (NAFLD), and
alcohol consumption. Late-stage diagnosis results in a poor survival rate of
approximately 20%, underscoring the need for early detection methods to
improve the survival rates. This study aimed to identify prognostic biomarkers
for HCC through bioinformatic analysis of microarray datasets, providing insights
into potential therapeutic targets.

Methods: We analyzed five microarray datasets, comprising 402 HCC samples
and 121 control samples. To identify relevant biological pathways, we conducted
differential gene expression, Gene Ontology (GO), and KEGG pathway
enrichment analyses. We identified hub genes and quantitatively assessed
transcription factors and microRNAs targeting these genes. Additionally,
molecular docking and dynamic simulations (100 ns) were used to identify
potential drug candidates capable of inhibiting the activity of differentially
expressed hub genes.

Results: Our bioinformatic approach identified several promising HCC
biomarkers. Among these, CDK1/CKS2 was identified as a key therapeutic
target, with a regulatory role in HCC pathogenesis, suggesting its potential
for further investigation. Digoxin (DB00390) has been highlighted as
a potential repurposed drug candidate because of its favorable drug-
likeness and stability, as confirmed by virtual screening, ADMET analysis,
molecular docking study and dynamic simulations.
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Conclusion: This study enhances our understanding of HCC biology and offers
new insights into drug interactions. It presents several promising biomarkers
for the early diagnosis, prognosis, and therapy. Further investigation into
CDK1/CKS2 as a therapeutic target and the role of the identified biomarkers
could contribute to improved diagnostic and therapeutic strategies for HCC.
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Highlights

Prognostic biomarkers for hepatocellular carcinoma (HCC)
were identified by analyzing five microarray datasets containing
402 cancer and 121 control samples.

o CDKI has been observed to be upregulated in HCC samples
and is considered a potential oncogene involved in various
cellular functions and processes.

Molecular docking studies indicated that Digoxin (DB00390)
has a strong binding affinity for the CDK1/CKS2 protein.

o Root mean square deviation (RMSD) analysis confirmed

the stability of the complexes throughout the 100 ns
production period.

Molecular dynamics simulations revealed the flexibility of the
binding site, the binding free energy of the complexes, and
region-specific residue contributions to ligand binding.

1 Background

Liver cancer primarily comprises of hepatocellular carcinoma
(HCC) (Bray et al, 2024). It ranks third in cancer-related
mortality globally, and is the fifth most common cancer worldwide
(Wang et al, 2021). The incidence of HCC is notably higher
in males than in females (Chidambaranathan-Reghupaty et al.,
2021; Singh et al.,, 2020), with most cases being reported in Asia
(Marques et al., 2020). The risk factors for HCC are diverse,
and include HBV or HCV infection, liver cirrhosis, nonalcoholic
fatty liver disease (NAFLD), and alcoholism (Ghouri et al., 2017;
Bray et al., 2024). HCC induced by HBV and HCV is believed to be
particularly prevalent (Ghouri et al., 2017; Singh et al., 2020). Late-
stage diagnosis of HCC significantly contributes to early mortality,
with survival rates of approximately 20% in patients diagnosed at
advanced stages (Zhou et al., 2020). Conversely, early detection
can improve survival rates by nearly 70% (Tsuchiya et al., 2015).
Numerous pathological biomarkers associated with HCC have been
identified, many of which serve as prognostic indicators for poor
outcomes. These biomarkers include genes and non-coding RNAs
that regulate pathways controlling both proliferative and non-
proliferative cellular activities, and may also function as immune
checkpoint inhibitors (Marques et al., 2020).

Non-coding RNAs, including miRNAs, IncRNAs, and snoRNAs,
play a significant role in cellular activities in hepatocellular
carcinoma (HCC) by regulating oncogenes and associated signaling
pathways (Arefnezhad et al., 2024). Identifying specific biomarkers
for HCC is a critical area of research (Schlosser et al., 2022).
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Although numerous biomarkers have been implicated in the disease,
microarray data analysis methods have become widely employed
to predict causative biomarkers in various cancers, including HCC.
Several studies have utilized bioinformatic approaches to investigate
cancers (Shil et al., 2022; Mitra et al., 2023). These studies have
adopted diverse methodologies to identify potential biomarkers
and to examine their roles in disease prognosis. Most studies
have focused on microarray datasets from the Gene Expression
Omnibus (GEO) database to identify prognostic genes, miRNAs,
and transcription factors associated with HCC.

Our study aimed to identify significant biomarkers that can
act as prognostic indicators for hepatocellular carcinoma (HCC)
through comprehensive bioinformatics analysis. We obtained five
datasets from the Gene Expression Omnibus (GEO) database and
performed differential gene expression analysis to identify common
biomarkers between diseased and control samples. To further
our investigation, we employed various bioinformatics tools for
Gene Ontology (GO) and KEGG enrichment analyses, hub gene
identification, and survival analysis. Additionally, we conducted a
quantitative assessment of transcription factors (TFs) and miRNAs
targeting the differentially expressed genes (DEGs). We also
performed virtual screening and selected potential drug candidates
based on ADMET analysis and found Digoxin (DB00390) as an
inhibitor of CDK1. Digoxin, a purified digitalis preparation derived
from the leaves of Digitalis lanata (foxglove), is primarily used in the
therapy of congestive heart failure, breast cancer (Kurzeder et al.,
2025) and prostate cancer (Lin et al., 2004). Recently, in hypoxia-
induced mice models, HCC tumor size has been significantly
reduced by administering Digoxin (Zhang M. S. et al, 2022).
However, the detailed mechanism remains unknown. Following
the identification of key biomarkers, we applied molecular docking
and molecular dynamics simulation techniques to explore drug
candidates that may inhibit gene activity, potentially hindering liver
cancer progression and offering therapeutic options for patients with
HCC. These in silico methods significantly reduce both the cost and
time associated with drug discovery while ensuring a reasonable
level of accuracy (Aghajani et al., 2022).

2 Methods
2.1 Collection of datasets
The microarray datasets GSE41804 (Hodo et al,2013),

GSE45267 (Wang et al, 2013), GSE62232 (Schulze et al,
2015), GSE112790 (Shimada et al., 2019), and GSE121248
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(Wang et al,2007) were obtained from the Gene Expression
Omnibus repository (https://www.ncbi.nlm.nih.gov/geo/). Each
dataset belonged to the platform GPL570 (HG-U133_Plus_2)
Affymetrix Human Genome U133 Plus 2.0. GSE41804 consists
of 20 resected live tumor tissues and resected non-tumor liver
tissues. GSE45267 contained 48 primary HCC samples and 39
non-cancerous samples. GSE62232 contained 81 HCC solid
tumors and 10 non-tumor liver tissues. GSE112790 contained
183 liver cancer tumor tissues and 15 normal liver tissues.
GSE121248 contained 70 tumor samples and 37 adjacent normal
samples.

2.2 Differential gene expression analysis

Differential gene expression analysis was conducted using
GEO2R  (https://www.ncbi.nlm.nih.gov/geo/geo2r/)  for the
GSE41804, GSE45267, GSE62232, GSE112790, and GSE121248
datasets. Statistically significant up- and downregulated genes were
filtered based on an adjusted p-value (adj. P-value) < 0.05 and
|Log2FC]| > 2. To identify the common up- and downregulated genes,
Venn diagrams were constructed using a Multiple List Comparator
(https://molbiotools.com/listcompare.php).

2.3. Gene ontology (GO) and KEGG
pathway enrichment analysis

GO and KEGG enrichment analyses were performed using
DAVID (DAVID Functional Annotation Tools ncifcrf.gov). The
groups of common up-and downregulated genes were analyzed
separately. An adjusted P-value <0.05 was considered to identify
statistically significant terms and pathways.

2.4 Construction of PPl network and hub
gene selection

The protein-protein interaction network of the common up-and
downregulated gene set was generated in the Integrated Interactions
Database (IID utoronto.ca) and by selecting “Retrieve all PPIs of
query proteins’ in the option ‘Select retrieval strategy” Network
analyses were performed using Cytoscape (https://cytoscape.org/) to
identify the top 10 hub genes using the plugin Cytohubba (through
the EPC algorithm).

2.5 ldentification of transcription factors
(TF) associated the DEGs

The TF2DNA database (https://www.fiserlab.org/tf2dna_db/)
was used to identify the Transcription factors (TFs) that regulate the
transcription of upregulated and downregulated genes. The species
chosen was Homo sapiens, Sources: TF2DNA (computational), and
p-value = 0.0001.
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2.6 Identification of miRNA targets

The miRWalk database (http://mirwalk.umm.uni-
heidelberg.de/) was used to identify the miRNAs that target the
mRNAs of the upregulated and downregulated genes. The top five
upregulated and downregulated genes were chosen for analysis.

2.7 Survival analysis and validation of hub
genes

GEPIA (http://gepia.cancer-pku.cn/) was used to identify
potential candidate biomarkers associated with liver Hepatocellular
Carcinoma (LIHC) prognosis. For this purpose, we assessed the
genes that showed statistically significant (p < 0.05) Overall Survival
(OS) and Disease-Free survival of patients (DFS) affected with
LIHC. The survival analysis was done using the “overall survival”
method and the median group cutoff was set to 50% for both
high and low and the hazards ratio was taken into consideration.
The expression levels of these genes in LIHC-affected tissues were
determined by comparing their expression levels in normal tissues.
Analyses were based on the TCGA-LIHC cohort.

2.8 Virtual screening and molecular
docking

The necessary PDB file (PDB ID: 6GU7) was downloaded from
the Protein Data Bank. This file contains the crystalized structure of
CDKI1, CDK1 regulatory subunit 2 and the co-crystallized molecule
AZD-5438 (Wood et al., 2019). AZD-5438 is identified as a potential
inhibitor of CDK1/CKS2 (Byth et al., 2009). CDK1 shows high co-
occurrence and co-expression with CKS2 (Zhang et al., 2019). The
protein file was prepared by removing the water molecules and other
ligand molecules, adding missing hydrogens and fixing the atom names
in the Discovery Studio (2024) prior to virtual screening. The modified
PDB file was submitted to the Drugrep (cao.labshare.cn) server for
virtual screening using the databases of FDA approved drugs (contains
4714 drugs) and experimental drugs (contains 6883 drugs) (Gan et al.,
2023) out of the three available drug libraries (FDA approved drug
library, experimental drug library and traditional Chinese medicine).
After screening, DB00390, DB00511, DB00696, DB00872, DB01396,
DB09102, and DB11581 were selected for repurposing based on their
binding affinity with CDK1/CKS2. These ligands were docked (blind
docking) in the HDOCK server (http://hdock.phys.hust.edu.cn/) and
used for further analysis. Additionally, AZD-5438 was docked with
the CDK1/CKS2 to obtain its binding affinity and root mean square
deviation (RMSD) for comparison.

2.9 ADMET analysis

Properties, such as absorption, distribution, metabolism,
excretion, and toxicity, were tested for the selected molecules to
determine their competence as drug molecules. ADMET analysis
was performed using the ADMETIab 3.0 web server (Fu et al., 2024).
For the calculation of LD50, ProTox web server (Banerjee et al.,
2024) was used. Drug likeness was calculated using the pkCSM
web server (Pires et al., 2015).
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2.10 Molecular dynamics simulation

Necessary molecular dynamics simulations were performed
to concretize the results of the molecular docking study. MD
simulations were performed using Gromacs 2019 software and
the Compute Unified Device Architecture (CUDA) API on
NVIDIA graphics processors. CDK1/CKS2 and CDKI1/CKS2-
Digoxin complex derived from molecular docking were imported
into the gromacs and converted from™.pdb to*.gro format. Gromacs
works with proteins, nucleic acids, and lipids, with predefined force
field parameters available in the software itself. However, these
required force field parameters are not available for the ligands in
Gromacs. So, a third-party server, “Ligand parameter generator” or
“Ligpargen” (Jorgensen and Tirado-Rives, 2005; Dodda et al., 2017a;
Dodda et al., 2017b) was used to generate force field parameters
for ligands. The output files from Ligpargen are used directly in
gromacs, which define its topology and force-field parameters.
The protein-ligand complexes were placed in a virtual 3D cube
filled with water and simulated using the SPC/E water model.
The entire system was then electrically neutralized by adding
the necessary monovalent Na+ and Cl-ions, and a GROningen
MOlecular Simulation (GROMOS) field was applied. A constant
temperature (Akharume and Adedeji, 2023) of 300 K and 1.00 bar
pressure was applied to the system using NPT and NVT as an
ensemble class. A leapfrog integrator was used to compile the motion
equations with a 2-fs time step size. A Verlet (buffered neighbor
searching) cutoff scheme was used for non-bonded interactions,
a modified Berendsen thermostat was applied to control the
temperature, and the Parrinello-Rahman method was used to
regulate pressure. Particle Mesh Ewald was used for calculations
of long-range electrostatics. Both the short-range electrostatic and
short-range Van der Waals cutoffs (Piana et al., 2012) were set to
1.0 nm. Standard Gromacs protocols were used to minimize the
energy of the system and perform the simulation for 100 ns. Similar
parameters were used to simulate the apoprotein (CDK1/CKS2) for
100 ns for comparison. Tools provided by Gromacs software were
used to calculate the trajectories of individual atoms. The same
software was used to plot the Root Mean Square Deviation (RMSD),
Root Mean Square Fluctuation (RMSF), solvent-accessible surface
area (SASA), Radius of Gyration (RoG) for both the CDK1/CKS2
and CDK1/CKS2-Digoxin complex. SASA was calculated using the
rolling ball algorithm (Richmond, 1984). Additionally, the number
of hydrogen bonds, hydrogen bond angle and bond distance during
simulation time (100 ns) were calculated for CDK1/CKS2-Digoxin
complex. Another tool g_mmpbsa (Kumari et al., 2014) was used
to calculate the Molecular Mechanics - Poisson-Boltzmann Surface
Area or MM-PBSA from the topology and trajectory data of
CDK1/CKS2-Digoxin complex generated from the simulation.

3 Results

3.1 Common set of genes differentially
expressed across the datasets

Differential gene expression analysis was performed on five
datasets (GSE41804, GSE45267, GSE62232, GSE112790, and
GSE121248) using the cut-off criteria of an adj. P-value <0.05 and
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[log2FC|> 2. Using the Venn diagram (Figure 1), we identified 19
upregulated and 61 downregulated genes that were common among
these datasets.

3.2 DEG enriched GO terms and KEGG
pathways

From the GO and KEGG pathway enrichment analysis in
DAVID, 18 GO terms and one pathway were enriched by the
upregulated genes, whereas 54 GO terms and 9 KEGG pathways
were enriched by the downregulated genes. The GO terms were
Biological Process (BP), Cellular Components (CC), and Molecular
Functions (MF). The results are shown in Supplementary Table S1.

3.3 PPl network revealed hub genes

The PPI network of both up-and downregulated genes
constructed in the Integrated Interactions Database (IID) was
analyzed in Cytoscape using the plugin Cytohubba (EPC algorithm).
We obtained the top 10 nodes among the upregulated and
downregulated genes, as scored by Cytohubba. Since CDK1 and
ESR1 in the up-and downregulated networks were the highest
ranked, they were predicted to be hub genes.

3.4 Transcription factors (TF) targeting the
top DEGs

The TFs of the top five upregulated and downregulated genes
were identified using the TF2DNA database. The upregulated genes,
NEK2, CDK1, SULT1C2, RRM2, and ANLN, were regulated by
22,76, 7,42, and 40 TFs, respectively. Similarly, the downregulated
genes, ESRI, LIFR, CXCL12, ADRAI1A, and IGF2, were regulated
by 113, 30, 36, 11, and 136 TFs, respectively. The results are
presented in Supplementary Table S2.

3.6 Top DEGs targeted by miRNA

The top five upregulated and downregulated genes were
subjected to analysis in the miRWalk database to identify miRNAs
that participate in the post-transcriptional modification of these
genes. The upregulated genes NEK2, CDK1, SULT1C2, RRM2, and
ANLN were targeted by 12, 14, 10, 8, and 7 miRNAs, respectively.
Similarly, the downregulated genes, ESRI, LIFR, CXCLI2,
ADRAL1A, and IGF2 were targeted by 58, 36, 36, 32, and 31 miRNAs,
respectively. The results are presented in Supplementary Table S3.

3.7 Patient survivability affected due to hub
gene expression

The top five upregulated and downregulated genes were analyzed
for their association with overall and disease-free survival in LIHC
using the TCGA-LIHC cohort, which was divided into high and
low expression groups. Kaplan-Meier analysis of the upregulated
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Venn diagrams of differential gene expression analysis across five microarray datasets. Common up and downregulated genes are circled in red.
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genes NEK2, CDK1, SULT1C2, RRM2, and ANLN showed that the
CDK1 high-expression group had significantly poorer OS and DFS
than the low-expression group and all other upregulated gene groups
(Figure 2). In contrast, among the downregulated genes ESR1, LIFR,
CXCL12, ADRAI1A, and IGF2, ESR1 had the poorest OS and DFS
in the low-expression group of LIHC patients compared to the other
downregulated gene groups (Figure 2).

The expression levels of the upregulated and downregulated
genes in LIHC-affected and normal TCGA cohort data were
also evaluated using GEPIA (Figure 3). All genes, except NEK2
and ANLN, showed statistically significant upregulation in LIHC
samples compared to normal samples. Similarly, except for LIFR, all
other genes showed statistically significant downregulation in LIHC
samples compared to that in normal samples.

3.8 Properties of drug molecules identified
by ADMET analysis

ADMET analysis provides insight into various properties of
drug molecules, such as absorption, distribution, metabolism,
excretion, and toxicity (Tables 1-5). These properties help determine
whether the drug should be taken orally, its absorption rate in
the gastrointestinal tract, the likelihood of being metabolized by
the cytochrome P450 group of enzymes, and the excretion rate
of the drug molecule (Zhao et al,, 2021). It also sheds light on
potential toxic effects, such as hERG-inhibition, skin sensitization,
hepatotoxicity, neurotoxicity, carcinogenicity, and various effects
on the eyes.

Caco-2 is a monolayer cell line that is used as a model
for the emulation of intestinal drug absorption (Van Breemen
and Li, 2005). A high value (>-5.15 logunit) indicates that
the drug is likely to be absorbed in the intestines upon oral
administration (Flores-Holguin et al., 2021). DB00390, DB00872,
and DB11581 have high permeability, suggesting that these drugs
have higher absorption rates than the rest. All drugs except DB00872
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and DB09102 can act as p-glycoprotein inhibitors (pgp-inhibitors),
while only DB11581 can act as a pgp-substrate. This has a significant
effect on drug fate.

The value of the volume of distribution (VDss) shows whether
the drug is likely to be distributed in the plasma or tissue.
Higher VDss values (>-0.45) suggest that the drug is distributed
in the tissue (Han et al, 2019). All drugs, except DB09102 and
DB11581, were estimated to be distributed in the plasma. DB00390,
DB00696, DB00872, and DB11581 are more likely to cross the
blood-brain barrier (Pires et al., 2015).

Drugs are typically metabolized by Cytochrome P450 enzymes
including CYP3A4, CYP1A2, CYP2C1, CYP2C9, and CYP2D6
(Ogu and Maxa, 2000). It is important for the drug to be
metabolized by cytochrome P450 enzymes, as this phenomenon
prohibits the accumulation of the drug in the system and causes
side effects (Jindal et al., 2019). DB09102 and DB00390 have a high
chance of being metabolized, whereas DB00696 and DB00872 are
likely to accumulate in the body.

The CLjjme parameter shows the renal absorption rate
of a drug (Horde and Gupta, 2024). DB00390, DB00511, DB00872,
and DB09102 exhibited low renal clearance and DB01396 as well
as DB11581 exhibited extremely low renal clearance. These drugs
can have high efficiency as they are more likely to be reabsorbed
by the kidneys. However, the T, values, which indicate the half-
life of the drug inside the body, were favorable for DB00390 and
DB00511.

While assessing toxicity, it was found that except DB00390, all
the other drugs exhibited some levels of carcinogenicity. None of the
drugs caused eye corrosion, and only DB00872 caused eye irritation.
However, all drugs displayed some levels of skin sensitization,
Mutagenicity, and Hepatotoxicity. DB00390 alone showed no drug-
induced neurotoxicity. The lethal Dose 50 (LD50) parameter was
used to show the amount of drug needed to be lethal to 50% of the
test subjects. This value was calculated in mg/kg units. DB00390 and
DBO00511 are safe for oral administration (Gadaleta et al., 2019).

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1567748
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Ghosh et al. 10.3389/fbinf.2025.1567748

Overall Survival Qverall Survival
1 —jpuggoe]| —igoml Quera) S
— Hig roup - - —
Logrank p=0.00028 Logrank p=0.00017 vk 1 e Y
o | HR(high)=1.9 o HR(high)=2 Logrank p=0.00058
s P(HR)=0.00035 S P(HR)=0.00022 o | HR(high)=1.9
- n(high)=182 | = n(high)=182 = P(HR)=0.00069
s ngow=182 | 8 | e Sy e nllow)=182 | = n(high)=182
z 2 z e B 2. n(iow)=162
@ 2 2 g+
T T 2
g = 8 32 - s .
E = & Sl g s
&
o~ | o
=] o g .
< Qe 4 e
° T T T T T T ° T T T T T T e - . 1 - - :
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Months Months Months
Overall Survival
2  Low SULTIC2 Group Overall Survival
— High SULT1C2 Group e - —— Low ANLN Group
Logrank p=0.068 ~—— High ANLN Group
o | HR(high)=14 Logrank p=0.00085
o p(HR)=0.069 o HR(high)=1.8
= n(high)=182 ° P(HR)=0.00098
s nlow)-182 | = n(high)=180
S o | s n(low)=181
5 < Z 9
0 3
-— w
c -—
< _| c
g s I I
8 - o 4
o | o |
° T T T T T T ° T T T T T T
0 20 40 60 80 100 120 0 20 40 60 8 100 120
Months Months
Disease Free Survival Disease Free Survival
2 — Low NEK2 Group 2 —— Low CDK1 TPM D Free Survival
—— High NEK2 Group —— High CDK1 TPM e L — Low RRM2 Group
Logrank p=0.00064 Logrank p=0.00057 (% —— High RRM2 Group
o | HR{high)=1.7 o | HR(high)=1.7 Logrank p=0 00032
e P(HR)=7e-04 ° Pp(HR)=0.00063 @ | HR(high)=1.7
= n(high)=182 | — n(high)=182 C P(HR)=0.00037
s niow=182 | S nlow)=182 | = n(high)=182
z o z o g n(low)=182
2 2 2 2
— - g
c e 2
§ s 8 S <
g § 3 wmihg
a &
2 a A T ]
o | o | ol e
° T T T T T T ° T T T T T T ° r T T 1 - T
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Months Months Months
Disease Free Survival Di Free Survival
2 — Low SULTIC2 Group 2 — Low ANLN Group
—— High SULT1C2 Group —— High ANLN Group
Logrank p=0.75 Logrank p=0.00046
@ HR(high)=1.1 o HR(high)=1.7
e P(HR)=0.75 S P(HR)=5¢-04
= nihigh)=182 | = n(high)=180
s niow=182 | S n(low)=181
2 e 2 e
3 3
«n 2]
£ €
83 83
& 2
o~ o~
s S
o < |
o o
T T T T T T T T T T T T
0 20 4 6 80 100 120 0 2 4 60 8 100 120
Months Months
FIGURE 2
(Continued).

Frontiers in Bioinformatics 06 frontiersin.org


https://doi.org/10.3389/fbinf.2025.1567748
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Ghosh et al.

10.3389/fbinf.2025.1567748

Overall Survival Overall Survival
2 — Low ESR1 Group 2 — Low IGF2 Group Overall Survival
—— High ESR1 Group — High IGF2 Group e — LowLIFR Group
Logrank p=0.00069 Logrank p=0.041 —— High LIFR Group
o | HR(high)=0.55 o | - HR(high)=0:69 Logrank p=0.22
° P(HR)=0 00084 ° i p(HR)=0.042 o | HR(high)=0.8
-_ n(high)=182 _— n(high)=182 © P(HR)=0.22
8 nlow)=182 | 2 nlow)=182 | = n(high)=178
s e z e 2. n(iow)
2 oo i 2 £ 31
€ € 2
< -« =
8 3- 83 5z
$ & $
o~ | o~
o o g 4
o | ol el ol
° T T T T T T ° T T T T T ° T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120 0 20 40 &0 80 100 120
Months Months Months
. Overall Survival
QOverall Survival o |
° = —— Low ADRATA TPM
b= —— Low CXCL12 TPM —— High ADRATA TPM
— High CXCL12 TPM Logrank p=0.011
Logrank p=0.41 - HR{high)=0.64
© HR(high)=0.87 S 7 p(HR)=0.012
= p(HR)=042 | _ nhigh)=180
3 nhigh)=182 | § | S ey T n(low)=181
g . % o |
3 P=20 I "V i " N
5 ° | i TR
2z £
13 <
83 g3
K e |
3 S
o g m
° T T T T T T T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Months Months
Disease Free Survival Disease Free Survival Disease Free Survival
2 — Low ESR1 Group 2 — Low IGF2 Group 24 — Low LIFR Group
— High ESR1 Group — High IGF2 Group — High LIFR Group
Logrank p=0.044 Logrank p=0.29 Logrank p=0.13
o | HR(high)=0.74 © | HR(high)=0.85 o | HR(high}=0.79
° P(HR)=0.045 ° P(HR)=0.29 ° P(HR)=0.14
- n(high)=182 | = n(high)=182 | = n(high)=179
s niow)=182 | 8 niow)=182 | 8 n(low)=180
e 24 2 Q- e 94
3 3 3
w» 0n w
€ € €
8 34 831 831
o | o o
o o o
o | o | o |
o o o
T T T T T T T T T T T T T T T T T
0 20 4 60 80 100 120 0 20 40 60 80 100 120 0 20 40 60 80 100 120
Months Months Months
Disease Free Survival Disease Free Survival
2 —— Low CXCL12 TPM = —— Low ADRATA TPM
— High CXCL12 TPM —— High ADRA1A TPM
Logrank p=0.059 Logrank p=0.12
o HR(high)=0.75 » HR(high)=0.79
° P(HR)=0.059 ° P(HR)=0.12
- n(high)=182 | = n(high)=180
s nlow)=182 | 8 n(low)=181
z e z e
5 ° s °
o o
- -
S T S =T
B2 B2
& &
b b
o o
= <
(=] =]
T T T T T T T T T T T T
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Months Months
FIGURE 2
(Continued). Overall survival and Disease free survival of the top 5 up and downregulated genes in HCC.
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Expression level of the up and downregulated genes in log, (TPM + 1)
in LIHC patients compared to normal.

All the drugs were screened to estimate their drug-likeness
based on their physicochemical characteristics (Table 6). DB00696
and DB00872 fall within the range of 100-600 g/mol and satisfy
rule-1 however all the other drugs slightly deviate from this
range and have molecular weights of approximately 700 g/mol.
DB00872 only follows rule 2 and shows a log P value within the
0-3 log mol/L range. All drugs chosen here show 0-11 rotatable
bonds and follow rule 3. DB00390, DB00696, and DB00872 show
hydrogen bond acceptors less than 12, maintaining rule 4. All drugs

Frontiers in Bioinformatics

08

10.3389/fbinf.2025.1567748

showed less than seven hydrogen bond donors, upholding rule 5.
However, no drug falls within the range of 0-140 A? surface area
and does not uphold rule 6 (Alsfouk et al., 2024). The six drug
selection rules applied in this study should be regarded as flexible
guidelines rather than rigid cutoffs, similar to the Rule of Five (RoF),
which suggests that compounds failing two or more criteria may
have poor oral bioavailability, though each criterion is often used
individually as a filter (Yusof and Segall, 2013). Moreover, DB00390
(Digoxin) is a well-established drug molecule, and digitalis-based
drugs such as digitoxin and Digoxin are still in clinical use as
oral medications for treating heart failure and atrial arrhythmias
(Zhou et al., 2023).

3.9 Candidate drugs selected by molecular
docking analysis

Seven drug candidates were selected for molecular docking
studies: DB00390, DB00511, DB00696, DB00872, DB01396,
DB09102, and DB11581. The HDOCK server was used for the
molecular docking study, and the results are summarized in Table 7.
Four of the seven selected drugs, DB00390, DB00511, DB09102, and
DB11581, showed high affinity for the receptor molecule. However,
DB00511 had a high ligand RMSD, indicating that the drug is less
likely to bind to the receptor compared to the other three drugs.
DB00390 and DB00511 form two hydrogen bonds with the receptor,
making the complexes more stable than the rest. DB09102 and
DB11581 did not form any hydrogen bonds. DB00390 and DB00511
showed a high number of hydrophobic interactions (17 and 14,
respectively). The remaining candidates showed a moderate number
of hydrophobic interactions (Figures4, 6). Although DB00511,
DB09102, and DBB11581 showed high affinity, low ligand RMSD,
and a considerable number of interactions, they were not considered
because of their potential carcinogenicity and high toxicity values
obtained from the previous ADMET analysis. Therefore, DB00390
was considered suitable for further molecular dynamic simulation
studies.

Moreover, a comparative study with a well known molecule
(AZD-5438) performed through
interactions to establish repurposed drug DB00390 as a potential
inhibitor of CDK1/CKS2. While AZD-5438 showed nearly half
affinity towards the CDK1/CKS2 complex compared to DB00390,
the RMSD value of AZD-5438 was slightly less than DB00390.
Furthermore, Ligplus analysis showed that the number of hydrogen
bonds and hydrophobic interactions with CDK1/CKS2 dropped
drastically (Figure 5) for AZD-5438, inferring Digoxin (DB00390)
as a better inhibitor.

was successive molecular

3.10 Validated receptor-drug interaction
confirmed by molecular dynamics
simulation

Based on molecular docking and ADMET analyses, DB00390
(Digoxin) was used for the molecular dynamic simulation study.
Various graphs i.e, RMSD, RMSE RoG, SASA, MM-PBSA,
Hydrogen bond number, angle and distance were derived from
the molecular dynamics simulation results (Figure 6). Fluctuation
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TABLE 1 Absorption properties of the drug candidates.
Absorption DB00390 DB00511 DB00696 DB00872 DB01396 DB09102 DB11581

Caco-2 Permeability -4.974 =5.21 —-5.029 -4.931 -5.192 —-5.002 -4.927
MDCK Permeability (10-6 cm/s) -4.892 -4.773 —4.748 —4.685 -4.763 -4.618 —4.734
PAMPA (logPeft) 0.26 0.411 0.108 0.017 0.954 0.574 0.811
Pgp-inhibitor 0.001 0.001 0.095 0.985 0.001 0.988 0.021
Pgp-substrate 0.933 0.998 1.0 0.812 1.0 0.306 0.058
HIA 0.0 0.0 0.019 0.0 0.005 0.001 0.0

TABLE 2 Distribution properties of the drug candidates.

Distribution DB00390 ’ DB00511 ’ DB00696 ‘ DB00872 DB01396 DB09102 ’ DB11581
PPB (%) 91.751 95.179 94.243 98.012 95.487 98.201 97.635

VDss (L/kg) -0.393 -0.373 -0.287 -0.032 -0.395 0.076 0.114

BBB 0.977 0.043 0.85 0.809 0.019 0.0 0.598
OATP1BI inhibitor 0913 0.926 0.08 0.79 0.756 0.996 0.885
OATP1B3 inhibitor 0.0 0.001 0.007 0.39 0.069 0.994 0.69

BCRP inhibitor 0.0 0.0 0.001 0.064 0.00 0.269 0.0

MRP1 inhibitor 1.0 0.993 0.693 0.887 0.877 0.948 0.293

TABLE 3 Metabolic properties of the drug candidates.

Metabolism ‘ DB00390 DB00511 ’ DB00696 DB00872 DB01396 DB09102 DB11581
CYP2DE6 substrate yes yes yes no yes yes yes
CYP3A4 substrate yes yes no yes yes yes yes
CYP1A2 inhibitor yes yes no no yes yes no
CYP2C19 inhibitor no no no no no no yes
CYP2C9 inhibitor yes yes no no yes yes no
CYP2D6 inhibitor yes yes yes no yes yes yes
CYP3A4 inhibitor yes no no no no yes yes

TABLE 4 Excretion properties of the drug candidates.

Excretion DB00390 DB00511 DB00696 DB00872 DB01396 DB09102 DB11581

CLyjqqma (mL/min/kg) 3.56 2136 7.853 4619 1.705 3.578 1.003

T, (hours) 2.583 2.053 0.946 0.506 2.339 1.103 1.355
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Toxicity DB00390 DB00511 DB00696 DB00872 DB01396 DB09102 DB11581
hERG no no no no no yes no
Blockers

hERG no no no yes no yes no
Blockers (10um)

skin sensitization yes yes yes yes yes yes yes
AMES Mutagenicity yes yes yes yes yes yes yes
Carcinogenicity no yes yes yes yes yes yes
Eye no no no no no no no
Corrosion

Eye no no no yes no no no
Irritation

Human Hepatotoxicity yes yes yes yes yes yes yes
Drug-induced Neurotoxicity no yes yes yes yes yes yes
LD50 (mg/kg) 5105 5105 800 3550 650 700 2000

TABLE 6 Physicochemical properties to determine drug-likeness.

Molecular weight LogP | Rotatable bonds H-bond acceptors H-bond donors Surface area (A?)
(g/mol)

DB00390 | 757.765 49059 3 11 2 315.675

DB00511 | 774.731 56738 | 6 14 2 323322

DB00696 | 569.577 2506 1 9 0 244.996

DB00872 | 496.570 486952 | 3 4 2 219.165

DBO01396 | 732.694 53213 | 6 13 4 305.916

DB09102 | 722762 56664 | 5 14 0 308.777

DBI1581 | 852329 9.6965 | 9 13 2 355.938

of RMSD around 0.25 nm and decreasing to 0.1 nm at 70-80 ns
indicates that the CDKI1/CKS2-Digoxin complex is fairly stable
(Maruyama et al, 2023). Comparatively, the RMSD of the
apoprotein remained at 0.5 nm with occasional spikes reaching
up to 4.5-5.0 nm, reflecting instability in the absence of the
ligand (Figure 6a). This implies that compared to CDK1/CKS2, the
CDK1/CKS2-Digoxin complex is more stable and has enhanced
inhibitory potential and potentially more biologically effective.
The average RMSF of each residue was calculated to determine
the residues that fluctuated during the simulation. The residues
of CDK1/CKS2 generally showed higher fluctuation compared
to the CDK1/CKS2-Digoxin complex implying higher instability
(Figure 6b). The radius of gyration (RoG) of CDK1/CKS2-Digoxin
also showed low fluctuation around 5 nm. The RoG of CDK1/CKS2
stayed around 3.5 nm with two abrupt increases upto 5 nm and
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4.7nm at 60 ns and 85 ns respectively (Figure 6¢). The solvent-
accessible surface area is also a good indicator of protein complex
compactness and stability. In our case, the SASA of CDK1/CKS2-
Digoxin was fluctuating between 75 and 95 square nm compared
to 600 square nm of CDK1/CKS2 (Figure 6d), which indicates that
the protein remained compact and stable during the simulation
(Bagewadi et al., 2023). Higher value of RoG but lower values
of RMSD, RMSF and SASA suggest possible shift in mass
distribution rather than instability of the CDK1/CKS2-Digoxin
complex (Miu et al., 2008). The MM-PBSA graph shows that
the total binding free energy drops from initial —50 kJ/mol to
—400 kJ/mol at 40 ns and 60 ns and stays around —200 kJ/mol at
the end of the simulation (Figure 7a). This gradual reduction of
the total binding free energy indicates that the whole complex
achieves stability over time (Kumari et al., 2014). Molecular dynamic
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TABLE 7 Docking score with CDK1/CKS2, RMSD and number of interacting bonds of DB00390, DB00511, DB00696, DB00872, DB01396,

DB09102, DB11581.

Docking score

Ligand RMSD (A)

Number of H-bonds

Number of hydrophobic interactions

DB00390 —245.01 50.77 2 17
DB00511 —245.66 64.29 2 14
DB00696 -201.7 65.35 1 10
DB00872 -177.17 62.12 1 10
DB01396 -222.61 43.71 1 8

DB09102 —247.75 43.46 0 12
DB11581 —247.75 43.46 0 12
AZD-5438 —129.94 64.62 0 8

simulation analysis shows 1-3 hydrogen bonds being generated
between the protein and the drug during the simulation time period
of 100 ns (Figure 7b). Hydrogen bond distances and angles show
the fluctuation between 0.24 and 0.35 nm and 2-30° respectively,
which infer a stable bonding between the protein and the drug
(Figures 7c,d).

4 Discussion

Hepatocellular carcinoma (HCC) is one of the most challenging
cancers to treat owing to its late diagnosis and complex
characteristics. It often affects males more than females. Numerous
studies have focused on bioinformatic analyses to identify
biomarkers for HCC. In our study, we conducted a differential
gene expression analysis across five microarray datasets, identifying
19 upregulated and 64 downregulated genes that were commonly
observed in all datasets. These commonly upregulated and
downregulated genes were then subjected to GO and pathway
enrichment analyses. The number of significant GO terms
and KEGG pathways enriched with the upregulated genes was
significantly lower than that of their downregulated counterparts.
Following this, we constructed a PPI network for the up-and
downregulated gene sets of HCC and identified key hub genes
through analysis of each of the gene sets. We selected CDK1
and ESRI as hub genes for our analysis. From the differentially
expressed gene sets, we selected the top five upregulated (CDKI,
NEK2, RRM2, SULT1C2, and ANLN) and downregulated genes
(ESR1, IGF2, LIFR, CXCL12, and ADRA1A) for our studies related
to gene-miRNA and TF gene targets, including patient survival
analysis. We found that these genes including CDK1 and ESR1
were targets of a large number of TFs and miRNAs. In addition,
CDKI1 and ESR1 showed significant and poor OS and DFS in
patients with HCC, and they were validated to be upregulated
and downregulated in patients with HCC. KEGG/GO enrichment
analysis showed that various pathways can potentially be influenced
by the upregulation of CDKI gene, e.g., mitochondrial ATP
synthesis coupled electron transport, G2/M transition of mitosis,
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protein serine/threonine kinase activity, efc. We found that ESR1
is involved in proteoglycan mediated cell signaling pathways and
shaping the tumor microenvironment. This finding is supported
by earlier research of Dituri et al. (2022). SOX transcription
factors (SOX4, SOX7, SOX15, SOX17) and FOXM1 downregulated
the expression of ESRI (Xiao et al, 2019) while FOXN2 and
FOXS1 were involved in upregulation of CDKI expression
(Liu et al., 2021).

The gene ESRI encodes a transcription factor that is
located in the chromosomal region chromosomal region 6q25.1
(Tsiambas et al., 2011). Its protein structure comprises N- and C-
terminal domains, activation and ligand-binding domains, and
DNA-binding domains. ESR1 has been proposed to play a regulatory
role in liver, prostate, endometrial, and lung cancer (Hu et al., 2022).
A cell line-based study found that ESR1 induces upregulation of
IncRNA MEG3 under high glucose conditions, which hinders HCC
progression (Cheng et al, 2022). A study found that miR-9-5p
downregulates ESR1 gene activity in HCC, causing cancer cell
proliferation, migration, and invasion (Wang et al., 2021). ESR1
can also regulate the expression of MMAA, an obesity-metabolism
differential gene, to prevent HCC, as shown in a study in females
(Zhang Y. et al., 2022).

CDKI1 is a member of the serine-threonine protein kinase family,
which is important during transitions from the G1/S or G2/M
phase of the cell cycle (Enserink and Kolodner, 2010). Studies have
shown that the gene activity of CDK1 is regulated by miR-582-
5p in pathways involving CDK1 and AKTS3, which in turn induces
cell cycle arrest in the GO/G1 phase. miR-582-5p is downregulated
(Zhang et al.,, 2015). CDK1 also plays a role in immune infiltration
in HCC (Zou et al,, 2020). A bioinformatic study revealed that
CDK1, FOXM1, TCF7L1, E2F4, and SIN3A can act as important
transcriptional regulators in HBV-induced HCC (Wang et al,
2018). Thus, CDK1 may act as a prognostic biomarker for HBV-
induced HCC.

We propose that CDKI1 and ESRI, identified as upregulated
and downregulated genes, respectively, could serve as potential
biomarkers for HCC. However, we focused exclusively on
the upregulated gene CDKI1 as a candidate for molecular
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Hydrophobicity varies from +3 (brown) to -3 (blue)

docking and dynamics simulations, hypothesizing that a
CDK1

cancer, downregulated genes - particularly tumor suppressors-

suitable drug could effectively inhibit protein. In
are typically not targeted for inhibition; rather, therapeutic
strategies aim to restore or enhance their expression and
function. In some contexts, increasing the activity of such genes
may involve inhibiting their negative regulators instead. ESR1
(estrogen receptor 1) exhibits tumor-suppressive behavior in
liver cancer, where its downregulation is associated with disease
progression (Hishida et al, 2013). Studies have shown that
ESR1 knockout in mouse models increases susceptibility to
liver tumorigenesis (O'Brien et al., 2021), while its activation

through estrogen signaling suppresses tumor growth (Fuentes
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and Silveyra, 2019). Given this tumor-suppressive role, ESR1
was excluded from further analysis focused on drug inhibition
effects.

Other bioinformatic studies on HCC have identified CDK1 and
ESR1 as potential hub genes (Table 8). For instance, Zhang et al.
(2021) found that these genes were upregulated and downregulated,
respectively, in HCC using a different set of microarray samples
than those used in our study. Another study highlighted CDK1
and ESRI as hub genes, both of which are associated with poor
survival outcomes (Ni et al., 2019). In spite of some earlier research
findings showing CDK1 as a prominent regulator of liver cancer
(Ni et al,, 2019; Sun and Zhang, 2020; Hao et al.,, 2021; Su et al,,
2023), molecular docking studies have identified treatment options
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FIGURE 5
Hydrophobic interactions and hydrogen bonds of DB0O0390, DB00511, DB00696, DB00872, DB01396, DB09102, DB11581 and AZD-5438 with

CDK1/CKS2 receptor (Ligplot analysis).

such the Phellodendron and Anemarrhena drug pair (PADP) as  of drugs within critical human physiological areas, such as the
a promising inhibitor of CDKI1 (Ruan et al, 2022). However,  gastrointestinal tract, olfactory epithelium, blood-brain barrier
molecular dynamics modelling has not yet shown Digoxin and  (BBB), and nasal mucosa. The role of P-glycoproteins further
CDKI’s interaction behaviour. To bridge this gap, further evaluation =~ complicates this landscape; these proteins can either enhance
of Digoxins mechanism of action inside cancer cells is necessary to ~ drug efficacy by transporting molecules or inhibit their action
understand its potential as a CDK1 inhibitor. as Pgp inhibitors, ultimately influencing therapeutic outcomes
A comprehensive study of the chemical drug-likeness of  (Wuetal, 2023; Wang et al., 2019).
the seven drugs obtained through virtual screening, detailed In addition to these parameters, plasma protein binding (PPB)
ADME analysis and toxicity calculations. These parameters were  plays a crucial role in drug distribution after administration. This
instrumental in ranking the selected drugs for further docking and  aspect assesses how compounds interact with plasma proteins
simulation studies, ultimately guiding the prediction of potential  like serum albumin and glycoproteins, significantly affecting their
candidates. Key assessments include the PAMPA assay, which  bioavailability and therapeutic effectiveness (Li et al., 2022). The
measures drug permeability and passive diffusion across an artificial ~ BBB parameter also indicates the likelihood that a drug can
membrane (Di et al,, 2003). This metric, combined with Caco2  successfully penetrate the central nervous system (CNS) through
permeability, provides insights into the absorption and distribution  endothelial cells, highlighting its importance in neuropharmacology
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(Cheng et al., 2012; Daneman and Prat, 2015). Furthermore, cardiac
rhythm regulation, influenced by hERG blockers, which control
potassium ion channels in the heart, presents another layer of
consideration for drug safety (Choi et al, 2020). This parameter,
along with assessments of carcinogenicity, eye corrosion, irritation,
hepatotoxicity, and neurotoxicity, provides a comprehensive view of
the potential risks associated with each drug candidate.

Building on a comprehensive study of the chemical drug-
likeness of selected drugs, molecular docking studies present
additional challenges, particularly in determining the necessary
flexibility of the receptor backbone. This flexibility is crucial for
accurately predicting the interactions of ligands with their targets.
Although several methods exist to address this issue, they often
fall short with certain types of molecules (Meng et al, 2011).
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To overcome this challenge, the HDOCK server was used for
docking analysis. This platform predicts various conformers of the
same ligand and assesses their binding potential with the active
site(s) of the receptor molecule, thereby reducing computational
costs while still delivering reliable results (Marti-Renom et al.,
2000). Docking scores were derived from a knowledge-based
iterative scoring function, ITScorePP, which facilitates the effective
ranking of conformers (Sievers et al, 2011; Remmert et al.,
2012). The whole CDK1/CKS2 surface and the residues adjacent
to the binding pockets of the ligands show polarity around
either +0.1 or —0.1 charge (Supplementary Figures S1, S2). Intra-
molecular interactions among the chains of CDK1 and CKS2 show
a high number of salt bridges, hydrogen bonds and hydrophobic
interactions (Supplementary Table S4; Supplementary Figure S3).

frontiersin.org


https://doi.org/10.3389/fbinf.2025.1567748
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

Ghosh et al. 10.3389/fbinf.2025.1567748

MM-PBSA
0 T T T T T
| — Protein VAW Energy
-100
200
£
)
&
2 -300
-400
_500 | l 1 I 1 ‘ 1 l 1
0 20000 40000 60000 80000 le+05
Time (ps)
(a)
Hydrogen Bonds
5 T T T T T T

- 4 |— Hydrogen bonds

Number

U “i Il |

20000 40000 60000 80000 le+05
Time (ps)

(b)

=]

FIGURE 7
(Continued)

This makes the protein somewhat rigid and may explain the initial model to compute the ligand root mean square deviation
phenomenon of no physical change inside the protein before and ~ (RMSD).

after binding with the ligands (Gunasekaran and Nussinov, 2007). Based on comprehensive ADMET analysis and docking studies,
Additionally, the final conformer structures were aligned with the  we identified Digoxin (DB00390) as the most promising candidate
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FIGURE 7
(Continued). (a) MM-PBSA graph representing the total binding energy of the CDK1/CKS2-DB00390 complex, (b) Number of Hydrogen bonds, (c)
Distribution of Hydrogen bond distance and (d) Distribution of Hydrogen bond angle during the 100 ns simulation.

for further investigation. Digoxin has demonstrated anticancer = DSB and SSB repairs (Wang et al, 2020). Similarly, it shows
activity against various human cancers. In the BALB/c nude mouse its potential in arresting cervical cancer cells (Gan et al., 2020).
xenograft model, it inhibits lung cancer by inhibiting both DNA  Earlier researchers showed that various cardiac glycosides, including
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TABLE 8 A brief review of previous studies in connection to our study.

References Dataset used

Key methodology

10.3389/fbinf.2025.1567748

Status of CDK1 and ESR1 in

the study

Ni et al. (2019) GSE27635, GSE28248

Differential gene expression analysis, PPI
network analysis, Hub gene selection and
survival analysis, experimental validation

Six genes identified as hub genes
including CDK1 in HCC.

Sun and Zhang (2020) GSE45436 Differential gene expression, Survival CDK1 and ESR1 were among the
analysis, Validation significant Differentially expressed genes.
However, they were not considered
significant gene based on further analysis
Hao et al. (2021) GSE62232 Differential gene expression analysis, CDK1 and ESR1 were predicted as hub
GSE40744 Validation of hub gene expression, genes for HCV related HCC and were

Construction of miRNA-mRNA
regulatory network

found to be regulated by miR-122-5p and
miR-221-3p

Zhang et al. (2021) GSE14520, GSE25097, GSE36376,

GSE57957, GSE76427, GSE121248

Differential Gene expression analysis, PPI
network analysis, survival analysis, hub
gene identification

88 upregulated and 40 downregulated
genes were identified as hub genes,
including CDK1 and ESR1 in HCC.

E-GEOD-19665

Ruan et al. (2022) GSE62232 Differential gene expression analysis, In HCC, ESR1 and CDK1 were both
Acquisition of Chemical Components and | predicted as hub genes and targets of
Targets of PADP, Construction of PADP.
Traditional Chinese Medicine Compound
Regulation Network, Molecular Docking
Verification of Core Compounds and
Core Target Genes, Survival Analyses for
Hub Genes, Experimental validation
Su et al. (2023) GSE101685 Differential Gene expression analysis, PPI CDKI1 was predicted as one of the hub
GSE62232 network analysis, Validation and survival genes and 32 potential therapeutic
GSE46408 analysis, MiRNA-Hub gene network targeting drugs for hub genes in HCC.
GSE45627 construction, Drug-gene interaction
analysis
Moghimi et al. (2024) GSE45267 Differential gene expression analysis, PPI CDKI1 and ESRI were among the
network and modular analysis, Analysis significant DEGs in HCC. However, they
of gene-disease association, Prediction of were not among the hub genes upon
Pharmacological targets further analysis
Ren and Feng (2024) GSE84402 Differential gene expression analysis, PPI CDKI1 was associated with poor prognosis
GSE12148 network analysis, Hub gene validation in HBV associated with HCC. Identified 6

and survival analysis. Drug-target
interaction analysis

drugs associated with CDK1

GSE41804
GSE45267
GSE62232
GSE112790
GSE121248

Ghosh et al., 2025 (present study)

Differential gene expression analysis, PPI
network analysis and hub gene selection,
gene selection based on Transcription
Factor and miRNA targets, Survival
analysis and validation of hub genes,
Virtual screening

ADMET analysis, molecular docking,
Molecular Dynamics Simulation

Our bioinformatics approach, involving
transcriptomics data analysis predicted
CDKI1 and ESR1 as hub genes associated
with HCC as well as further exploration
with computational drug discovery
methods predicted Digoxin as a
promising candidate for CDK1/CKS2
inhibition

Digoxin and digitoxin, increased toxicity against melanoma cells
as compared to normal human melanocytes and umbilical cord
blood cells (Eskiocak et al., 2016). There have been reports in
the last few years of clinical studies of Digoxin as an anticancer
medicine, either by itself or with other chemotherapy drugs
(Menger et al.,, 2013; Frankel et al,, 2017; Huang et al, 2018).
But researchers still don't know exactly how Digoxin works to
fight cancer. Very recently, Kangra etal. reported that Digoxin
has been explored in 27 clinical trials so far, reflecting ongoing
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interest in its potential beyond heart conditions (Kangra et al.,
2025). Of these, 11 have been completed, 7 are currently recruiting,
and a few are in early or uncertain stages. Some trials were even
terminated or withdrawn. These studies have tested Digoxin either
alone or in combination with drugs like enzalutamide, rosuvastatin,
capecitabine, lapatinib, metformin, and simvastatin. They span
a range of cancer types - including prostate, breast, pancreatic,
lung, and head and neck cancers - as well as solid tumors and
neoplasms.
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To learn more about Digoxin - CDKI interaction, we
performed subsequent simulations and evaluated the stability
of the drug-receptor complex. Molecular dynamics simulations
provide a detailed understanding of the receptor-ligand complex
stability by examining various parameters, including RMSD,
root mean square fluctuation (RMSF), radius of gyration (RoG),
solvent-accessible surface area (SASA), MM-PBSA and various
characteristics of the generated Hydrogen bonds between the
protein and ligand. The study was carefully designed to address
specific questions, ensure robust simulation setups, and thoroughly
analyze the results (Hollingsworth and Dror, 2018). The findings
demonstrated that the CDK1/CKS2-Digoxin complex maintained
a stable conformation throughout the 100 ns simulation, with only
minor instabilities and fluctuations occurring intermittently. These
brief episodes of instability did not compromise the overall integrity
of the complex, which remained compact until the simulation
was finished.

In this study, we emphasize several aspects that contribute to
the novelty and potential translational value of our findings. First,
the integration of multiple, well-curated datasets enabled a robust
and comprehensive analysis, strengthening the reliability of the
identified candidate genes (Table 8). Second, we employed a target
prioritization strategy based on regulatory complexity, selecting genes
that are regulated by the highest number of transcription factors
and miRNAs. Notably, genes targeted by multiple miRNAs were
considered particularly promising, as such regulation often reflects
their centrality and importance in disease-related biological pathways
(Okada et al., 2016). Furthermore, the identification of Digoxin
as a potential repurposable drug through computational analysis
demonstrates the effectiveness of our method in revealing novel
drug-disease connections. Although our in silico findings suggest
that Digoxin may inhibit liver cancer growth via CDK1 regulation,
its therapeutic use remains limited due to several factors. Firstly,
Digoxin has a narrow therapeutic index, making dosing challenging
without risking cardiotoxicity. Its known systemic toxicity, notably
cardiac side effects, raises serious safety concerns. Furthermore, poor
cancer cell selectivity and limited tumor-specific delivery impede
successful targeting. Lastly, the lack of robust in vivo and clinical
data in oncology restricts its immediate translational potential. To
better understand how Digoxin might help treat liver cancer, future
research should include more experimental repetitions and make use
of advanced tools - like multi-omics data and clinical sample analysis.
Studies such as Western blotting, nuclear/cytoplasmic fraction,
immunofluorescence, and FACS (Lu et al., 2025), as well as in-vivo and
ex-vivo experiments (Kurzeder etal., 2025), may be designed to validate
these computational predictions and further explore the therapeutic
potential of Digoxin in liver cancer. Overall, our in silico study
demonstrates Digoxin's strong impact on the CDK1/CSK2 complex
and offers important insights for the development of more effective and
selective therapies against liver cancer. These approaches can uncover
the precise mechanisms behind Digoxin’s action and provide clearer
insights into its potential as a safe and effective cancer therapy.

5 Conclusion

In conclusion, identifying reliable biomarkers is crucial for
early diagnosis, prognosis, and effective treatment of hepatocellular
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carcinoma (HCC). By analyzing five microarray datasets, we
identified 19 upregulated and 64 downregulated genes associated
with HCC. Gene Ontology (GO) and KEGG pathway analyses
revealed that downregulated genes play a significant role in HCC
pathology. Notably, CDK1/CKS2 and ESRI emerged as hub genes
that correlated with poor overall and disease-free survival in
patients, underscoring their potential as biomarkers for HCC.
We further investigated CDK1/CKS2 using molecular docking
and dynamic simulations to explore its therapeutic potential.
Additionally, our study identifies Digoxin (DB00390) as a promising
repurposed drug candidate to overcome the limitations of existing
drugs. Overall, this study contributes to a deeper understanding of
HCC biology and drug interactions, paving the way for improved
therapeutic strategies.
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