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Integrating phylogenies with
chronology to assemble the tree
of life
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1Richard Gilder Graduate School, American Museum of Natural History, New York, NY, United States,
2Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States,
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Reconstructing the global Tree of Life necessitates computational approaches
to integrate numerous molecular phylogenies with limited species overlap
into a comprehensive supertree. Our survey of published literature shows that
individual phylogenies are frequently restricted to specific taxonomic groups
due to investigators’ expertise and molecular evolutionary considerations,
resulting in any given species present in a minuscule fraction of phylogenies.
We present a novel approach, called the chronological supertree algorithm
(Chrono-STA), that can build a supertree of species from such data by using
node ages in published molecular phylogenies scaled to time. Chrono-STA
builds a supertree by integrating chronological data from molecular timetrees.
It fundamentally differs from existing approaches that generate consensus
phylogenies from gene trees with missing taxa, as Chrono-STA does not impute
nodal distances, use a guide tree as a backbone, or reduce phylogenies to
quartets. Analyses of simulated and empirical datasets show that Chrono-STA
can combine taxonomically restricted timetrees with extremely limited species
overlap. For such data, approaches that impute missing distances or assemble
phylogenetic quartets did not perform well. We conclude that integrating
phylogenies via temporal dimension enhances the accuracy of reconstructed
supertrees that are also scaled to time.
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1 Introduction

Reconstructing the history of life on Earth is foundational to studying evolution
and biodiversity, which is pursued by many taxonomists, systematists, and evolutionary
biologists. Molecular phylogenetics has been a key tool to infer the evolutionary
relationships of organisms (Hedges and Kumar, 2009; Yang and Rannala, 2012).
Occasionally, large phylogenies are constructed by extensive sampling of species
from major groups like birds, squamates, mammals, and fishes (Jetz et al., 2012;
Tonini et al., 2016; Hughes et al., 2018; Upham et al., 2019; Álvarez-Carretero et al.,
2022). Yet, much more commonly, published phylogenies are the work of taxon
specialists who focus on individual families or genera due to their organismal
expertise. Furthermore, even considering the increased accessibility of genetic data
and improvements in computational power, technical impediments still stand in
the way of building large-scale phylogenies. For example, while certain genetic loci
contain valuable phylogenetic signals in some taxa, they may be largely invariant
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FIGURE 1
Summary characteristics of published timetrees curated for the TimeTree database (Kumar et al., 2022). Distributions are shown for the (A) number of
species in phylogenies, (B) count of phylogenies in which a species occurs, as a percentage of the total number of trees. These statistics were derived
from 4,185 phylogenies published in the last five decades. Only species counts up to 1,000 (A) and percentages up to 1% (B) are shown.

or actively misleading in others (Gonçalves et al., 2019). Moreover,
teasing apart orthologous from paralogous sequences can be
challenging, especially among increasingly distantly related taxa
(Koonin, 2005; Altenhoff et al., 2019). Similarly, the best models
to capture the processes of sequence evolution in one clade
may be inappropriate for another (Fitch, 1971; Lopez et al.,
2002; Kumar et al., 2005). Therefore, many small and large
taxonomically restricted phylogenies have been published
(Hedges et al., 2015; Kumar et al., 2022).

Fundamental properties of published phylogenies can be
gleaned from the collection of more than 4,000 phylogenies curated
for the TimeTree database (Kumar et al., 2022). Across the whole
collection, phylogenies contained a median of 25 species each
(Figure 1A), each found in a median of just one timetree (0.02%
of the sample) (Figure 1B). Consequently, the average number of
species common between any two phylogenies is less than 1.0.

While many supertree methods exist to unite a collection of
phylogenies (e.g., Swenson et al., 2012; Creevey and McInerney,
2005; Morel et al., 2022; Vachaspati andWarnow, 2015; Zhang et al.,
2018), they are not often intended to accommodate such limited
taxonomic overlap. Some of these tools (e.g., Morel et al., 2022;
Vachaspati and Warnow, 2015; Zhang et al., 2018) are typically
rooted in coalescent theory and used to reconcile samples of
hundreds or thousands of phylogenies derived from a single
gene each, as an alternative to concatenating these multi-gene
datasets into unified alignment and building a single tree. This
is useful in cases where the pattern of inheritance at speciation
may differ among genes, leading to conflicting phylogenetic signal
(due to processes such as horizontal gene transfer, hybridization,
and incomplete lineage sorting), or where the concatenated
alignment may have many gaps where a given species lacks
molecular data.

The latter case is particularly true when combining disparate
phylogenies, as illustrated in Figure 2, which depicts a collection of
five timetrees (trees 1–5) derived from amodel tree of seven distinct
species (Figure 2, model tree; species A to G). Five existing supertree
methods were applied, each using different strategies to address
missing data and reconcile input trees. Methods like Asteroid

(Morel et al., 2022) and ASTRID (Vachaspati and Warnow, 2015)
impute missing nodal distances between species, while ASTRAL-
III (Zhang et al., 2018), decomposes input trees into all possible
four-species relationships (quartets) and reconciles these into a
consensus topology. In Clann (Creevey and McInerney, 2005), the
MSSA (Matrix-based Supertree Scoring Algorithm) scoringmethod
addresses missing data and reconciles input trees by comparing the
path length distance matrix derived from a source tree with another
distance matrix derived from a pruned supertree. The differences
between the matrices are scored, and the sum of the scores from
all comparisons is calculated. FastRFS (Vachaspati and Warnow,
2017) constructs supertrees by minimizing the total Robinson-
Foulds (RF) distance (Robinson andFoulds, 1981) between the input
trees and the resulting supertree. This method handles missing data
by computing a set of allowed bipartitions (X) from the input trees
(which are splits of the leaf set into two parts) each defined by
deleting missing edges in the species tree being constructed. The
output tree draws its bipartitions from X.

Due to the minimal taxonomic overlap between the input
trees, none of them could recover the true topology in this case
(Figure 2). This highlights the need for a supertree approach
developed specifically for species trees, not gene trees, which
can accommodate even the extreme lack of taxonomic overlap
observed in the TimeTree database. To solve this problem, we
developed a chronological supertree algorithm, Chrono-STA, which
was able to unite the provided sample of five trees on the basis of
their shared timescale (Figure 2). Chrono-STA uses the provided
divergence times among taxa to merge species into a supertree by
first connecting the most closely related species (those sharing the
shortest divergence time) across all input trees and then repeating
this step iteratively. The important advance which makes Chrono-
STA more powerful than other clustering approaches is that once
each cluster is formed, it is back-propagated to all input trees,
improving their information content and increasing the power of
each successive cluster inference.Thus, incorporating chronological
information fully throughout the tree building process can mitigate
the extremely limited and uneven taxonomic overlap observed in
empirical timetrees.
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FIGURE 2
Five timetrees with partial species overlaps, derived from a model tree by randomly sampling taxa (node ages are shown to the right of each node).
Supertrees were produced by gene tree reconciliation methods that can handle missing data: Asteroid, Astral-III, ASTRID, Clann, and FastRFS. The new
Chrono-STA approach was able to produce the correct supertree using divergence times.

Other approaches developed to incorporate chronological
information in supertree construction aremore limited in scope and
capability. First, the TimeTree of Life website has the ability to take a
user-provided species list and extract the corresponding subset from
their synthetic phylogeny based on more than 150,000 published
timetrees, even performing background taxonomic substitutions
where needed to increase coverage based on phylogenetic principles
(for example, if a user were to request a tree of orangutans, gorillas
and humans, but the TimeTree databased lacked humans, it would
substitute the divergence time between gorillas and chimpanzees,
since phylogenetic principles dictate that any two sister species
like humans and chimpanzees are equally closely related to a third
species, like gorillas). DateLife (Sánchez Reyes et al., 2024) is another
web-based tool and R package which performs this same function,
taking either an untimed cladogram or a list of species and returning
a timetree derived from the Open Tree of Life (Hinchliff et al.,
2015). Importantly, neither of these tools estimates novel divergence
times nor do they have the ability to take timetrees as an input and
integrate them to broaden an existing phylogenetic consensus.

One tool with this capacity is presented in Hedges et al.
(2015). Their hierarchical average linkage (HAL) clustering
approach builds supertimetrees using divergence times to resolve
polytomies in the NCBI backbone taxonomy, then performs
localized branch swapping to make evolutionary relationships
maximally consistent with the topologies. While HAL was used to
assemble a supertree of more than 148,000 species from published
phylogenies (Hedges et al., 2015; Kumar et al., 2022), it is still
limited by its requirement of a phylogenetic backbone, which
creates many additional polytomies in cases where the sample
of input trees conflict with the backbone and one another. For
large empirical datasets like the TimeTree database, this is a
common problem. Thus, while tools exist to build supertimetrees
either de novo or by extraction from a comprehensive tree, there
is still a need for an algorithm which more elegantly combines
timed phylogenies on the basis of their shared phylogenetic scale

without the need for a backbone and without inducing additional
topological conflict.

We present Chrono-STA, which does not require a phylogenetic
backbone to build a supertree from a collection of timetrees,
and thus avoids the taxonomic confusion induced by HAL. It
pairs species using all the input timetrees analyzed in parallel
independently without the need to impute missing nodal distances
between taxa, as in some methods (Vachaspati and Warnow,
2015; Morel et al., 2022). In this study, we first introduce the
concept and implementation of Chrono-STA, then demonstrate
its usage by analyzing both computer-simulated and empirical
datasets. In these examples, timetrees have very few common
species to mimic the patterns observed in the corpus of published
timetrees (Figure 1). We also applied five supertree approaches
to these datasets to evaluate the relative performance of different
methods for combining phylogenies with partial overlaps.

2 Material and methods

2.1 A novel chronological supertree
approach (Chrono-STA)

Chrono-STA employs a novel approach that builds on classical
unweighted pair group method with arithmetic mean (UPGMA;
Sokal andMichener, 1958) but incorporates the temporal dimension
to build a consensus from a collection of input timetrees even
when topological overlap between them is extremely sparse, and
even when there exists chronological or topological disagreement
between them. Chrono-STA is a supermatrix apprach that
utilizes a novel backpropagation of chronologically defined
taxa pairs (Figure 3). In a Chrono-STA run, a collection of input
timetrees are first decomposed into pairwise distance matrices, and
a supermatrix is computed encompassing every taxon found in
all input trees. The supermatrix is then populated with pairwise
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FIGURE 3
Overview of the steps in the chronological supertree algorithm (Chrono-STA).

distances between taxa, as defined by the divergence times found in
each input timetree. If a given divergence is identified in multiple
timetrees, the associated cell in the supermatrix is populated with
the mean value across all matching divergences found among input
trees. Thus, the initial supermatrix represents the consensus of
all divergence time estimates drawn from the collection of input
timetrees. Here, a simple average linkage clustering could be carried
out, but this is typically not possible due to missing pairwise
divergences.

This is where Chrono-STA diverges from conventional
supermatrix approaches. We first define the closest sister pair
in the initial supermatrix by identifying the lowest divergence
time present, and cluster this pair as a new single taxon. But
instead of repeating this process in the initial supermatrix, we then
backpropagate this newly defined taxon into all the input timetrees,
replacing one or both of the two constituent taxa. This has the effect
of increasing taxon completeness in all those trees where one, but
not both, of the two taxa were found. Additionally, this allows us to
define divergence times between the newly added clustered taxon
and all species which shared a divergence time with either one or
both members of the pair. So, by back-propagating clustered taxa in
this way, we use a phylogenetic principle, that any two sister taxa are
equally closely related to a third, unrelated.

Having accomplished this backpropagation and information
augmentation, we then repeat the process of building a consensus
supermatrix from all updated input matrices. The resulting new
supermatrix will have one fewer taxon than the initial version, but
will have increased in completeness, and we will have defined the
first taxon pair and their divergence time. We then repeat this
process until the consensus supermatrix is reduced to a final pairwise
distance, noting the pair formed and their divergence time at each
step, as with a conventional average linkage method.

At this point, we have an ordered list of clustered taxa and
their divergence times, which are used to define a timetree, again,
using the average linkage approach. We apply time-smoothing to
the constructed timetree using non-negative least squares, ensuring
that all terminal branches end at time zero. While Chrono-STA
is conceptually the same as the classical UPGMA approach, it

represents a substantial advance in that we can proceed with our
analysis despite large gaps in the data and multiple pairwise time
matrices are handled at the same time. Furthermore, we define our
divergence times based on much more input data per node, as we
gain information by backpropagating clusters and using them to
establish new divergence times in the input matrices. Thus, sound
phylogenetic principles allow us to overcome the limitations of
sparse data and improve the power of our inferences. This method
can also be applied to combine trees frompartially overlappedmulti-
sequence alignments (MSAs) by inferring a maximum likelihood
(ML) tree for eachMSAanddating eachML tree.Then, the timetrees
are combined following the outlined procedure.

For clarity, the Chrono-STA method may be represented by the
following pseudocode (Figure 3):

1. A collection of timetrees is assembled.
2. A Pairwise time matrix is computed independently for

each timetree.
3. These timetree-specific distance matrices are compiled into a

cumulative averaged supermatrix.
4. The sister pair ijwith the smallest distance,Dij, is identified and

designated as the first cluster.
5. This cluster, ij, which has n(ij) = ni + nj members, is recorded

along with its pairwise distance.
6. The distance between the new cluster and all the other clusters

(except for i and j) is computed by using: D(ij),k = [
ni

ni+nj
]Dik +

[
nj

ni+nj
]Djk.

7. The supermatrix is updated by removing the columns and rows
corresponding to groups i and j, then adding a column and row
for the cluster (ij).

8. Cluster ij is propagated back to all partial distance matrices by
removing the corresponding columns and rows for groups i
and j, then add a column and row for cluster (ij).Their pairwise
distance is stored.

9. Steps 4–8 are repeated until nomore taxa pairs with divergence
times remain.

10. A list of stored clusters and pairwise distances is generated.
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11. A complete distance supermatrix including previously missing
pairs is generated from this list.

12. A supertree is constructed from this matrix using
average linkage.

2.2 Tested methods

Using simulated and empirical data, we compared the
performance of Chrono-STA and four other supertree construction
methods. Chrono-STA requires no fine-tuning parameters for
analysis except for the collection of supertrees. For Asteroid
(Morel et al., 2022), a heuristic search was conducted to find the
supertree with the lowest global induced length. Asteroid begins
with a specified supertree topology and utilizes a tree search
strategy, incorporating SPR moves to optimize the score. We used
20 randomly generated starting trees (-r 20).The supertree topology
was iteratively optimized by an adapted FastME (Lefort et al.,
2015) tree search algorithm to the global induced length score.
For ASTRAL-III (Zhang et al., 2018), a heuristic search was
conducted. Branches on the supertree were scored using the
posterior probability for the main resolution (-t 3). The lambda
parameter for the Yule prior (Yule, 1925), used branch lengths
and posterior probabilities (-c) calculations, was set to 0.5. For
ASTRID (Vachaspati and Warnow, 2015), the FastME analysis
was conducted with both nearest neighbor interchange (NNI) and
subtree-pruning-and-grafting SPRmoves (-s option), and (-u) to use
UPGMA completion. For Clann (Creevey andMcInerney, 2005) we
conducted a heuristic search for the best supertree, applying the
most similar supertree criterion and subtree pruning and regrafting
(SPR) move, with a maximum number of steps (nsteps) set to three,
maximum number of swaps (maxswaps) set to 1,000,000, and 10
repetitions of heuristic search, utilizing a weighting scheme of
comparisons. Starting trees were derived from neighbor-joining tree
from average consensus distances, withmissing data estimated using
four-point condition distances. FastRFS (Vachaspati and Warnow,
2017) is based on a dynamic programming method to find an exact
solution to the RF supertree problem within a constrained search
space. ASTRAL was used to compute the allowed bipartitions (X),
calculate quartet distances, and combine them into clusters using
both distance matrix-based and greedy consensus methods. The
single optimal tree generated was reported.

2.2.1 Quantifying and comparing performance
The performance of the methods for constructing supertrees

was assessed by calculating RF distances between the inferred
and reference tree. This calculation is performed using the R
function MultiRF (Revell, 2012). The normalized Robinson-Foulds
(nRF) distance estimates the topological error in phylogeny
reconstruction. It is calculated as nRF = RF/(2(m − 3)), where m
is the number of species. The model timetree was the reference
tree for simulated datasets, whereas the timetree published in the
original study was assumed to be the reference tree in the analysis of
empirical data. Additionally, we compared the RF distance between
published input trees and their relative subset of our inferred
Chrono-STA tree by using a polytomy-aware implementation of
the RF metric.

Chrono-STA also produces node ages in the inferred supertree,
compared with the times in the reference tree. Because the
topologies of the inferred and reference phylogenies were not
identical, we compared the node times in the reference tree with the
most recent common ancestor (MRCA) node times in the Chrono-
STA timetree for the sets of taxa included within each node in
the reference tree. The slope and coefficient of determination (R2)
for the linear regression through the origin were computed for
the comparison of the inferred supertree and the reference tree.
Furthermore, the difference between the estimated MRCA node
times and reference tree node times was computed. The difference
was divided by the reference tree node time and multiplied by 100
to generate a percent time error (ΔTE).

2.3 Datasets

2.3.1 Simulated datasets
To assess the performance of Chrono-STA in constructing

supertrees from timetrees with extremely low species overlap,
three small collections (C1-C3) of six timetrees (T1-T6) were
generated (Figure 4). Each timetree was derived from an alignment
of 51 species from the collection of sequence alignments utilized
previously by Tamura et al. (2012). They generated alignments
using SeqGen (Rambaut and Grassly, 1997) under the HKY
substitution model (Hasegawa et al., 1985) and heterogeneous sets
of evolutionary parameters, including sequence lengths (258–9,353
sites), evolutionary rates (ranging from 1.35 to 2.60 substitutions
per site per billion years), G + C-content bias (G + C contents
ranging from 39% to 82%), and transition/transversion rate bias
(transition/transversion ratio, ranging from 1.9 to 6.0. We selected
six nucleotide gene alignments (A1-A6; ranging from 2,174 to
3,100 sites) simulated with autocorrelated rate variation among
lineage, such that the rate of a descendant branch was drawn from
a lognormal distribution centered around the mean rate of the
ancestral branch; an autocorrelation parameter ν = 1 was used
(Kishino et al., 2001). Their original datasets contained 446 species,
but we sampled 51 species, as in Barba-Montoya et al. (2023), for
practicality (Figure 4). During species down-sampling, an outgroup
as well as at least one of the ingroup root taxa selected to ensure that
timetrees could be produced from sequence alignments.

Constituent timetrees were inferred using gene alignments
for every collection (CI-C3). First, a ML tree was inferred from
each gene alignment using the HKY+Γ5 model in IQ-TREE
(Nguyen et al., 2015). Then, each ML tree was dated using
RelTime (Tamura et al., 2012) in MEGA-CC (Kumar et al., 2012;
Tamura et al., 2021). Each timetree was computed using a set of 10
calibrations, each assigning a uniform distribution: (a) U(453, 457
million years ago (Ma)), (b) U(405, 409 Ma), (c) U(292, 296 Ma), (d)
U(262, 266 Ma), (e) U(273, 277 Ma), (f) U(196, 200 Ma), (g) U(229,
233 Ma), (h) U(174, 178 Ma), (i) U(76, 80 Ma), and (j) U(103,
107 Ma).The rooting outgroup (Carcharhinidae) was excluded from
the analysis because RelTime analysis does not produce estimates
in the outgroup (Tamura et al., 2018; Tamura et al., 2012). Each
collection contained five taxon-restricted timetrees with limited
overlap and one timetree with one or more species per major
group. These timetrees were derived from 51-species alignments
by a realistic process that ensured that every collection’s individual
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FIGURE 4
Presence-absence representation of the three simulated collections (C1-C3) of six gene alignments (A1-A6) each, with extremely low overlap of
species, generated to construct supertrees from constituent trees. Each collection consists of five constituent timetrees along a backbone timetree.
The calibrations (nodes a-j) used to construct the constituent timetrees are represented on the model timetree (reference tree). The rooting outgroup
(Carcharhinidae) was excluded from the analysis.

timetree (T1-T6) contained phylogenetic errors and produced node
ages with variance, as would be the case in real studies.The timetrees
produced were missing an average of 78% of species, with a range of
67%–88%, and had a limited species overlap.

To evaluate the impact of uncertainty in node times derived
from constituent timetrees on the inferred supertree topology, we
used timetree collections C1–C3. From each collection, three new
collections were generated by increasing the original node time
variance of each constituent timetree by one (var 1×), two (var
2×), and three (var 3×) times.

2.3.2 Mammal dataset
To assess the performance of the methods in constructing

supertrees from limited overlapping timetrees using empirical
data, we used the mammal timetree of Álvarez-Carretero et al.
(2022), which consists of 4,705 species across 14 constituent
timetrees, including a backbone timetree (Figure 5). This collection
of timetrees was combined using the supertree constructionmethod
with parameters set as described above. In of Álvarez-Carretero et al.
(2022), 13 constituent timetrees were attached to the corresponding
node in the 72-species mammal timetree (backbone phylogeny) to
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assemble the 4,705mammal species timetree.Therefore, we used the
same set of trees they used to construct their 4,705 species timetree.

2.3.3 Simiiformes dataset
We further assessed the performance of Chrono-STA in an

empirical context using data from TimeTree.org, which maintains
a database of 4,185 timed molecular phylogenies (Figure 6). Given
that the apes and monkeys (Simiiformes) are a well-studied group
with numerous, occasionally conflicting, phylogenetic hypotheses,
we selected this clade for our test (Craig et al., 2023). Starting
from the full TimeTree database, we first selected only those
trees containing at least two species-level OTUs representing the
Simiiformes (enough for a single divergence time). This left us with
87 phylogenies of apes and monkeys ranging in size from three
to 230 species (median seven, or 2.6% of the 270 total species
included). Second, we pruned these phylogenies to include only
those simiiform species with their names included in the NCBI
taxonomy database in order to remove any non-simiiform taxa
included by the original authors of these phylogenies. Third, to
facilitate the Chrono-STA method, we took the optional step of
adding two distant root species to each phylogeny: the chicken
(Gallus gallus) with a divergence time from all Simiiformes of
319 Ma and the zebrafish (Danio rerio) at 429 Ma, using the
inferred median time from the TimeTree database for both. By
unambiguously rooting all trees, we avoid cases where Chrono-STA
fails to find overlap without needing to assume any evolutionary
relationshipswithin the target clade. If the input phylogenies did lack
sufficient overlap to construct a meaningful consensus in this case,
Chrono-STA would be able to complete the run, but the resulting
topology would be wildly inaccurate and differ substantially from
other consensus trees like TimeTree. Thus, we are able to infer the
accuracy of the Chrono-STA phylogeny by topological comparison
to both the original input phylogenies and to the literature consensus
phylogeny from TimeTree.

3 Results

3.1 Accuracy of constructed supertrees
from simulated datasets

We first assessed the performance of Chrono-STA for the
simulated data (Figure 3). Five of the six timetrees in each of the
three collections had excellent taxonomic coverage within clades,
but only a limited overlap with other timetrees. 73% species occur
in just one of five trees, while only one species is common to
all the timetrees. This design mimics empirical phylogenies which
often specialize on given clades. Individual phylogenies in each
collection differ in topology and times, because every timetree was
inferred independently from a simulated multispecies alignment, as
described in the Material and methods (Section 2.3.1).

On average, Chrono-STA produced a supertree whose
phylogeny agreed 90% with the reference tree, i.e., nRF = 0.1, from
all three collections of timetrees (Figure 7). Therefore, Chrono-
STA can work well for datasets with limited overlaps among major
groups of taxa. FastRFS and ASTRAL-III achieved an average nRF
of 0.23 and 0.25 respectively, which was twice as inaccurate as
Chrono-STA. Other methods performed worse, with an average

nRF of 0.42 for ASTRID, 0.47 for Clann, and 0.54 for Asteroid.
Overall, these results suggest that the inclusion of chronology while
combining phylogenies can produce higher accuracies when species
overlaps are limited. The incorporation of the time dimension is a
fundamental unifying factor, which other methods do not use as
effectively as Chrono-STA.

Furthermore, we evaluated the impact of uncertainty in node
times derived from constituent timetrees on the inferred supertree
topology by using timetree collections C1–C3, with increasing
node time variance of the constituent timetrees set to one (var
1×v), two (var 2×v), and three (var 3×v) times. We found that
Asteroid, ASTRAL-III, ASTRID, and FastRFS are insensitive to node
time uncertainty from constituent timetrees, with topological errors
remaining the sameunder all conditions.However, Chrono-STA can
be sensitive to extreme variance in the node times of the constituent
timetrees. For C1–C3 var 1×, the average nRF increased slightly
from 0.1 to 0.12, while for C1–C3 2× and C1–C3 var 3×, it rose
to 0.28. For greater precision, we quantified the percentage time
difference for each node in the corresponding timetrees between
collections C1–C3 and their variants: C1–C3 var 1×, and C1–C3
var 3×fold variance increase, 21% with a twofold increase, and 28%
with a threefold increase. The nRF also increases, from an average
of 0.10 in C1–C3 to 0.12 in C1–C3 var 1× and 0.28 in C1–C3 var 2×
but remains unchanged in C1–C3 var 3×.

Chrono-STA produces divergence times along with the
phylogeny. So, we compared the time estimates from the inferred
Chrono-STA supertree with those in the reference tree. We used
the Chrono-STA node times for the MRCA of all the sets of taxa
in the reference tree. Chrono-STA generated node times highly
consistent with those of the reference tree (Figure 8), with slope and
R2 values approaching 1.0 across timetree collectionsC1-C3.We also
quantified the accuracy of Chrono-STA by computing the difference
between the estimated MRCA node times and the true node times.
The median ΔTE was low for the three datasets (Figure 8D), at −9%
for C1, –1% for C2, and –0.5% for C3.

We evaluated the impact of increasing levels of node time
variance in the constituent timetrees on Chrono-STA time estimates
and found a considerable effect.The slope and R2 values consistently
deteriorated as the variance increased by one (var 1×), two (var 2×),
and three (var 3×) times (Figures 8A–L). The distribution of ΔTEs
were considerably wider, and the median was significantly higher
for these timetree collections (Figures 8M–O). The notable impact
of node time variance on Chrono-STA time estimates implies that
the simulated variance was substantial. Nonetheless, Chrono-STA
demonstrates the ability to generate reliable supertree topologies
under such challenging conditions.

3.2 Accuracy of constructed supertrees
from empirical datasets

3.2.1 Mammal dataset
Wevalidate these trends observed in simulated data by analyzing

the large empirical dataset of Álvarez-Carretero et al. (2022),
containing 4,705mammal species across 14 taxonomically restricted
timetrees (Figure 5). Chrono-STA assembled these timetrees into a
supertree thatwas identical in topology to that published byÁlvarez-
Carretero et al. (2022) (Supplementary Figure S1), except for a
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FIGURE 5
Mammal timetree consisting of 4,705 species across 14 constituent timetrees including a backbone timetree (Álvarez-Carretero et al., 2022).
Presence-absence representation of 14 constituent timetrees: (A) Afrotheria, (B) Artiodactyla, (C) Chiroptera_subt1, (D) Chiroptera_subt2, (E)
Ctenohystrica, (F) Euarchonta, (G) Lagomorpha, (H) Laurasiatheria_therest, (I) Marsupialia, (J) Rodentia_therest_subt1, (K) Rodentia_therest_subt2, (L)
Sciuridae_and_related, (M) Xenarthra, (N) 00_main_tree_T2-updated-geochronolog (backbone timetree).
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FIGURE 6
Distribution of the number of species present among 87 phylogenies
of apes and monkeys (Simiiformes) from the TimeTree database.
Across all trees, 270 total species were represented, with a median of
seven species (2.6%) per timetree.

single internal branch which shifted to its sister clade, indicated
by a red and a black asterisk in Figure 9A. The nRF for Chrono-
STA was 0.0002 (Figure 9B). FastRFS performed the second best
generating a supertree with 75 topological differences (nRF = 0.016)
from the reference tree (Supplementary Figure S2), ASTRAL-III
performed the third best generating a supertree with 96 topological
differences from the reference tree (Supplementary Figure S3),
which is almost 200-times worse than Chrono-STA (nRF =
0.02). No other tested method performed well (Figure 9B). The
ASTRID supertree had 430 differences from the reference tree
(Supplementary Figure S4; nRF = 0.09), while Asteroid had 2,198
differences (Supplementary Figure S5) and achieved an nRF of 0.47.
Clann was outperformed by all the other methods, generating a
supertree with 2,592 topological differences from the reference
tree, achieving an nRF distance of 0.55 (Supplementary Figure S6).
Therefore, as in simulation, Chrono-STA produced reliable
supertrees from empirical datasets comprised of highly
taxonomically restricted timetrees.

Chrono-STA recovered the correct node times as well, as they
closely aligned with those of the original timetree, except for the
Mammalia Chrono-STA node age (Figure 9A). This discrepancy
arose because, in Chrono-STA, the calculation for that node time
involved averaging across the 14 constituent timetrees, whereas
in the original timetree, it represented the mammalian node
time estimated independently for the backbone timetree. The
slope and R2 values were nearly 1.0 (Figure 9C), and the median
ΔTE was −0.29% (Figure 9D).

3.2.2 Simiiformes dataset
We further used Chrono-STA to infer a phylogenetic consensus

of 270 ape and monkey (simiiformes) species from a sample of 87
published molecular trees in the TimeTree database. These trees
ranged from three to 230 species, with a median size of just seven
simiiform species (2.6% of the total), meaning that taxonomic
overlap would be sparse in many places, and variances in estimated
divergence times for shared nodes would be unavoidable.

To quantify the performance of Chrono-STA, we compared the
nRF distance between the published input tree and the matching
subset of our inferred Chrono-STA tree, under the assumption

that if Chrono-STA is accurately inferring a topology reflective of
the input trees, then there should be minimal difference between
these two. We further compared the performance of Chrono-
STA to that of the hierarchical average linking (HAL) algorithm
employed by TimeTree. HAL differs from Chrono-STA in that it
uses a hierarchical clustering algorithm to resolve polytomies on a
topological backbone, in this case provided by the NCBI taxonomy
database. For this comparison, we again took nRF distances between
the input trees and the subset of the published fifth edition of
the TimeTree of Life consensus phylogeny. We propose that if
the Chrono-STA tree, which was inferred without the use of a
phylogenetic backbone, does not significantly differ from the HAL
tree, which used the NCBI backbone, then we can conclude that
Chrono-STA does indeed release the constraint of assuming a
backbone topology when analyzing sparse empirical data.

When comparing the study trees to corresponding subsets of
both the Chrono-STA and HAL trees, the Chrono-STA tree had a
mean nRF distance of 0.17 across all comparisons between a study
tree and the corresponding subset of the supertree, compared to 0.17
for theHAL tree (paired t-test P > 0.10). Among the study trees, three
contained a single polytomy each, while the final Chrono-STA tree
was fully resolved, with no polytomies at all. By contrast, 24 subsets
of the HAL tree included polytomies, for a total of 174 total species
descending from polytomies across all subsets. Thus, the HAL tree
was not significantly more accurate than the Chrono-STA tree with
respect to the input study trees, but it was substantially less powerful
in its ability to resolve polytomies. This means that the phylogenetic
backbone required by HAL does not improve the accuracy of the
inferred topology compared to Chrono-STA, but in fact limits its
ability to resolve divergences, likely due to taxonomic disagreements
with the input tree set.

4 Discussion

We found that the new Chrono-STA approach can excel in
building timetrees in cases where missing data are not randomly
distributed among trees but instead concentrated in certain clades
(phylogenetically restricted). This better reflects the current state of
the corpus of published literature, as researchers tend to specialize
in certain families and genera and assemble detailed phylogenies
of phylogenetically restricted groups. For such data with sparse
species overlaps, the use of chronological information in times can
help build better supertrees. While input timetrees can be generated
using Bayesian or maximum likelihood methods, in Chrono-STA
timetrees are combined using our pairwise average linkage approach
where the act of clustering and subsequent backpropagation in
each iteration inherently increases the completeness of the distance
matrices at each step. In addition to this fundamental conceptual
reason for a distance-based phylogenetic method, average linkage
has practical benefits in that it is computationally efficient, enabling
faster iterative analyses, especiallywith large datasets. Such amethod
would not be possible in a reasonable timeframe for most datasets
using Bayesian or ML methods due to their high computational
demands and long processing times.

ASTRAL, Asteroid, and Astrid were developed for gene tree
species tree reconciliation, based on the implicit assumption that
individual gene trees typically represent a subset of the species
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FIGURE 7
Normalized Robinson-Foulds (nRF) distances between the model timetree (reference tree) and the generated supertree are presented across timetree
collections: (A) C1, (B) C2, and (C) C3. Results are shown for Asteroid (black), ASTRAL-III (red), ASTRID (grey), Chrono-STA (green), Clann (black), and
FastRFS (purple). Var 1×, var 2×, and var 3× denote simulated node time variance increments of one, two, and three times the original variance, applied
to the constituent timetree node times in C1, C2, and C3.

under study rather than predominantly disjoint subsets of distinct
species. Consequently, these methods are not designed to function
as classic supertree approaches. The performance improvement
we observe from Chrono-STA as compared to the gene tree
reconciliation approaches in building a supertree from phylogeny
collections with phylogenetically restricted sparsity is likely due
to the incorporation of time information. However, there was a
large difference between the performance of ASTRAL-III and other
methods (Asteroid and ASTRID). This difference likely arises from
fundamental conceptual differences between them. ASTRAL-III
(Zhang et al.,2018) combines phylogenies using a quartet-puzzling
approach in which each constituent phylogeny is represented in
batches of four taxa, and then the relative frequencies with which
each of these quartets occur across all phylogenies are used to
build the consensus supertree. In contrast, other Asteroid and
ASTRID use distance between taxa in constituent phylogenies in the
units of the number of intervening nodes or edges between taxa.
When taxa are missing in some phylogeny, they impute missing
distances statistically and then build a global matrix of pairwise
distances to apply distance-based approaches, such as the Neighbor-
Joining (Saitou and Nei, 1987), to construct a supertree.

Relative performance of many different versions of the
imputation and quartet puzzling approaches have been examined
for gene tree reconciliation with and without missing data (Cao
and Nakhleh, 2019; Rabiee et al., 2019; Zhang et al., 2020;
Zhang and Mirarab, 2022; Liu and Warnow, 2023). The general
conclusion seems to be that they perform well and similarly. This is
supported by our results, where ASTRAL-III consistently performed
second-best after Chrono-STA, followed by a considerable gap
in performance between ASTRAL-III and methods that used
imputation to overcome missing data like Asteroid and ASTRID.
This is not surprising because the reliability of any imputation
is expected to be proportional to the amount of data available,
resulting in more error when data are sparser. Furthermore, in
cases of phylogenetically restricted sparsity, which, again, reflects

the literature, this imputation is likely especially unreliable on a
clade-by-clade basis, where there may be significantly less data
than the matrix-wide average for some poorly studied clades. This
would explain why ASTRAL-III, a quartet-puzzling approach that
does not rely on imputation, achieves better accuracy than other
methods except for Chrono-STA.

The FastRFS analysis implemented in this study used
ASTRAL machinery and outperformed the ASTRAL-III method
implemented here. This is likely because FastRFS addresses missing
data by focusing on shared taxa between input trees, using these
taxa to calculate RF distances and guide supertree construction,
while excluding missing taxa to avoid artificial conflicts. However,
the method relies on sufficient taxonomic overlap, making it less
effective for sparse overlaps. In such cases, it may provide reduced
resolution for limited overlapping taxa, face challenges handling
conflicts in overlapping regions, and potentially introduce bias
toward well-sampled areas.

Clann, a supertree method, has difficulties with limited
taxonomic overlap, as the four-point condition tends to produce
less accurate estimates when there is insufficient shared information
across constituent trees. Sparse overlap increases the likelihood
of errors in inferred distances, which can prevent the heuristic
search from converging on an accurate supertree. Furthermore,
the search space becomes harder to navigate effectively without
sufficient taxonomic overlap to guide optimization.

We have demonstrated that Chrono-STA is capable of
integrating timetrees despite limited taxonomic overlap by
incorporating phylogenetic temporal information. Furthermore,
Chrono-STA is highly robust to variance in node times, as
demonstrated in our tests of induced variance, where node times
were modified by 1×, 2×, and 3×. In this test, we found that our
inferred divergence timeswere largely robust to variance in the input
timetrees, so while summarizing this variance in the final timetree
will be an aim of future work, we are confident that the method
is robust to such error. However, Chrono-STA may exhibit some
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FIGURE 8
(A–L) Comparison of time estimates obtained by using Chrono-STA with the true node times for collections C1-C3. The slope and coefficient of
determination (R2) for the linear regression through the origin are shown. The black dashed lines represent the best-fit linear regression through the
origin. The solid gray line represents equality between estimates. (M–O) Distributions of the differences between Chrono-STA node times and true
node times (ΔTEs). The black horizontal line represents the median value. Var 1×, var 2×, and var 3× denote simulated node time variance increments
of one, two, and three times the original variance, applied to the constituent timetree node times in C1, C2, and C3. For Chrono-STA, we used the
estimated node times for the MRCA of all the sets of taxa in the model timetree (reference tree).

sensitivity to discrepancies in time estimates across constituent
timetrees and currently does not directly propagate uncertainty
at each node from constituent timetrees into the final supertree.
Incorporating uncertainty estimation into the framework could be
a valuable direction for future work.

Therefore, Chrono-STA occupies a unique niche as a supertree
method tuned for the high degree of taxonomic incompleteness we

observe in real empirical datasets. While any approach is likely to
perform well in cases with many constituent trees and a high degree
of overlap, Chrono-STA is ideally suited to building a phylogenetic
consensus across higher taxonomic levels, while biodiversity experts
often prioritize depth within their chosen clade of interest rather
than breadth across the tree of life. This makes Chrono-STA an
attractive approach for reconstructing the history of life on Earth.

Frontiers in Bioinformatics 11 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1571568
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Barba-Montoya et al. 10.3389/fbinf.2025.1571568

FIGURE 9
(A) Comparison of the 4,705 mammal species timetree (black) from Álvarez-Carretero et al. (2022) and Chrono-STA supertree (red). The supertree was
constructed by combining 14 constituent timetrees including a backbone timetree. (B) nRF distances between the original timetree and the generated
supertree for the 4,705 mammal species dataset (Álvarez-Carretero et al., 2022) for Asteroid (black), ASTRAL-III (red), ASTRID (grey), Chrono-STA
(green), Clann (black), and FastRFS (purple). The supertree was constructed by combining 14 constituent timetrees including a backbone timetree. The
topological differences are marked with red and black asterisks. (C) Comparison of original and Chrono-STA time estimates. The slope and coefficient
of determination (R2) for the linear regression through the origin are shown. The black dashed lines represent the best-fit linear regression through the
origin. The solid gray line represents equality between estimates. (D) Distribution of ΔTEs between the estimated and original node times. For
Chrono-STA, we used the estimated node times for the MRCA of all the sets of taxa in the original timetree.
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