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Introduction: MicroRNAs (miRNAs) regulate gene expression and play an
important role in carcinogenesis through complex interactions with messenger
RNAs (mRNAs) and long non-coding RNAs (lncRNAs). Despite their established
influence on tumor progression and therapeutic resistance, the application
of miRNA interaction networks for tumor tissue-of-origin (TOO) classification
remains underexplored.

Methods: We developed a machine learning (ML) framework that integrates
miRNA-mRNA-lncRNA interaction networks to classify tumors by their tissue
of origin. Using transcriptomic profiles from 14 cancer types in The Cancer
Genome Atlas (TCGA), we constructed co-expression networks and applied
multiple feature selection techniques including recursive feature elimination
(RFE), random forest (RF), Boruta, and linear discriminant analysis (LDA) to
identify a minimal yet informative subset of miRNA features. Ensemble ML
algorithms were trained and validated with stratified five-fold cross-validation
for robust performance assessment across class distributions.

Results: Our models achieved an overall 99% classification accuracy,
distinguishing 14 cancer types with high robustness and generalizability. A
minimal set of 150 miRNAs selected via RFE resulted in optimal performance
across all classifiers. Furthermore, in silico validation revealed that many of
the top miRNAs, including miR-21-5p, miR-93-5p, and miR-10b-5p, were not
only highly central in the network but also correlated with patient survival and
drug response. In addition, functional enrichment analyses indicated significant
involvement of miRNAs in pathways such as TGF-beta signaling, epithelial-
mesenchymal transition, and immune modulation. Our comparative analysis
demonstrated that models based on miRNA outperformed those using mRNA
or lncRNA classifiers.

Discussion: Our integrated framework provides a biologically grounded,
interpretable, and highly accurate approach for tumor tissue-of-origin
classification. The identifiedmiRNA biomarkers demonstrate strong translational
potential, supported by clinical trial overlap, drug sensitivity data, and survival
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analyses. This work highlights the power of combining miRNA network biology
with ML to improve precision oncology diagnostics and supports future
development of liquid biopsy-based cancer classification.

KEYWORDS

miRNAs, network, machine learning, feature selection, tumor tissue origin, ensemble
learning

1 Introduction

Cancer is the second leading cause of death globally, accounting
for nearly 9.7 million deaths as of 2022, and is projected to
become the leading cause of premature mortality by the end
of the century (Bray et al., 2024; Murthy et al., 2024). In the
U.S., cancer incidence rates for 2025 are projected at 643.5
per 100,000 males and 581.4 per 100,000 females, with total
expected deaths of 618,120, underscoring the increasing cancer
burden (Siegel et al., 2025). Despite considerable advancements
in research, early detection with accurate classification remains
a significant challenge due to non-specific symptoms, eventually
leading to late-stage diagnoses and poor survival (Crosby et al.,
2022; Pulumati et al., 2023; Ali et al., 2021; Lingasamy et al., 2019;
Lingasamy et al., 2021).

MicroRNAs (miRNAs), small non-coding RNAs, typically
17–25 nucleotides long, have gained prominence as cancer
biomarkers due to their role as oncogenes or tumor suppressors
(Peng and Croce, 2016; Chakrabortty et al., 2023; Pekarek et al.,
2023). Identifying cancer-specific miRNA signatures is essential
for understanding molecular mechanisms, enabling early-stage
detection, and improving treatment outcomes (Peng and Croce,
2016; Yerukala Sathipati et al., 2023; Paranjape et al., 2009; Galvão-
Lima et al., 2021). Dysregulated miRNAs significantly impact
cellular and biological processes such as apoptosis, cell cycle
regulation, metastasis, transcriptome, and interactions within the
tumor microenvironment (Peng and Croce, 2016; Sempere et al.,
2021; Li et al., 2022). In fact, clinical trials targeting miRNAs (miR-
16, miR-34a, miR-155, and miR-193a-3p) have shown promising
therapeutic potential for various types of cancer (Seyhan, 2024; Kim
and Croce, 2023; Qian et al., 2024).

In parallel, long non-coding RNAs (lncRNAs) are recognized
as critical regulators of gene expression and tumor progression,
thereby expanding the focus of non-coding RNA research in
oncology (Huang et al., 2022; Ratti et al., 2020). Certain lncRNAs
act as miRNA sponges or competing endogenous RNAs (ceRNAs)
that regulate gene expression by competitively binding to shared
miRNA-targets throughmiRNA response elements (MREs), thereby
reducing the ability of miRNAs to suppress target mRNA transcripts
(Salmena et al., 2011). The advent of high-throughput RNA
sequencing facilitates quantitative profiling of miRNA, mRNA,
and lncRNA expression levels and aids in identifying MREs in
the 3′ untranslated regions (UTRs) of target genes. Tools like
TargetScan andmiRanda help predict interactions betweenmiRNAs
and mRNAs/lncRNAs, revealing regulatory connections that affect
cancer pathways (Lewis et al., 2005; Betel et al., 2008). Dysregulation
of ceRNAs can lead to abnormal gene expression, promoting
cancer progression, metastasis, drug resistance, and maintenance of
cancer stem cells (Salmena et al., 2011; Tay et al., 2014; Gutschner

and Diederichs, 2012). lncRNAs such as MALAT1, a prognostic
marker for metastasis in non-small cell lung cancer (NSCLC)
(Gutschner and Diederichs, 2012) and H19 enhance tumorigenesis
by influencing tumor suppressor genes and oncogenes (Zhang et al.,
2022), while other lncRNAs like HOTAIR and DANCR facilitate
cancer metastasis through ceRNA networks (Cheng and Huang,
2021), underscoring their potential as therapeutic targets and
biomarkers for cancer prognosis.

Advances in sequencing technologies, supported by large-scale
initiatives like The Cancer Genome Atlas (TCGA) (Tomczak et al.,
2015), have potentially enhanced our understanding of cancer
genomics. These initiatives have identified miRNA and lncRNA
profiles associated with tumor progression, metastasis, and
therapy resistance, establishing them as promising biomarkers and
therapeutic targets (Dong et al., 2020; Gao and Zhou, 2019; Cho
and Han, 2017). For example, miR-29b/c in gastric cancer and miR-
186 and miR-34a in breast cancer play critical roles in modulating
key pathways linked to tumor progression (Gong et al., 2014;
Sun et al., 2019). Similarly, lncRNAs like HOTAIR and MALAT1
have been implicated in promoting invasion and metastasis
(Archit et al., 2024; Zhou et al., 2021). In prostate cancer, the negative
correlation between miR-142-5p and lncRNA ADAMTS9-AS1 has
been found to facilitate tumor progression (Archit et al., 2024;
Zhou et al., 2021).

Integrating miRNA expression data into pan-cancer analyses
can identify shared molecular signatures across diverse cancer
types (Mitra et al., 2020; Lopez-Rincon et al., 2020; Tan et al.,
2019). Pan-cancer studies increasingly use miRNAs as biomarkers
for cancer classification and TOO prediction, achieving 84.27%
accuracy for cancer type classification (Yerukala Sathipati et al.,
2023) and 97% accuracy for predicting TOO in metastatic cancers
using neural networks (Raghu et al., 2024). Furthermore, treatment
strategies guided by miRNAs based on support vector machines
(SVM) showed a higher classification accuracy of 97.2% (Cheerla
and Gevaert, 2017). However, the above methods often overlook
the intricate interactions of miRNAs within broader molecular
networks, which is crucial for capturing the complexity of cancer
biology. Thus, multi-omics models integrating miRNA, mRNA,
and lncRNA data may offer promising potential for pan-cancer
classification.

To address the current limitations, our study utilized
comprehensive machine learning (ML) methods to classify TOO
usingmiRNAs identified frommiRNA-mRNA-lncRNA interactions
from TCGA datasets. Further, we identified a minimal set of
150 miRNA biomarkers using ensemble ML methods, achieving
99% accuracy in distinguishing 14 cancer types. Our findings are
projected to emphasize the potential of integrating computational
and biological approaches to advance precision oncology, enabling
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the development of innovative diagnostic tools and treatment
strategies.

2 Materials and methods

2.1 Data collection and preprocessing

Transcriptomic profiles, including miRNA-Seq (miRNA
isoform) and RNA-Seq data, were obtained from the TCGA project
via the Genomics Data Commons portal (GDC) (Heath et al.,
2021). Raw read counts for both solid tissue normal (NT) and
primary solid tumor (TP) tissue samples were downloaded using
the Bioconductor R package TCGAbiolinks (v2.32.0). The selection
of cancer types was limited to those with at least 10 patient samples
per cancer type, with data for both tumor and corresponding
normal tissues included. To maintain consistency, only primary
tumor samples were analyzed. The disease type classifications, along
with their respective primary sites and TCGA project names, are
summarized in Table 1. A comprehensive breakdown of sample
counts (NT and TP samples per cancer) for miRNA-Seq and
RNA-Seq datasets, categorized by cancer type and tissue type,
is provided in Table 1. In total, the dataset comprised 14 cancer
types, with 6,485 and 6,507 samples from miRNA-Seq and RNA-
Seq distributed across tumor tissues and 640 and 660 samples
from miRNA-Seq and RNA-Seq distributed across normal tissues,
respectively.

2.2 miRNA network construction

The construction of miRNA networks for each cancer was based
on the methodology outlined earlier (Lawarde et al., 2024). The
procedure can be summarized as follows:

2.2.1 Differential expression analysis
We conducted differential expression analysis between tumor

and normal tissue using the R package DESeq2 (v1.44.0), for
miRNA-Seq data and applied VST to visualize the data using t-SNE
plot. Expression matrices for protein-coding genes and lncRNAs
for each type of cancer were also extracted from the RNA-Seq
dataset to perform differential expression analysis using the same
DESeq2 package.

2.2.2 Network construction
After identifying common patient samples shared between

both miRNA-Seq and RNA-Seq datasets, we calculated Pearson
correlation coefficients to construct a miRNA-mRNA-lncRNA co-
expression correlation network. This network included miRNAs,
mRNA, and lncRNAs that met the criteria |log2 fold change| ≥ 1,
p-values adjusted using the Benjamini–Hochberg (BH) method was
<0.05, and the correlation coefficient |R| ≥ 0.5. The R package igraph
(v2.1.1) was utilized for network construction, and the fast greedy
algorithm identified communities within the network. Additionally,
the assortativity coefficient and the degree of the network were
calculated using the igraph package. The miRNA features were
obtained from the edge table of each cancer type, as shown in
(Supplementary Table S1).

2.3 Machine learning models to classify
multiple cancer types based on TOO

A classification model using interacting miRNAs was developed
to categorize 27 different classes, including 7,125 samples (training
samples 4,978), consisting of NT and TP samples and cancer types
as detailed in Table 1, using tree-based and ensemble machine
learning techniques. A minimum sample requirement of 15 was
established to ensure robust model training and testing, focusing
exclusively on these samples. Due to insufficient data, NT samples
from the esophageal carcinoma (ESCA) were excluded from
further analysis.

2.3.1 Machine learning (ML) methods used for
training

We implemented four different machine-learning methods to
train our classification models as described below:

1. Random Forest (RF): RF builds multiple decision trees
using bootstrapped samples and selected features randomly,
improving accuracy and enhancing robustness while avoiding
overfitting. Moreover, the RF method aggregates the results
from individual trees to provide a more stable and accurate
prediction.

2. AdaBoost (Adaptive Boosting): AdaBoost sequentially
combines weak classifiers, focusing on previously misclassified
instances. However, AdaBoost is sensitive to noise and outliers
despite effective reduction of bias, impacting the overall
performance in certain datasets.

3. XGBoost (Extreme Gradient Boosting): XGBoost refines
gradient boosting through efficient parallel processing and
regularization, making it particularly suitable for high-
dimensional datasets.

4. LightGBM (Light Gradient Boosting Machine): LightGBM is
yet another gradient boosting approach that increases speed
and memory efficiency by using histogram-based learning and
leaf-wise growth techniques, making it particularly effective
for larger datasets. Together, these ensemble methods used
in our models leverage the strengths of multiple models,
thereby enhancing predictive performance and robustness
across various machine-learning tasks.

2.3.2 Training and test set
The miRNA expression dataset, encompassing 14 cancer types

and 27 classes, was divided into training and test sets with a 70:30
split. Specifically, 70% of the data was allocated for model training,
while the remaining 30% was reserved for testing. The model was
trained and tested using Python 3. A pipeline was constructed
using the imblearn.pipelinemodule, which included StandardScaler
from sklearn.preprocessing for feature scaling and the Synthetic
Minority Over-sampling Technique (SMOTE) technique from
imblearn.over_sampling to address class imbalance. This pipeline
was used for training, integrating feature scaling and sample
balancing. Further, all the prediction models were cross-validated
using a 5-fold strategy with the StratifiedKFold method from
the sklearn.model_selection module. The classification report and
confusion matrix were generated using the classification_report and
confusion_matrix functions from the sklearn.metric module. The
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TABLE 1 Projects and cancer types from TCGA.

Project Project
name

Disease type Primary
site

NT
miRNA-
Seq

TP
miRNA-
Seq

Total
count
miRNA-
Seq

NT
RNA-
Seq

TP
RNA-
Seq

Total
count
RNA-
Seq

TCGA-
BLCA

Bladder Urothelial
Carcinoma

Adenomas and
Adenocarcinomas

Bladder 19 417 436 19 412 431

Epithelial
Neoplasms, NOS

Squamous Cell
Neoplasms

Transitional Cell
Papillomas and
Carcinomas

TCGA-
BRCA

Breast Invasive
Carcinoma

Adenomas and
Adenocarcinomas

Breast 104 1094 1198 113 1111 1224

Adnexal and Skin
Appendage
Neoplasms

Basal Cell
Neoplasms

Complex Epithelial
Neoplasms

Cystic, Mucinous
and Serous
Neoplasms

Ductal and
Lobular
Neoplasms

Epithelial
Neoplasms, NOS

Fibroepithelial
Neoplasms

Squamous Cell
Neoplasms

TCGA-
ESCA

Esophageal
Carcinoma

squamous cell
neoplasms

Esophagus

13 186 199 13 184 197

adenomas and
adenocarcinomas

cystic, mucinous
and serous
neoplasms

adenomas and
adenocarcinomas

Stomach
squamous cell
neoplasms

(Continued on the following page)
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TABLE 1 (Continued) Projects and cancer types from TCGA.

Project Project
name

Disease type Primary
site

NT
miRNA-
Seq

TP
miRNA-
Seq

Total
count
miRNA-
Seq

NT
RNA-
Seq

TP
RNA-
Seq

Total
count
RNA-
Seq

TCGA-
HNSC

Head and Neck
Squamous Cell
Carcinoma

squamous cell
neoplasms

Base of
tongue

44 523 567 44 520 564

Bones,
joints and
articular
cartilage of
other and
unspecified
sites

Floor of
mouth

Gum

Hypopharynx

Larynx

Lip

Oropharynx

Other and
ill-defined
sites in lip,
oral cavity
and
pharynx

Other and
unspecified
parts of
mouth

Other and
unspecified
parts of
tongue

Palate

Tonsil

TCGA-
KICH

Kidney
Chromophobe

Adenomas and
Adenocarcinomas

Kidney 25 66 91 25 66 91

TCGA-
KIRP

Kidney Renal
Papillary Cell
Carcinoma

Kidney 34 291 325 32 290 322

TCGA-
KIRC

Kidney Renal
Clear Cell
Carcinoma

Kidney 71 544 615 72 541 613

TCGA-
LIHC

Liver
Hepatocellular
Carcinoma

Adenomas and
Adenocarcinomas

Liver and
intrahepatic
bile ducts

50 372 422 50 371 421

(Continued on the following page)
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TABLE 1 (Continued) Projects and cancer types from TCGA.

Project Project
name

Disease type Primary
site

NT
miRNA-
Seq

TP
miRNA-
Seq

Total
count
miRNA-
Seq

NT
RNA-
Seq

TP
RNA-
Seq

Total
count
RNA-
Seq

TCGA-
LUAD

Lung
Adenocarcinoma

Acinar Cell
Neoplasms

Bronchus
and lung

46 519 565 59 539 598
Adenomas and
Adenocarcinomas

Cystic, Mucinous
and Serous
Neoplasms

TCGA-
LUSC

Lung Squamous
Cell Carcinoma

Squamous Cell
Neoplasms

Bronchus
and lung

45 478 523 51 502 553

TCGA-
STAD

Stomach
Adenocarcinoma

Adenomas and
Adenocarcinomas

Stomach 45 446 491 36 412 448
Cystic, Mucinous
and Serous
Neoplasms

TCGA-
PRAD

Prostate
Adenocarcinoma

Adenomas and
Adenocarcinomas

Prostate
gland

52 498 550 52 501 553

Cystic, Mucinous
and Serous
Neoplasms

Ductal and
Lobular
Neoplasms

TCGA-
THCA

Thyroid
Carcinoma

Adenomas and
Adenocarcinomas

Thyroid
gland

59 506 565 59 505 564
Epithelial
Neoplasms, NOS

TCGA-
UCEC

Uterine Corpus
Endometrial
Carcinoma

Adenomas and
Adenocarcinomas

Corpus
uteri

33 545 578 35 553 588
cystic, mucinous
and serous
neoplasms

epithelial
neoplasms, nos

not reported

Uterus,
NOS

640 6485 7125 660 6507 7167

Projects and cancer types from TCGA, along with the sample count of miRNA/RNA, expression profiles per tissue and cancer types used in this study. (NT: Solid tissue normal TP: Primary
tumor tissue).

Area Under the Curve (AUC) was calculated using the roc_auc_
score function from the same module.

All methods were implemented with default parameters,
except for the AdaBoost method, which was tuned through

hyperparameter adjustment. Specifically, we used a decision
tree as the base estimator with a maximum depth of 5, set the
algorithm to Stagewise Additive Modeling using a Multiclass
Exponential loss function (SAMME), adjusted the learning
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rate to 1.2, and set the number of estimators to 300 for the
AdaBoost model.

2.4 Feature selection

We employed four feature selection methods on all interacting
miRNAs to identify themost relevant predictors for the classification
task. Recursive Feature Elimination (RFE) was used to iteratively
remove the least important features based on model performance,
effectively narrowing down the feature set. The Boruta method, a
wrapper algorithm, was applied to determine the significance of
features by comparing their importance to random permutations,
ensuring only the most relevant features. Linear Discriminant
Analysis (LDA) was also utilized to select features that maximally
separate between classes, focusing on those contributing to the
best class discrimination. Finally, the Random Forest (RF) method
provided feature importance scores, allowing for the selection of
features based on their contribution to the predictive power of the
model accuracy. This comprehensive approach of feature selection
improved model performance and minimized dimensionality,
ensuring that only the most relevant features were utilized for
multiclass classification.

2.5 Model evaluation metrics

To evaluate the performance of each classification model, we
used standard metrics, including accuracy, sensitivity, specificity,
precision, F1-score, and AUC, in line with similar studies
(Modhukur et al., 2021; Rahmani et al., 2023). The performance
metrics were computed as follows:

• Precision = TP/(TP + FP)
• Recall/Sensitivity = TP/(TP + FN)
• F1-score = 2∗TP/(2∗TP + FP + FN)
• Accuracy = (TP + TN)/(TP + TN + FP + FN)
• Sensitivity = TP/(TP + FN)
• AUC:AUC refers to the area under the Receiver Operating

Characteristic (ROC) curve.

AUC provides an aggregate measure of performance across all
classification thresholds, indicating themodel’s ability to distinguish
between classes effectively.

2.6 Cross-validation of interacting miRNAs
with literature and clinical trial data

We manually compiled a comprehensive collection of miRNAs
in cancer, miRNA isoforms in cancer, extracellular vesicular
(EV) miRNAs, and clinical trial miRNAs from the literature
(Supplementary File S1). Additionally, we downloaded the miRNA-
drug associations from the noncoRNA db (Li et al., 2020) and
miRNA genes from the Cancer miRNA Census (CMC miRNAs)
from the published paper (Suszynska et al., 2024).TheCMCmiRNA
genes were mapped to miRNA IDs (miRBase v21) and overlapping
miRNAs between CMC and all interacting miRNAs were identified.

Our literature-derived compendium and drug-target association
were visualized with Venn diagrams and pie charts using R packages
ggplot2 (v3.5.1) and VennDiagram (v1.7.3).

2.7 Machine learning classifier comparison
with other biomolecules: mRNAs and
lncRNAs

The LightGBM model was trained on three sets of mRNA
features. The mRNA features were selected from the interactions
between the miRNA-mRNA-lncRNA network. All mRNAs are
significantly regulated in each cancer type (|log2FoldChange|
≥ 1 and adjust p-value with BH < 0.05) (all interactions
are listed in Supplementary Table S1). We used random number
generation to pick the number of mRNA features from a total of
6207 interacting mRNAs. Two random numbers, 123 and 223, were
selected from 100 to 200 and 200 to 300 random numbers. Similarly,
for lncRNAs, we used random number generation to select lncRNA
features from a total of 2245 lncRNAs to train the ML models.
A total of 105 and 258 lncRNAs were selected from 100 to 200
and 200 to 300 random numbers. The training steps are followed
in the same manner as mentioned for the miRNA models above.
For both mRNAs and lncRNAs, we trained three models each.
Two from random feature selection and one with all interacting
mRNAs/lncRNAs.

2.8 Functional enrichment analysis

Weobtained experimentally validated gene targets of interacting
miRNAs from TarBase, miRTarBase, and miRecords databases
using the Bioconductor R package multiMiR (v1.26.0). Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were conducted for these gene
targets using the Bioconductor package clusterProfiler (v4.12.6),
and the results were visualized as a dot plot. Additionally, GO and
KEGG enrichment analyses were performed for protein-coding and
lncRNA genes obtained from each cancer type’s network. Finally,
we conducted a separate enrichment analysis for the targets of
common miRNAs compiled from all interacting miRNAs, miRNA
compendium (including EVmiRNA list), andCMC (Suszynska et al.,
2024) miRNAs.

2.9 Survival and clinical prognosis analysis
of interacting miRNAs

To evaluate the prognostic potential of the identified interacting
miRNAs, we performed univariate Cox-PH analysis using the
MethSurv pipeline (Modhukur et al., 2018). Patients were stratified
into high- and low-expression groups based on the median
expression level of each miRNA. The statistical significance of
the association between miRNA expression and overall survival
was assessed using the log-rank test. The proportional hazards
assumption was verified using the Schoenfeld residuals test, and
survival curves were visualized with the Kaplan-Meier (KM) plot.
We used the R packages survival (v3.7.0) and survminer (v0.4.9) for
survival analysis and visualizations, respectively.
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3 Results

3.1 Workflow overview

The overview of the workflow adopted in this study is
illustrated in Figure 1, which consists of three main sections, as
summarized below.

(A) Data Collection and Preprocessing
i. Raw read counts were collected from TCGA for 14 cancer

types, with a focus on miRNAs, protein-coding genes,
and lncRNAs.

ii. Differential expression analysis was performed using
DESeq2, comparing tumor and normal samples with strict
significance thresholds (|log2 fold change| ≥ 1 and adjusted
p-value <0.05).

iii. The raw counts were normalized using variance stabilizing
transformation (VST) to reduce heteroscedasticity
and improve comparability across samples. The VST-
normalized data was used for downstream visualizations,
including t-SNE plots.

iv. A Pearson correlation matrix was created to evaluate
relationships between differentially regulated miRNAs,
mRNAs, and lncRNAs tohelp identify potential interactions.

v. miRNA-mRNA-lncRNA network was constructed based
on the aforementioned correlations, considering only
interactions with a correlation coefficient (|R|) of
0.5 or higher.

vi. The network structure was analyzed further through
community identification using the fast-greedy method,
revealing clusters of interacting features.

vii. A total of 597 interacting miRNAs were selected for
subsequent analysis.

viii. Survival analysis was performed using univariate
Cox Proportional Hazards (Cox-PH) regression to
assess the relationship between miRNA expression and
patient survival.

(B) Feature Selection, Analysis, and Machine Learning
i. The raw miRNA counts were log2 transformed, quantile

normalized, and batch effects removed. From the total
preprocessed data, a subset of the quantile normalized
countmatrix of 597 interactingmiRNA obtained from part
(A) was used for the next steps.

ii. Dimensionality was reduced by using feature selection
methods: RFE, RF, Boruta, and LDA.

iii. The data were split into 70% training and 30% testing sets,
followed by feature scaling and application of SMOTE to
address class imbalance.

iv. A multilabel classification model was used to classify
normal and tumor tissues, employing machine learning
algorithms including RF, Adaptive Boosting (AdaBoost),
Extreme Gradient Boosting (XGBoost), Light Gradient
Boosting Machine (LightGBM), and a voting classifier,
along with feature importance evaluations.

(C) Validationwith Literature andFunctional EnrichmentAnalysis

i. The results were validated through comparisons with
existing literature.

Functional enrichment analysis, including GeneOntology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment, were used to identify miRNA-drug target associations
and potential biomarkers in clinical trials.

3.2 Overview of interacting miRNAs and
network properties

In our analysis, a highly correlated network (|R| ≥ 0.5) of
differentially regulatedmiRNA,mRNA, and lncRNA for the selected
cancer types, applying significant thresholds of p. adjust <0.05
and |log2FoldChange| ≥1) was constructed, where the assortativity
coefficient and degree of assortativity for networks ranged from
−0.59 to −0.85 and −0.3 to −0.63, respectively. The negative
assortativity coefficient indicates that the nodes tend to connect to
other nodes with different properties, such as high-degree nodes
(miRNAs) connecting with low-degree nodes (protein-coding genes
and lncRNAs). After removing duplicates, a total of 597 unique
miRNAs were compiled by combining miRNAs from networks of
all 14 cancer types. The top ten miRNAs with the highest degree of
centrality per cancer type are presented in Table 2, with a detailed
list of interactions per cancer shown in Supplementary Table S1. Key
miRNAs, including miR-145-3p/5p, miR-142-3p, miR-100-5p, miR-
143-3p, and miR-199b-5p, exhibited the highest degree of centrality
acrossmultiple cancer types in our study, highlighting their potential
involvement in oncogenic pathways.

3.3 Comparison of interacting and
feature-selected miRNAs

Feature selection methods identified the most representative
miRNA signature for cancer-type classification when applied to
597 interacting miRNAs. The RF method identified 298 miRNAs
of the most important features based on a median importance
(≥0.00039) cutoff, whereas RFE identified 150 miRNAs. The Boruta
method yielded 530 miRNA features, while LDA selected 352
miRNAs, achieving 90% cumulative importance. The miRNAs
from each feature set are listed in Supplementary Table S2, while
Table 3 shows the count of miRNAs in each feature set. The
Venn diagram (Supplementary Figure S1) shows the overlap among
the 597 interacting miRNAs and those identified by the feature
selection methods (RF, LDA, RFE, and Boruta). A total of 98
miRNAs were common between the 597 interacting miRNAs and
miRNA feature sets identified by four feature selection methods.
Additionally, 40miRNAs were unique to the 597miRNA feature set,
while 52 miRNAs were shared among the RFE, Boruta, RF, and 597
feature sets.

3.4 Performance of machine learning
models

To assess predictive performance, we trained a total of 25 ML
models using five algorithms (RF, AdaBoost, XGBoost, LightGBM,
and a voting classifier) across five feature sets (597 miRNAs, RFE-
selected features, RF-selected features, Boruta-selected features,
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FIGURE 1
Overview of the study workflow. (A) Data preprocessing and network creation from TCGA data for 14 cancers were included in the study, resulting in 14
networks and 597 miRNAs selected from the highly correlated networks. (B) Feature selection and model training using network-derived features. (C)
Cross-validation of selected features through literature and database comparisons.

and LDA-selected features). The model performance was evaluated
using precision, recall, and F1-score, with detailed classification
results shown in Table 4.

The RF model exhibited consistently high accuracy across
all feature sets, achieving an average accuracy of 99.18% ±
0.0013. However, its performance was lowest for the bladder
urothelial carcinoma (BLCA) solid tissue normal (NT) (BLCA-
NT) class, where recall ranged between 50% and 60%,
and F1 scores ranged from 60% to 80%, regardless of the
feature set (Supplementary Table S3).

Similarly, the AdaBoost model achieved an overall accuracy
of 98.93% ± 0.0017, with the Boruta feature set (530 miRNAs)
outperforming others by yielding the highest accuracy of 99.16%
(Supplementary Table S4). The XGBoost model achieved an
accuracy of 98.80% ± 0.0012, with the RF-selected feature set (298
miRNAs) providing the best performance with 99.02% accuracy
(Supplementary Table S5). For LightGBM models, the overall
accuracy was 98.98% ± 0.0006. The RF, RFE, and LDA feature
sets (298, 150, and 352 miRNAs, respectively) outperformed the
597 (accuracy = 99%) and Boruta feature sets (with 530 miRNAs,
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TABLE 2 Degree centrality of miRNAs in selected cancer types.

BLCA (bladder urothelial
carcinoma)

Degree centrality BRCA (breast invasive
carcinoma)

Degree centrality

hsa-miR-125b-5p 362 hsa-miR-190b 197

hsa-miR-145-3p 353 hsa-miR-155-5p 137

hsa-let-7c-5p 323 hsa-miR-934 135

hsa-miR-99a-5p 297 hsa-miR-18a-5p 118

hsa-miR-100-5p 295 hsa-miR-142-5p 106

hsa-miR-143-3p 282 hsa-miR-577 88

hsa-miR-145-5p 280 hsa-miR-379-5p 54

hsa-miR-6507-5p 242 hsa-miR-135b-5p 45

hsa-miR-200a-3p 225 hsa-miR-199b-5p 43

hsa-miR-141-3p 220 hsa-miR-142-3p 41

LIHC (Liver Hepatocellular
Carcinoma)

Degree centrality LUAD (Lung
Adenocarcinoma)

Degree centrality

hsa-miR-105-5p 226 hsa-miR-34b-3p 263

hsa-miR-767-5p 224 hsa-miR-34c-3p 248

hsa-miR-4652-5p 189 hsa-miR-34b-5p 229

hsa-miR-4746-5p 174 hsa-miR-105-5p 108

hsa-miR-767-3p 142 hsa-miR-767-5p 108

hsa-miR-199a-3p 132 hsa-miR-150-5p 89

hsa-miR-199b-3p 132 hsa-miR-767-3p 80

hsa-miR-466 110 hsa-miR-548y 69

hsa-miR-199b-5p 109 hsa-miR-194-5p 65

hsa-miR-214-3p 86 hsa-miR-192-5p 61

ESCA (Esophageal
Carcinoma)

Degree centrality HNSC (Head and Neck
Squamous Cell
Carcinoma)

Degree centrality

hsa-miR-944 930 hsa-miR-133a-5p 297

hsa-miR-205-3p 833 hsa-miR-1-5p 277

hsa-miR-205-5p 813 hsa-miR-1-3p 264

hsa-miR-149-5p 731 hsa-miR-133b 261

hsa-miR-6499-3p 609 hsa-miR-133a-3p 257

hsa-miR-708-5p 588 hsa-miR-499a-5p 245

hsa-miR-708-3p 582 hsa-miR-206 229

hsa-miR-375 553 hsa-miR-381-3p 103

hsa-miR-224-5p 495 hsa-miR-9-5p 99

hsa-miR-452-5p 484 hsa-miR-193b-3p 77

(Continued on the following page)
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TABLE 2 (Continued) Degree centrality of miRNAs in selected cancer types.

LUSC (Lung Squamous
Cell Carcinoma)

Degree centrality PRAD (Prostate
Adenocarcinoma)

Degree centrality

hsa-miR-142-3p 146 hsa-miR-222-3p 632

hsa-miR-944 70 hsa-miR-221-3p 630

hsa-miR-203a-3p 41 hsa-miR-23b-3p 430

hsa-miR-100-5p 37 hsa-miR-27b-3p 421

hsa-miR-205-5p 33 hsa-miR-145-3p 377

hsa-miR-29c-3p 22 hsa-miR-133b 357

hsa-miR-7702 21 hsa-miR-96-5p 241

hsa-miR-148a-3p 19 hsa-miR-141-3p 223

hsa-miR-196a-5p 13 hsa-miR-143-3p 201

hsa-miR-511-5p 12 hsa-miR-6510-3p 196

KICH (Kidney
Chromophobe)

Degree centrality KIRC (Kidney Renal Clear
Cell Carcinoma)

Degree centrality

hsa-miR-221-3p 594 hsa-miR-142-5p 277

hsa-miR-182-5p 474 hsa-miR-155-5p 247

hsa-miR-96-5p 432 hsa-miR-142-3p 133

hsa-miR-222-3p 398 hsa-miR-892b 128

hsa-miR-221-5p 365 hsa-miR-892c-3p 117

hsa-miR-30e-5p 332 hsa-miR-888-5p 111

hsa-miR-455-3p 327 hsa-miR-204-5p 102

hsa-miR-891a-5p 304 hsa-miR-891b 93

hsa-miR-222-5p 293 hsa-miR-892a 87

hsa-miR-29a-3p 240 hsa-miR-21-5p 67

STAD (Stomach
Adenocarcinoma)

Degree centrality THCA (Thyroid
Carcinoma)

Degree centrality

hsa-miR-195-5p 605 hsa-miR-146b-3p 892

hsa-miR-100-5p 593 hsa-miR-21-5p 853

hsa-miR-145-3p 570 hsa-miR-146b-5p 853

hsa-miR-125b-5p 569 hsa-miR-7-2-3p 696

hsa-miR-145-5p 548 hsa-miR-1179 672

hsa-miR-133a-3p 528 hsa-miR-204-5p 562

hsa-let-7c-5p 500 hsa-miR-7156-5p 402

hsa-miR-218-5p 487 hsa-miR-375 401

hsa-miR-1-3p 480 hsa-miR-31-3p 374

hsa-miR-133b 448 hsa-miR-6860 366

(Continued on the following page)
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TABLE 2 (Continued) Degree centrality of miRNAs in selected cancer types.

KIRP (Kidney Renal
Papillary Cell Carcinoma)

Degree centrality UCEC (Uterine Corpus
Endometrial Carcinoma)

Degree centrality

hsa-miR-143-3p 263 hsa-miR-145-3p 185

hsa-miR-126-3p 262 hsa-miR-145-5p 172

hsa-miR-143-5p 225 hsa-miR-142-5p 94

hsa-miR-145-5p 191 hsa-miR-449a 93

hsa-miR-145-3p 188 hsa-miR-449c-5p 84

hsa-miR-223-3p 179 hsa-miR-449b-5p 81

hsa-miR-199a-3p 141 hsa-miR-449b-3p 81

hsa-miR-199b-3p 138 hsa-miR-199a-5p 80

hsa-miR-1-3p 122 hsa-miR-199b-5p 78

hsa-miR-4772-3p 122 hsa-miR-142-3p 78

Top 10 miRNAs, with the highest degree of centrality for each cancer type in the study.

TABLE 3 Total number of miRNAs in each feature set.

Feature set Interacting miRNAs RFE RF Boruta LDA

No. Of miRNAs 597 150 298 530 352

the accuracy = 99%). However, the LightGBM models exhibited
lower recall for the BLCA-NT and the lung adenocarcinoma
(LUAD-NT) classes (Supplementary Table S6).

Furthermore, we developed a voting classifier that combined
RF, AdaBoost, XGBoost, and LightGBM models and achieved an
average accuracy of 99.03% ± 0.0005. Notably, the RFE feature set
(150 miRNAs) demonstrated particularly strong results, achieving
99% accuracy with both weighted and macro averages at 99%. A
detailed comparison of model performance metrics as shown in
Tables 5–9, and accuracy, precision, recall, F1-score, specificity, and
AUC for each class and five feature sets are presented in Figure 2.

The ensemble model using 597 miRNA features performed
below 80% for the BLCA-NT (recall = 67%) and LUAD-NT (recall =
79%) classes. Similarly, the Boruta feature set model (530 miRNAs)
also performed below 80% for the BLCA-NT class (recall = 67%)
and the stomach adenocarcinoma (STAD-NT) class (recall = 79%).
In contrast, the RFE feature set (150 miRNAs) showed superior
performance for several classes, including breast invasive carcinoma
(BRCA-NT/TP), esophageal carcinoma (ESCA-TP), head and neck
squamous cell carcinoma (HNSC-NT/TP), kidney chromophobe
(KICH-NT/TP), kidney renal clear cell carcinoma (KIRC-NT/TP),
kidney renal papillary cell carcinoma (KIRP-NT/TP) as compared to
the RF (298miRNAs) and LDAmodel (352miRNAs).TheRFmodel
performed better in the liver hepatocellular carcinoma (LIHC-NT)
class than the RFE and LDA models. For the LUAD-NT/TP, STAD-
NT/TP, and uterine corpus endometrial carcinoma (UCEC-NT/TP)
classes, the LDA-basedmodel outperformed the RFE and RF feature
set-based models. The RFE feature set model demonstrated similar

performance to the RF feature set model for THCA-NT, however
it outperformed the RF model for the UCEC-NT class. A bar plot
comparing ensemble model performance using the RFE, RF, and
LDA feature sets is shown in Figures 2A–E. The confusion matrix
plot (Figures 3A, B; Supplementary Figures S2A–C) highlights the
ensemble classifier’s true classification counts per cancer type
across all feature sets. Additionally, t-SNE projections of the
597-miRNA feature set and the RFE feature set (150 miRNAs)
are shown in Figures 3C, D, respectively.

3.5 Feature importance analysis and
survival outcomes

In our feature importance analysis, we evaluated the
contributions of individual miRNAs to the predictive models.
The most important features, according to the RF, AdaBoost,
XGBoost, and LightGBM models, respectively, highlight the
topmost impactfulmiRNA for eachmodel in Figures 4A–E.Notably,
several miRNAs, including miR-520d-5p, miR-520a-3p, miR-520e,
miR-892c-3p, miR-892b, miR-105-3p, miR-215-3p, miR-10b-5p, miR-
139-5p, miR-21-5p, miR-93-5p, miR-4778-3p, miR-30c-2-3p, andmiR-
204-5p, emerged as common top features across models, suggesting
their significant role in cancer progression. The top features for each
trainedmodel, along with their interacting genes and lncRNAs from
the network, are highlighted in Supplementary Table S7.

The survival analysis results further emphasized the prognostic
potential of these miRNAs in various cancer types. For example,

Frontiers in Bioinformatics 12 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1571476
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lawarde et al. 10.3389/fbinf.2025.1571476

T
A
B
LE

4
M
ac

h
in
e
le
ar
n
in
g
m
o
d
el

p
er
fo
rm

an
ce

s
w
it
h
ea

ch
fe
at
u
re

se
t.

M
L

m
o
d
e
ls

Sc
o
re

5
9
7

R
FE

R
F

B
o
ru
ta

LD
A

P
re
ci
si
o
n

R
e
ca

ll
f1
-

sc
o
re

P
re
ci
si
o
n

R
e
ca

ll
f1
-

sc
o
re

P
re
ci
si
o
n

R
e
ca

ll
f1
-

sc
o
re

P
re
ci
si
o
n

R
e
ca

ll
f1
-

sc
o
re

P
re
ci
si
o
n

R
e
ca

ll
f1
-

sc
o
re

Ra
nd

om
fo

re
st

ac
cu

ra
cy

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

m
ac

ro
av

g
0.
98

0.
95

0.
96

0.
98

0.
96

0.
97

0.
99

0.
97

0.
98

0.
99

0.
96

0.
97

0.
99

0.
96

0.
97

w
ei
gh

te
d

av
g

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

A
da

Bo
os

t

ac
cu

ra
cy

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

m
ac

ro
av

g
0.
99

0.
94

0.
96

0.
99

0.
95

0.
96

0.
99

0.
95

0.
97

0.
99

0.
96

0.
97

0.
99

0.
93

0.
96

w
ei
gh

te
d

av
g

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

XG
Bo

os
t

ac
cu

ra
cy

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

m
ac

ro
av

g
0.
98

0.
95

0.
96

0.
97

0.
95

0.
96

0.
98

0.
96

0.
97

0.
97

0.
95

0.
96

0.
98

0.
95

0.
96

w
ei
gh

te
d

av
g

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

Li
gh

tG
BM

ac
cu

ra
cy

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

m
ac

ro
av

g
0.
99

0.
95

0.
97

0.
98

0.
96

0.
97

0.
98

0.
96

0.
97

0.
98

0.
95

0.
96

0.
99

0.
95

0.
97

w
ei
gh

te
d

av
g

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

En
se

m
bl
e

cl
as

sifi
er

ac
cu

ra
cy

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

m
ac

ro
av

g
0.
99

0.
95

0.
97

0.
98

0.
97

0.
97

0.
98

0.
96

0.
97

0.
98

0.
96

0.
97

0.
99

0.
96

0.
97

w
ei
gh

te
d

av
g

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

0.
99

Pr
ec

isi
on

,r
ec

al
l,
f-
sc

or
e
of

cl
as

sifi
ca

tio
n

ac
cu

ra
cy

fo
r5

m
ac

hi
ne

le
ar

ni
ng

m
et
ho

ds
,R

an
do

m
Fo

re
st
,A

da
Bo

os
t,

XG
Bo

os
t,

Li
gh

tG
BM

,a
nd

en
se

m
bl
e
cl
as

sifi
er

us
ed

in
th

e
st
ud

y.
(R

FE
:r

ec
ur

siv
e
fe
at
ur

e
el
im

in
at
io

n,
RF

:r
an

do
m

fo
re

st
,L

D
A
:L

in
ea

rd
isc

rim
in

an
ta

na
ly
sis

).

Frontiers in Bioinformatics 13 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1571476
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lawarde et al. 10.3389/fbinf.2025.1571476

TABLE 5 Performance of Ensemble classifier with 597 miRNA features.

Response class 597_precision 597_recall 597_f1-score 597_Specificity 597_AUC

TCGA-BLCA-NT 1 0.67 0.8 1 1

TCGA-BLCA-TP 0.98 1 0.99 1 1

TCGA-BRCA-NT 1 0.84 0.91 1 0.98

TCGA-BRCA-TP 0.98 1 0.99 1 1

TCGA-ESCA-TP 1 1 1 1 1

TCGA-HNSC-NT 1 0.85 0.92 1 1

TCGA-HNSC-TP 0.99 1 0.99 1 1

TCGA-KICH-NT 1 1 1 1 1

TCGA-KICH-TP 1 1 1 1 1

TCGA-KIRC-NT 1 1 1 1 1

TCGA-KIRC-TP 1 1 1 1 1

TCGA-KIRP-NT 1 0.9 0.95 1 1

TCGA-KIRP-TP 0.99 1 0.99 1 1

TCGA-LIHC-NT 0.93 0.93 0.93 1 1

TCGA-LIHC-TP 0.99 0.99 0.99 1 1

TCGA-LUAD-NT 0.92 0.79 0.85 1 1

TCGA-LUAD-TP 0.98 0.99 0.99 1 1

TCGA-LUSC-NT 1 1 1 1 1

TCGA-LUSC-TP 1 1 1 1 1

TCGA-PRAD-NT 1 0.93 0.97 1 1

TCGA-PRAD-TP 0.99 1 1 1 1

TCGA-STAD-NT 0.92 0.86 0.89 1 1

TCGA-STAD-TP 0.99 0.99 0.99 1 1

TCGA-THCA-NT 1 0.89 0.94 1 1

TCGA-THCA-TP 0.99 1 0.99 1 1

TCGA-UCEC-NT 1 1 1 1 1

TCGA-UCEC-TP 1 1 1 1 1

Accuracy 0.99 0.99 0.99

macro avg 0.99 0.95 0.97

weighted avg 0.99 0.99 0.99

Precision, recall, f1-score, specify, and AUC, for ensemble classifier using 597 interacting miRNAs, as a feature set.
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TABLE 6 Performance of Ensemble classifier with RFE miRNA features.

Response class RFE_precision RFE_recall RFE_f1-score RFE_Specificity RFE_AUC

TCGA-BLCA-NT 1 0.83 0.91 1 1

TCGA-BLCA-TP 0.99 1 1 1 1

TCGA-BRCA-NT 0.96 0.87 0.92 1 0.99

TCGA-BRCA-TP 0.99 1 0.99 1 1

TCGA-ESCA-TP 1 1 1 1 1

TCGA-HNSC-NT 1 1 1 1 1

TCGA-HNSC-TP 1 1 1 1 1

TCGA-KICH-NT 1 1 1 1 1

TCGA-KICH-TP 1 1 1 1 1

TCGA-KIRC-NT 1 1 1 1 1

TCGA-KIRC-TP 1 1 1 1 1

TCGA-KIRP-NT 1 0.9 0.95 1 1

TCGA-KIRP-TP 0.99 1 0.99 1 1

TCGA-LIHC-NT 0.93 0.93 0.93 1 1

TCGA-LIHC-TP 0.99 0.99 0.99 1 1

TCGA-LUAD-NT 0.87 0.93 0.9 1 1

TCGA-LUAD-TP 0.99 0.99 0.99 1 1

TCGA-LUSC-NT 1 1 1 1 1

TCGA-LUSC-TP 1 1 1 1 1

TCGA-PRAD-NT 0.88 1 0.94 1 1

TCGA-PRAD-TP 1 0.99 0.99 1 1

TCGA-STAD-NT 0.92 0.86 0.89 1 1

TCGA-STAD-TP 0.99 0.99 0.99 1 1

TCGA-THCA-NT 0.94 0.94 0.94 1 1

TCGA-THCA-TP 0.99 0.99 0.99 1 1

TCGA-UCEC-NT 0.9 1 0.95 1 1

TCGA-UCEC-TP 1 0.99 1 1 1

accuracy 0.99 0.99 0.99

macro avg 0.98 0.97 0.97

weighted avg 0.99 0.99 0.99

Precision, recall, f1-score, specify, and AUC, for ensemble classifier using 150 interacting miRNAs, as a feature set from the RFE, method of feature selection.
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TABLE 7 Performance of Ensemble classifier with random forest miRNA features.

Response class RF_precision RF_recall RF_f1-score RF_Specificity RF_AUC

TCGA-BLCA-NT 1 0.83 0.91 1 1

TCGA-BLCA-TP 0.99 1 1 1 1

TCGA-BRCA-NT 1 0.84 0.91 1 0.99

TCGA-BRCA-TP 0.98 1 0.99 1 1

TCGA-ESCA-TP 1 1 1 1 1

TCGA-HNSC-NT 1 0.92 0.96 1 1

TCGA-HNSC-TP 0.99 1 1 1 1

TCGA-KICH-NT 1 1 1 1 1

TCGA-KICH-TP 1 1 1 1 1

TCGA-KIRC-NT 1 1 1 1 1

TCGA-KIRC-TP 1 1 1 1 1

TCGA-KIRP-NT 1 0.9 0.95 1 1

TCGA-KIRP-TP 0.99 1 0.99 1 1

TCGA-LIHC-NT 0.94 1 0.97 1 1

TCGA-LIHC-TP 1 0.99 1 1 1

TCGA-LUAD-NT 0.93 0.93 0.93 1 1

TCGA-LUAD-TP 0.99 0.99 0.99 1 1

TCGA-LUSC-NT 1 1 1 1 1

TCGA-LUSC-TP 1 1 1 1 1

TCGA-PRAD-NT 0.93 0.93 0.93 1 1

TCGA-PRAD-TP 0.99 0.99 0.99 1 1

TCGA-STAD-NT 0.92 0.86 0.89 1 1

TCGA-STAD-TP 0.99 0.99 0.99 1 1

TCGA-THCA-NT 0.94 0.94 0.94 1 1

TCGA-THCA-TP 0.99 0.99 0.99 1 1

TCGA-UCEC-NT 1 0.89 0.94 1 1

TCGA-UCEC-TP 0.99 1 1 1 1

accuracy 0.99 0.99 0.99

macro avg 0.98 0.96 0.97

weighted avg 0.99 0.99 0.99

Precision, recall, f1-score, specify, and AUC, for ensemble classifier using 298 interacting miRNAs, as a feature set from the RF, method of feature selection.
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TABLE 8 Performance of Ensemble classifier with Boruta miRNA features.

Response class Boruta_precision Boruta_recall Boruta_f1-score Boruta_Specificity Boruta_AUC

TCGA-BLCA-NT 1 0.67 0.8 1 1

TCGA-BLCA-TP 0.98 1 0.99 1 1

TCGA-BRCA-NT 0.96 0.87 0.92 1 0.99

TCGA-BRCA-TP 0.99 1 0.99 1 1

TCGA-ESCA-TP 1 1 1 1 1

TCGA-HNSC-NT 1 1 1 1 1

TCGA-HNSC-TP 1 1 1 1 1

TCGA-KICH-NT 1 1 1 1 1

TCGA-KICH-TP 1 1 1 1 1

TCGA-KIRC-NT 1 1 1 1 1

TCGA-KIRC-TP 1 1 1 1 1

TCGA-KIRP-NT 1 0.9 0.95 1 1

TCGA-KIRP-TP 0.99 1 0.99 1 1

TCGA-LIHC-NT 0.93 0.93 0.93 1 1

TCGA-LIHC-TP 0.99 0.99 0.99 1 1

TCGA-LUAD-NT 0.93 0.93 0.93 1 1

TCGA-LUAD-TP 0.99 0.99 0.99 1 1

TCGA-LUSC-NT 1 0.93 0.96 1 1

TCGA-LUSC-TP 0.99 1 1 1 1

TCGA-PRAD-NT 0.93 0.93 0.93 1 1

TCGA-PRAD-TP 0.99 0.99 0.99 1 1

TCGA-STAD-NT 0.92 0.79 0.85 1 1

TCGA-STAD-TP 0.98 0.99 0.99 1 1

TCGA-THCA-NT 0.94 0.89 0.91 1 1

TCGA-THCA-TP 0.99 0.99 0.99 1 1

TCGA-UCEC-NT 1 1 1 1 1

TCGA-UCEC-TP 1 1 1 1 1

accuracy 0.99 0.99 0.99

macro avg 0.98 0.96 0.97

weighted avg 0.99 0.99 0.99

Precision, recall, f1-score, specify, and AUC, for ensemble classifier using 530 interacting miRNAs, as a feature set from the Boruta method of feature selection.

Frontiers in Bioinformatics 17 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1571476
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lawarde et al. 10.3389/fbinf.2025.1571476

TABLE 9 Performance of Ensemble classifier with LDA miRNA features.

Response class LDA_precision LDA_recall LDA_f1-score LDA_Specificity LDA_AUC

TCGA-BLCA-NT 1 0.83 0.91 1 1

TCGA-BLCA-TP 0.99 1 1 1 1

TCGA-BRCA-NT 0.96 0.84 0.9 1 0.99

TCGA-BRCA-TP 0.98 1 0.99 1 1

TCGA-ESCA-TP 1 1 1 1 1

TCGA-HNSC-NT 1 0.92 0.96 s1 1

TCGA-HNSC-TP 0.99 1 1 1 1

TCGA-KICH-NT 1 1 1 1 1

TCGA-KICH-TP 1 1 1 1 1

TCGA-KIRC-NT 1 1 1 1 1

TCGA-KIRC-TP 1 1 1 1 1

TCGA-KIRP-NT 1 0.9 0.95 1 1

TCGA-KIRP-TP 0.99 1 0.99 1 1

TCGA-LIHC-NT 0.92 0.8 0.86 1 1

TCGA-LIHC-TP 0.97 0.99 0.98 1 1

TCGA-LUAD-NT 1 0.93 0.96 1 1

TCGA-LUAD-TP 0.99 1 1 1 1

TCGA-LUSC-NT 1 1 1 1 1

TCGA-LUSC-TP 1 1 1 1 1

TCGA-PRAD-NT 1 0.87 0.93 1 1

TCGA-PRAD-TP 0.99 1 0.99 1 1

TCGA-STAD-NT 1 0.86 0.92 1 1

TCGA-STAD-TP 0.99 1 0.99 1 1

TCGA-THCA-NT 0.94 0.89 0.91 1 1

TCGA-THCA-TP 0.99 0.99 0.99 1 1

TCGA-UCEC-NT 1 1 1 1 1

TCGA-UCEC-TP 1 1 1 1 1

accuracy 0.99 0.99 0.99

macro avg 0.99 0.96 0.97

weighted avg 0.99 0.99 0.99

Precision, recall, f1-score, specify, and AUC, for ensemble classifier using 352 interacting miRNAs, as a feature set from the LDA, method of feature selection.
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FIGURE 2
Barplot depicting ensemble model performance across five feature sets. (A) Precision and accuracy for each class. (B) Recall for each class. (C)
F1-score for each class. (D) Specificity for each class. (E) Area under the curve (AUC) for each class.

higher expression ofmiR-204-5p in BRCA correlated with improved
survival outcomes (HR < 1; p < 0.0001), whereas lower expression of
miR-105-5p was linked to poorer prognosis (HR > 1; p < 0.0001) for
patients (Figures 5A, B). In UCEC, patients with elevated miR-93-
5p and miR-1301-3p expression levels exhibited a median survival
of approximately 120 months (HR > 1), indicating poor prognostic
markers (Figures 5C, D). Similarly, in KIRC, high expression ofmiR-
10b-5p and miR-139-5p correlated with better survival than the low
expression group (HR < 1; p < 0.0001), while elevated miR-21-
5p levels predicted worse survival outcomes (HR > 1; p < 0.0001)
(Figures 5E, F). In LIHC, high miR-139-5p expression significantly
improved survival outcomes compared to low expression levels, as
indicated by the statistical significance (p < 0.0001) and the hazard
ratio (HR = 0.42) (Figure 5G). Collectively, these results highlight
the prognostic relevance of thesemiRNAs, suggesting their potential
as cancer prognostic biomarkers.

The interaction networks of top miRNA features are plotted
for UCEC, BRCA, and LUAD (Figures 6A–C). In UCEC and
BRCA, miR-499bc-5p demonstrated the highest degree of centrality,
connecting 81 nodes in UCEC and 35 in BRCA. In UCEC, miRNA

interacted with both upregulated and downregulated genes, while
in BRCA, its network connections were confined to upregulated
genes (Figures 6A, B). The networks in all three cancers were
sparse with miRNAs linked to multiple genes. MiR-139-5p and
let-7c-5p are both downregulated and were associated with the
expression of downregulated genes, with degree centralities of
29 and 35, respectively. In the LUAD network, miR-93-5p had a
degree centrality of 8, whereas miR-30a-3p had a degree centrality
of 15, indicating similar regulatory patterns (Figure 6C). These
interactions further emphasize the important co-regulatory roles of
miRNAs in cancer progression and survival.

3.6 Overlap of predictive miRNAs with
literature compendium, clinical trials, and
drug target associations

Our findings revealed a substantial overlap between the
predictive miRNA biomarkers identified in this study and those
reported in existing literature, ongoing clinical trials, and the
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FIGURE 3
Confusion matrix and t-SNE plot, depicting models’ separability (A) Confusion matrix of the ensemble model trained with 597 miRNA features. (B)
Confusion matrix of the ensemble model trained with RFE (150 miRNA) features. (C) t-SNE projection of 597 miRNAs across 14 cancer types, illustrating
models’ separability. (D) t-SNE projection of 150 miRNAs (RFE feature set) across 14 cancer types, illustrating model separability.

CMC, underscoring their relevance in cancer-related research
(Figure 7A). Specifically, a total of 159 predictive miRNAs
matched entries in the manually curated miRNA literature-derived
compendium (Supplementary Table S8). Of these, 126 miRNAs
have been reported as being EV in various cancers. Furthermore, 202
miRNAs from the CMC list corresponded to our identified features.
Across the four miRNA datasets, including interacting miRNAs
(597 miRNAs), literature-derived miRNAs (miRNA isoforms and
EV miRNAs), and miRNAs from the CMC list, 63 miRNAs were
common across all datasets, highlighting their significant relevance
in cancer progression.

Several specific miRNAs identified in our analysis have well-
established associations with cancer. For example, miR-106a-3p/5p
is recognized for targeting PTEN in prostate cancer, while the
miR-125 cluster significantly influences the same type of cancer
by targeting p53 inhibitors (Wu et al., 2024). Likewise, both the
miR-200 and miR-204-3p/5p clusters are associated with thyroid
cancer, and miR-21-3p/5p has connections to both lung and thyroid
cancers (Cabané et al., 2024; Carrà et al., 2024). The common
miRNAs found in EVs play significant roles in cancer progression
by influencing the growth and proliferation of tumors. Specifically,
the miR-155 cluster and the miR-221 cluster are associated with
renal cell carcinoma and breast cancer, respectively (Das et al., 2019;
Liwei et al., 2021; Parashar et al., 2024). Additionally, the miR-181c,

the miR-200 cluster, and the miR-221 cluster have been implicated
in breast cancer metastasis (Das et al., 2019; Parashar et al., 2024;
Tominaga et al., 2015; Le et al., 2014). In terms of angiogenesis,miR-
181b-5p in esophageal squamous cell carcinoma, as well as miR-143
and miR-145 clusters in lung cancers, and miR-15a and miR-181b
in renal carcinomas, all influence this vital process (Parashar et al.,
2024; Wang et al., 2020; Lawson et al., 2017; Lopatina et al., 2019).

Furthermore, miR-31-5p and miR-222-3p from renal cell
carcinoma and non-small cell lung cancer are involved in
chemotherapy resistance (Parashar et al., 2024; He et al., 2020;
Wei et al., 2017). Conversely,miR-503 in breast cancer cells has been
shown to enhance sensitivity to chemotherapy by disrupting cell
proliferation and invasion (Parashar et al., 2024; Bovy et al., 2015).
ThesemiRNAs are highlighted as crucial elements in our interaction
network, as shown in the Supplementary Table S7.

Our analysis identified a considerable number of miRNAs
that are currently being investigated in clinical trials for cancer
therapies, as shown in Table 10, underscoring their translational
potential (Supplementary Table S9). We also evaluated the overlap
between the identified miRNA features and those in the noncoRNA
db, as shown in the pie chart (Figure 7C) revealed associations
with drug targets. Among the 617 miRNAs associated with
drug targets, we found 186 miRNAs in validated associations
that were resistant to cancer therapies, while 157 miRNAs were
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FIGURE 4
Bar plot depicting feature importance from the 4 ML methods. (A) Random forest model with the random forest-based feature set. (B) AdaBoost model
with the Boruta feature set. (C) XGBoost model with the random forest feature set. (D) LightGBM model with the RFE feature set. (E) LightGBM model
with the random forest feature set. (F) LightGBM model with the LDA feature set.

linked to treatment sensitivity. Overall, our analysis revealed
256 predicted resistance associations and 18 predicted sensitivity
associations. A complete overview of the drug-target associations is
provided in Supplementary Table S10.

3.7 Functional enrichment analysis

To explore the biological roles of the 597 interacting miRNAs
identified in our study, we conducted GO and KEGG pathway
enrichment analyses on their experimentally validated targets.
The findings from GO analysis revealed significant enrichment
in biological processes critical for cancer progression, including
cellular adhesion, differentiation, organelle localization, embryonic

organ development, renal and kidney development, T-cell
differentiation, and DNA replication (Supplementary Figure S3).
Further, KEGG pathway enrichment analysis was performed
on the targets of all 597 miRNAs, the 150 miRNA features
selected by the RFE method, and the 63 miRNAs shared across
the 597 miRNAs, the literature compendium, EV miRNAs,
and CMC miRNAs (Figure 7B). The top enriched pathways
resulting from the above-mentioned analysis included cellular
senescence, Hippo signaling, FoxO signaling, MAPK signaling,
TNF signaling, and pathways related to Human Papillomavirus
(HPV) infections. These enriched pathways highlight the central
role of miRNAs in key signaling cascades implicated in cancer
biology. Detailed data from the GO and KEGG enrichment
analyses are presented in Supplementary Tables S11–14. miRNA

Frontiers in Bioinformatics 21 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1571476
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lawarde et al. 10.3389/fbinf.2025.1571476

FIGURE 5
Survival curve depicting prognostic capabilities of miRNA biomarkers using Kaplan-Meier plot for (A–B) Breast Invasive Carcinoma (BRCA) (C–D)
Uterine Corpus Endometrial Carcinoma (UCEC). (E–G) Kidney Renal Papillary Cell Carcinoma (KIRC) and (H) Liver Hepatocellular Carcinoma (LIHC).

interactions common to validated and predicted interactions for
597 miRNAs, extracted from the databases such as miRTarBase,
TarBase, miRecords, Pictar, and Diana, -obtained from multiMiR R
package were shown in Supplementary Tables S15, 16.

3.8 Classification performance of
mRNA/lncRNA classifiers

The lightGBM method was used to classify 14 cancer
types using interacting mRNAs and lncRNAs as the features.
The classification results for mRNA/lncRNA-based ML models
are shown inSupplementary Tables S17, 18.Themodelshadanoverall
accuracy of 98%–99% in both cases. However, they did not perform
as well when classifying some cancer types. For the mRNA models,
all three models showed lower sensitivity for normal samples in
these classes: BLCA-NT, HNSC-NT, LUAD-NT, PRAD-NT, STAD-
NT, and UCEC-NT. The recall values for these classes were below
80%. Additionally, the F1-score was lower than 80% for the following
classes: BLCA-NT, HNSC-NT, PRAD-NT, and STAD-NT. Similarly,
the lncRNA feature models had lower precision, in the case of KICH-
NTandBLCA-NT,lowerrecall/sensitivity,andF1-scoreforBLCA-NT,
PRAD-NT, STAD-NT, and UCEC-NT (<80%). The same LightGBM
models trained on miRNA features performed better in classifying
these normal samples than the mRNA or lncRNA feature sets.

4 Discussion

The current study aimed to identify a minimal set of miRNA
biomarkers capable of distinguishing primary cancer types based

on their TOO while considering the complex interactions among
miRNAs, mRNAs, and lncRNAs. Correlation-based networks infer
regulatory relationships by analyzing co-expression profiles, which
capture molecular interactions in cancer progression (Zheng et al.,
2020; Yang et al., 2022), rather than relying on sequence analysis of
RNA interactions (Adinolfi et al., 2019; Bheemireddy et al., 2022).
The availability of extensive and standardized expression datasets
from the TCGA makes correlation-based methods particularly
effective for constructing robust and biologically meaningful
co-expression networks in cancer studies. By integrating these
interactions, our approach provides a more biologically relevant and
robust set of miRNA signatures, enhancing the potential for early
cancer detection.

Our ensemble learning framework, combining Random Forest,
AdaBoost, XGBoost, and LightGBM, achieved an impressive 99%
accuracy in classifying 14 distinct cancer types based on TOO.
We visualized the clustering of cancer samples according to tissue
types using t-SNE plots (Figures 3C, D), which demonstrated
higher discrimination power. Despite achieving high overall
accuracy in TOO prediction, our study revealed some variations
in model performance for specific cancer types (Figures 2A–E).
These variations can be attributed to factors such as molecular
complexity. Gastric cancer, specifically STAD, is often challenging
to classify in molecular studies (Cao et al., 2022). In contrast,
cancers with well-characterized molecular profiles, such as
BRCA and lung cancer (e.g., LUSC) (Koboldt et al., 2012;
Thennavan et al., 2021; Hammerman et al., 2012), exhibited
higher and more consistent accuracy across all models and feature
selection methods. This consistent performance for BRCA and lung
cancers highlights the critical role of distinct molecular signatures
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FIGURE 6
miRNA-mRNA-lncRNA network visualization. (A) Network of miR-499b-5p in UCEC. (B–D) Network of miR-499b-5p, miR-139-5p, and let-7c-5p in
BRCA. (E–F) Network in LUAD for miR-93-5p, miR-30a-3p. The log2 fold change values highlight node borders: green for downregulated and red for
upregulated miRNAs, mRNAs, and lncRNAs. Node shapes represent miRNAs (circles), protein-coding genes (squares), and lncRNAs (c-shaped squares).
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FIGURE 7
Overlapping miRNAs with miRNA compendium, CMC db, EV miRNAs and noncoRNA db and KEGG enrichment analysis. (A) Venn diagram depicting
overlapping miRNAs features with miRNA compendium and CMC database and EV miRNAs (B) Dot plot depicting KEGG pathway enrichment analysis.
(C) Pie chart depicting miRNAs sensitive to drugs and the experimental evidence of drug-target associations from noncoRNA db.

in improving classification accuracy. These results suggest the
need for tailored optimization strategies to enhance classification
outcomes, especially for complex and heterogeneous cancer types
like gastric cancer.

While previous studies have demonstrated promising results in
tumor origin classification, they often face limitations in accurately
classifying specific cancer types or lack comprehensive biological
validation. For instance, Raghu et al. (2024) (Raghu et al., 2024)
achieved a high accuracy (97%) for tumor origin detection, however,
their method struggled with cancers like uterine (77% with decision
tree) and esophagus (33.3% with decision tree and 83% with
deep learning) cancers, highlighting limitations in certain cancer
classifications. Similarly, Tang et al. (2018) (Tang et al., 2018)
used miRNA and DNA methylation markers, achieving ∼91% and
∼96% accuracy, respectively, but relying solely on single-layer data.
Another comparative study demonstrates that DNA methylation
profiles, particularly when analyzed using LASSO and neural
network models, offer the highest predictive accuracy, ∼97.77%
for tumor tissue origin detection compared to mRNA, microRNA,

and lncRNA expression profiles (Feng and Wang, 2024). Lopez-
Rincon et al. (2020) focused on comprehensive feature selectionwith
ensemble methods providing minimal miRNAs for classification.
A study by Matsuzaki et al. (2023) on serum miRNomes for
predicting the TOO in early-stage cancers showed an 88% accuracy
across all stages (Matsuzaki et al., 2023). Unlike the studies
mentioned earlier, our research integrates miRNA-mRNA-lncRNA
interactions identified from co-expression networks, crucial for
understanding cancer initiation and pathways, as demonstrated in
other cancer studies (Dong et al., 2020; Zheng et al., 2020; Naghsh-
Nilchi et al., 2022; Gao et al., 2021). Our approach includes thorough
in silico validation using CMC, analysis of survival markers,
assessment of drug sensitivity, and relevance to clinical trials. This
multi-layered approach provides more biologically relevant insights,
positioning our study as a more comprehensive tool for cancer
classification and therapeutic planning.

Our methodological approach demonstrated the power of
Artificial Intelligence (AI) in complex multiclass classification.
Our feature selection process identified several important miRNAs.
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TABLE 10 miRNAs in ongoing clinical trial studies.

miRNAs in clinical trial Cancer

hsa-miR-10b-3p Glioblastoma

hsa-miR-10b-5p Glioblastoma

hsa-miR-1307-3p pancreatic cancer

hsa-miR-1307-5p pancreatic cancer

hsa-miR-146a-5p lung cancer

hsa-miR-155-3p lymphoma, breast cancer

hsa-miR-155-5p lymphoma, breast cancer

hsa-miR-16-1-3p lung cancer

hsa-miR-16-2-3p lung cancer

hsa-miR-18a-3p breast cancer

hsa-miR-18a-5p breast cancer

hsa-miR-193a-3p advanced solid tumors

hsa-miR-211-5p ovarian cancer

hsa-miR-218-5p lung cancer

hsa-miR-22-3p lung cancer

hsa-miR-29b-2-5p lung cancer

hsa-miR-29b-3p lung cancer

hsa-miR-34a-5p Renal cell carcinoma, non small cell lung
cancer (NSCLC), liver cancer

hsa-miR-7-2-3p lung cancer, gastric cancer

hsa-miR-7-5p lung cancer, gastric cancer

hsa-miR-9-3p Lung cancer

hsa-miR-9-5p lung cancer

These include miR-21-5p, miR-93-5p, and miR-10b-5p (Qian et al.,
2024; Yan et al., 2021; Pan et al., 2021). These miRNAs are linked
to critical tumorigenic processes. These processes include immune
modulation, epithelial-mesenchymal transition, angiogenesis, and
chemoresistance (Pavlíková et al., 2022). We also conducted an in
silico validation. This validation revealed overlaps between these
miRNA features and drug-target associations. This highlights their
dual role in regulating drug sensitivity (Seyhan, 2024; Si et al.,
2019) and chemoresistance (Pavlíková et al., 2022). Overall, these
miRNAs have an influence on essential processes. These processes
include apoptosis, immune response, and therapy resistance.
This underscores their potential to guide personalized cancer
treatments (Mishra et al., 2016). Functional enrichment analysis,
including GO and pathway analysis of miRNA targets, uncovered
significant KEGG pathways and GO terms. These terms are

associated with both normal biological processes (e.g., embryonic
organ development, the establishment of organelle localization,
DNA replication), tissue differentiation (e.g., mononuclear
cell differentiation, renal system development), and cancer-
specific mechanisms involved in cancer development (e.g., T cell
differentiation). As highlighted in previous studies (Khatun et al.,
2024; Khatun et al., 2021), our study provides an intricate association
betweenHPV and gynecological cancers by incorporating advanced
machine learning approaches and rigorous in silico validation
methods. Our findings emphasize the role of various cellular
mechanisms in cancer development and progression, along with
key cancer pathways (Figure 7B), which are consistent with previous
studies (Xing et al., 2016; Andrés-León et al., 2017).

The top miRNA features identified by our ML models
(Supplementary Table S7) were associated with patient prognosis,
with several of those implicated in ongoing clinical trials, consistent
with findings from previous studies (Seyhan, 2024; Kim and Croce,
2023; Hanna et al., 2019). For instance, RNA-based therapies
targeting miR-21-5p have addressed immune infiltration and poor
prognosis in KIRC (Rhim et al., 2022; Jenike and Halushka,
2021; Wang et al., 2022). miR-93-5p enhances radiosensitivity by
increasing apoptosis in breast cancer (Pan et al., 2021) while
promoting tumor progression in the bladder (Yuan et al., 2023)
and esophageal carcinoma cells (Xu, 2019). miR-204-5p acts as a
tumor suppressor in laryngeal squamous cell carcinoma (LSCC)
(Gao et al., 2017; Fan et al., 2023), targets anti-apoptotic protein
BCL2 in prostate cancer (PCa) (Lin et al., 2017) and serves as an early
diagnostic biomarker in endometrial cancer (EC) (Wu et al., 2022).
miR-10b-5p regulates gastric cancer (GC) fibroblast interactions
via the TGFβ signaling pathway (Yan et al., 2021), while miR-
1301-3p is a potential therapeutic target for thyroid papillary
carcinoma (Qiao et al., 2021), gastric cancer (Luo et al., 2021),
and endometrial cancer (Lu et al., 2021). Overall, these findings
highlight the multifaceted role of miRNAs in distinguishing TOO
as diagnostic biomarkers and potential therapeutic targets, offering
unifying translational tools for leveraging circulating miRNAs for
personalized medicine across pan-cancers/various cancer types.

4.1 Strengths and limitations

Our comprehensive study has several notable strengths. The
inclusion of 14 cancer types ensures broader applicability and
cost-effectiveness. This was complemented by TCGA data, which
provided a larger sample size, enhancing the reliability and
generalizability of our findings. The integration of advanced ML
models with biologically informed feature selection and a multi-
validation approach, comprising functional enrichment analyses
and clinical trial associations, collectively enhances the robustness
of our analytical framework. Furthermore, the identification of
key miRNAs with significant diagnostic potential emphasizes the
translational relevance of this study. By accounting for complex
molecular interactions and addressing gaps in existing studies, our
study offers improved diagnostic precision.

Despite these potential strengths, certain limitations persist.
First, the complexity of miRNA interaction networks poses
challenges for experimental validation. Our study relied exclusively
on TCGAdata, which, while comprehensive,may not fully represent

Frontiers in Bioinformatics 25 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1571476
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Lawarde et al. 10.3389/fbinf.2025.1571476

the heterogeneity of cancer subtypes, particularly in rare cases.
Additionally, a limitation of this study is the lack of detailed subtype
information and metastatic samples, as our analysis was restricted
to TCGA-derived primary tumor datasets. Future work will aim to
incorporate these aspects to enhance the resolution and applicability
of the classification model. Incorporating multiple clinical cohorts
and more comprehensive clinical data could further improve our
understanding of the role of these miRNA biomarkers in cancer.
Finally, while the use of solid tissue samples offers valuable insights,
their inherent heterogeneity limits the clinical translation of miRNA
biomarkers. Future studies incorporating liquid biopsy data and
multi-omics approaches could enhance the translational potential of
our findings.

5 Conclusion and future research

In summary, our study demonstrated the potential of
integrating biologically relevant miRNA features with advanced
ML approaches to achieve high accuracy in TOO prediction.
Through in silico validation, including functional enrichment
analysis, survival analysis, clinical trial associations, and drug
sensitivity correlations, we highlighted the biological significance
and therapeutic potential of the identified miRNAs. These
findings emphasize the importance of integrating computational
approaches with biological insights to improve the robustness
of cancer diagnostics and treatment. Although the predictive
power is promising, further experimental validation is warranted
to confirm the clinical relevance of these miRNAs, ultimately
advancing precision oncology and improving patient care. Future
studies should explore the application of miRNAs in precisely
classifying cancer subtypes and accurately determining the
origins of metastatic tumors using samples from solid tissues or
bodily fluids.
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