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Genomic and metagenomic sequence data provides an unprecedented ability
to re-examine findings, offering a transformative potential for advancing
research, developing computational tools, enhancing clinical applications,
and fostering scientific collaboration. However, effective and ethical reuse of
genomics data is hampered by numerous technical and social challenges. The
International Microbiome and Multi’Omics Standards Alliance (IMMSA, https://
www.microbialstandards.org/) and the Genomic Standards Consortium (GSC,
https://gensc.org) hosted a 5-part seminar series “A Year of Data Reuse” in
2024 to explore challenges and opportunities of data reuse and reproducibility
across disparate domains of the genomic sciences. Addressing these challenges
will require a multifaceted approach, including common metadata reporting,
clear communication, standardized protocols, improved data management
infrastructure, ethical guidelines, and collaborative policies that prioritize
transparency and accessibility. We offer strategies to enable responsible and
technically feasible data reuse, recognition of data reproducibility challenges,
and emphasizing the importance of cross-disciplinary efforts in the pursuit of
open science and data-driven innovation.
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Introduction

We have an unparalleled opportunity through molecular techniques, specifically
genome and metagenome sequencing, to identify microbial constituents in any
environment. Numerous studies have highlighted the potential to leverage the vast
amount of genomic and metagenomic data to discover key functions, taxa, or traits
(Wu et al., 2025; Crits-Christoph et al., 2018; Altae-Tran et al., 2023). However,
both technical and social issues hinder progress in the field and could impact new
artificial intelligence (AI) applications. From a technical perspective, sequence data
reuse is complicated by diverse data formats, inconsistencies in metadata, data quality
variability, and substantial storage and computational demands. This is compounded
by researchers’ attitudes and behaviors around data sharing and restricted usage,
much of which disproportionately impacts early career researchers. Across social
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media and through journal publications, the reuse and
reproducibility of genomics and metagenomics data has been a hot
topic for discussion and debate (Hafner et al., 2025; Ross et al.,
2024; Holden, 2024; Huttenhower et al., 2023; Amman et al.,
2019). It is our opinion, that we, as data generators, have the
responsibility to our future selves and to fellow researchers to
generate our genomic data in a manner that can be reused.
Additionally, taking into account our combined experiences and
knowledge gained from these perspectives, to call out technical,
social and other “gotchas” to inform researchers in the field,
to provide them with a thoughtful perspective on how we, as
a community, can acknowledge these challenges and outline
solutions, together.

Given the numerous opportunities and challenges for data
reuse, we sought to openly explore and discuss these topics with
an eye towards actionable recommendations for the field. In
2024, the International Microbiome and Multi’Omics Standards
Alliance (IMMSA; https://www.microbialstandards.org/) and
the Genomic Standards Consortium (GSC (https://www.gensc.
org/) (Schriml et al., 2020), came together to host a year-long
series of community seminars and discussions entitled “A Year
of Data Reuse.” The intent of the series was to explore the breadth
of technical and social challenges, identifying near and long-term
opportunities, and move the conversation forward on how we, as a
community, can assess and improve the reuse and reproducibility of
the data we generate.

The impact of non-reusable and
non-reproducible data

Scientific data reproducibility is at the cornerstone of the
scientific method. Genomic sequencing, in theory, should enable
an unprecedented level of reproducibility as once the data is
shared publicly, scientists all around the world should be able to
run the same pipelines and achieve the same result. While in
many ways we have achieved this, this framework fails to account
for steps in sample processing or data collection that are vital
to understanding the interpretability of another’s genomic data.
Future data interpretation depends on the inclusion of critical
metadata when sample data is submitted to one of the International
Nucleotide Sequence Database Collaboration (INSDC) resources
(Karsch-Mizrachi et al., 2025). Missing, partial or incorrect
metadata can lead to significant repercussions, leading to faulty
conclusions about the prevalence of taxonomy or genetic inferences.
Whereas, it is well documented that reporting of standardized
metadata facilitates data reuse (Borry et al., 2024). Further, the
laboratory methods and kits that we use to process samples can
impact the resulting taxonomic community profiles (Forry et al.,
2024; Forry et al., 2025; Servetas et al., 2025). Understanding
the extent to which sample processing impacts the resulting
genomic information can enable more nuanced interpretation of
biological data.

This challenge is increasingly recognized and groups
of genomics data generators in academia, government and
industry have come together to discuss and solve these
problems. IMMSA and GSC represent two consortia that serve
to develop solutions to genomics comparability challenges.

IMMSA was founded in 2016 and is an open consortium of
microbiome-focused researchers from industry, academia, and
government that focuses specifically on coordinating cross-
cutting efforts that address microbiome measurement challenges.
IMMSA members are representative experts for all major
microbiological ecosystems (e.g., human/animal, built, and
environmental ecosystems) and from various scientific disciplines
including microbiology, bioinformatics, genomics, metagenomics,
proteomics, metabolomics, transcriptomics, epidemiology, and
statistics. IMMSA is made up of over 980 members and has six
working groups that contribute to specific aspects of standardization
from sample collection to analysis. The Genomic Standards
Consortium was established, in 2005, to identify solutions to
facilitate data sharing and reuse across the genomic sequence
landscape, through standardized reporting of sampling and
sequencingmetadata. Scientists coming together organically to solve
a common problem has evolved into a global community, growing
to address metadata standards reporting needs as technology
transformed genomic and metagenomic sequencing possibilities
and scientific investigations expanded to examine soil, water,
hydrocarbon, farm, food, plant and built environment microbial
biodiversity, human and host associated microbial communities.
The GSC defines these contextual metadata descriptions in
environment and genomic specific MIxS (Minimal Information
about Any (x) Sequence) standards (Yilmaz et al., 2011), that have
become a unifying resource for reporting the information associated
with genomics studies.

A year of data reuse: community
perspectives in 2024

Thegoal of the seminar serieswas to encourage open community
discussions to identify challenges, recognize impediments to reuse
and reusability and to chart out solutions. The speakers’ topics
served as a framework for identifying data reuse and reproducibility
challenges and solutions. Speakers were selected to present a broad
array of perspectives on the topic. Each speaker was charged
with identifying and speaking to their perspective as both a data
generator and data reuser, on the challenges of genomic data
reproducibility and reuse.

The seminar series consisted of five talks from postdoctoral
researchers, staff scientists, and academic faculty, with a moderated
Q&A. The seminar speakers presented their ongoing research
and past studies, leaving ample time for discussion with the
community. The speakers included Abraham Gihawi (University
of East Anglia, United Kingdom), Robyn Wright (Dalhousie
University, Canada), A. Murat Eren (Helmholtz Institute for
Functional Marine Biodiversity at Oldenburg, Germany), Sushma
Naithani (Oregon State University, US), and Marcus de Goffau
(University of Amsterdam, Netherlands). Nearly 250 attendees
participated across the five sessions, with attendance ranging from
20 to 117 (average 83) participants spanning multiple countries. The
talk titles included:

• Re-Investigating Microbial Classifications in Cancer
Sequencing Data

• From defaults to databases: simulated samples vs. the real world
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• Reproducibility, interoperability, reusability, and flexibility in
the anvi’o software ecosystem

• Omics data reuse for synthesizing plant gene-networks and
pathways for the Plant Reactome Knowledgebase

• Enhancing contamination and genuine biological pattern
recognition by looking elsewhere

The “Year of Data Reuse” seminar series concluded with a half
day of hybrid presentations at the GSC’s annual meeting (University
of Arizona, August 2024, https://genomicsstandardsconsortium.
github.io/GSC24-Tucson/). The session, “Challenges of ‘Omic data
reuse,” consisted of a panel discussion following presentations by
three speakers: Scott Jackson (National Institute of Standards and
Technology (NIST), US), Benjamin Callahan (NC State University,
US), and Julie Dunning Hotopp (Institute for Genome Sciences,
University ofMaryland School ofMedicine, US).The talk titles were:

• History of IMMSA
• Training on one study and predicting on another using publicly

available microbiome datasets
• A “Research Parasite’s” Perspectives on the Challenges of Data

Reuse (https://researchparasite.com)

Data reuse and reproducibility
challenges

For the purposes of these discussions, here we define “Data
Reuse”: as the use of data collected by one researcher or project,
being utilized by other researchers or projects, for the purpose of
performing novel analysis; and define “Data Reproducibility” as
the capacity and/or capability to independently run a previously
published analysis, with the same samples and analysis parameters
and to arrive at comparable results and conclusions.

A number of data reuse and reproducibility challenges were
raised during the seminar series and through discussions at the GSC
annual meeting, with the goal of informing future discussions and
guiding ideas towards some initial solutions. These topics, outlined
below, were identified as being critical to address these challenges, in
order to move the field forward. The reusability of genomic data and
the ability to reproduce the results of a study are greatly hampered
when data is submitted to public archives with limited or incomplete
metadata. Although the primary data is available, it is true “usability”
is limited. The necessity of mining critical metadata via manual
curation by either deep diving into the methods or requesting
critical metadata directly from authors, was noted by a number
of seminar speakers. Variability observed in laboratory, platform
and kit comparative studies was highlighted as a consideration for
comparing microbiome studies. Finally, in the GSC session, social
challenges impacting data sharing were discussed. It was pondered
how we, as a community, can incentivize colleagues to submit the
breadth of metadata needed to replicate the analysis.

To begin this process, we have identified a number of data
reuse challenges for researchers to keep in mind, when considering
the FAIR (Findable, Accessible, Interoperable, and Reusable) data
principles (Wilkinson et al., 2016).

From the reported and deposited data, is it possible to
determine.

[1] Can the sequence and associated metadata be attributed to
a specific sample?

[2] Where is the data and metadata found? - Supplementary
files, public or private archives.

[3] Have the data access details been shared in the publication?
[4] What are the reuse restrictions (e.g., licensing) associated

with the data? Can or should there be restrictions on data
generated from public funding?

[5] Have the data sharing protocols and policies been defined
with consistent rules that are enforced, prior to the review
and journal publication?

These discussions identified a growing concern, as some
genomic data are being deposited in generalist repositories, such
as Zenodo (https://zenodo.org/) and OBIS (https://obis.org/),
without associated, structured metadata. This practice could
result in an expanding set of less usable genomic data, thus
hindering data discovery and reuse. There was a special emphasis
related to microbiome research, where seminar participants
shared observations of variability regarding reproducing results
between labs, reagent kits, analysis platforms and repeated
analysis by the same researchers. It is important to consider
that methods can introduce methodological variability that is
greater than the natural biological variation (Forry et al., 2024;
Forry et al., 2025; Rodriguez et al., 2024). Throughout the
seminar discussions, we aimed to clearly outline these concerns
towards integrating best practices into protocols to improve
reproducible results.

Herewe outline some fundamental questions for the community
to consider, regarding data reproducibility:

• Can we, as a community, come to consensus on how we define
the reproducibility of our data? Is this even aYESorNOanswer?

• Is our data “reproducible”, if it can be shown that [1] the same or
a comparable result is achieved, when the analysis is repeated,
when re-using the same datasets and analysis parameters or [2]
a second method finds the same result.

• Should it become “Standard SOP”, to require 2 methods, to
conclude that data is reproducible.

• Should grant proposals include funding for replicate
experiments.

• What is the natural biological variation of the environment,
organ, or disease being reported?

• What are the key data elements needed for re-running
the study? This is vital information to communicate how
the data was generated. We suggest all studies should
minimally report provenance (version, date, source, repository,
analysis parameters) of all software components utilized in
the analysis (Kanwal et al., 2017).

• Is there a publicly available Notebook or script to enable the
analysis to be re-run?

Towards best practices to address
reproducibility and reuse challenges

Awareness of these challenges is the first step, to be followed by
a culture shift, where we encourage reuse of our data through the
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inclusion of pertinent reuse information, outlined above. Framing
future conversations, here we outline a number of practical ‘best
practices’ solutions, to begin to outline technical solutions to address
the above challenges.

1. AGenomic andMetagenomics StandardsGuidebook: Looking
to the future, and how we can begin to address reuse
and reproducibility challenges, we are proposing that we,
as a community, develop a Genomic and Metagenomic
Standards Guidebook, to share best practices as a protocol
for educating the upcoming generation of researchers. The
guidebook could include educational modules from the
National Microbiome Data Collaborative (NMDC, https://
microbiomedata.org/) (Vangay et al., 2021), laboratory
standards modules from NIST, genomic metadata reporting
modules from theGSC, and community-specific best practices,
to address the full data lifecycle from study design to data
distribution.

2. Data Reuse Plan:We further propose that a Data Reuse Plan be
incorporated intoDataManagement Plans as a part of required
components for federal funding. We would encourage funding
agencies tomake this a required reporting component in yearly
progress reports and for journals to include this information as
supplementary material.

3. Reproducible Laboratory Protocols: Studies must be FAIR by
design through the development of standardized protocols
utilized to collect data and metadata. We identified two key
areas where the reporting of key elements, namely, (i) controls
and (ii) contaminants, would advance the reproducibility of
future genomic and metagenomic studies. For (i) controls,
inclusion of field blanks as well as positive and negative
controls are critical for assessing the analytical performance
of microbiome measurements. Reference materials should
include “ground truth” controls (i.e., mock communities)
that enable the assessment of measurement accuracy as
well as complex, biomimetic, materials (e.g., feces, soil)
that challenge the reproducibility of the workflow on
real-word sample matrices. Additionally, it is critical to
include reporting of sampling, extraction and sequencing
negative controls to inform on possible sources of bias
and to identify potential contamination. Reporting the
type and source of microbial standards is critical for
critical assessment of research findings. Three such sources
include microbial measurement and microbial community
standards produced by the National Institute of Standards
and Technology (NIST, https://www.nist.gov/microbial-
measurements), the American Type Culture Collection
(ATCC, https://www.atcc.org/microbe-products/applications/
microbiome-research), and Zymo Research (https://www.
zymoresearch.com/collections/zymobiomics-microbial-
community-standards). For (ii) contaminants, we
recommend the reporting of common contaminants, for
example, phiX (Bacteriophage phiX174) or common kit
contaminants (e.g., the “kitome”) (Rauer et al., 2025;
Duan et al., 2024).

4. Reproducible Analysis Methods: Similar to reproducible
laboratory protocols, there are areas for which analyses would
benefit from standardization in reporting and quantitative

genomic and metagenomic comparisons. For example, an
assessment of batch effects that take into account variation
across sequencing runs due to technical, non-biological
factors and that also affect variation in the resulting data.
This type of variation occurs in batches of samples, either
batches of extracted samples, or sequences. For taxonomic or
functional profiling, standard reference genome and database
reporting is essential, as are abundance and variability
measures. Describe the differences: number of unaligned
sites, # deletions, insertions, SNP variants, identical sites,
% DNA-DNA hybridization. Validate the identification of
strains ordered from repositories or archives utilized for
analysis. Lastly, we offer the “smell test” for considering
whether findings are ecologically consistent. Report the
ecological and/or environmental context of the sample.
Question whether the identified genomes or metagenomes
are expected to be occurring in the studied environment and
if the observed variability reflects the environment, host or
some definitely sub-environment, specific organ or disease
state. For example, in studies of the human brain consider
if there is a naturally occurring or stable microbiome in this
organ. Alternatively, consider if you would expect that the
microbes detected in the brain are specifically related to a
disease state (Lathe et al., 2023).

Discussion

Throughout the seminar series and discussions there was a
strong consensus that genomics data should align with the FAIR
principles so that data can be shared.The seminar discussions fielded
some initial directions for future development. It was agreed that
we need to recognize and address the barriers to reuse that our
community is currently supporting. Amajor concern, the variability
and/or absence of reported metadata, was identified as a major
stumbling block to data reuse. Further examination and exploration
is needed to truly understand why reporting is variable, a key topic
that will be advanced through both IMMSA and upcoming GSC
meetings (https://www.gensc.org/pages/meetings.html).

A number of positive steps forward were identified to improve
how we facilitate data reuse. These include (1) incentivising data
sharing by promoting its use in publications and other scientific
outputs; (2) adding new ‘data reuse’ sections to journals to highlight
these efforts; (3) reporting the source (and the primary publication)
when reusing data; and (4) adding a “Data Reuse Index” to CVs and
to our end of year funding reports (e.g., using a BioProject citation
count). One could also use tools, such as the Data Citation Explorer
to identify reuse of their data found in citations incorporating
uncited genomic data (Byers et al., 2024). Technically, we are
suggesting a paradigm shift, for researchers to include comparability
standards and relevant controls in all studies as a “best practice”
in microbiome analysis. This action would provide the capacity for
reproducibility assessment. As is often the case the social aspects far
outweigh the technical.

Socially, genomic science is a competitive enterprise. We are
incentivised to compete with our colleagues, to write the most
citable paper, or seek the most research funding. As a community,
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through this discussion, we are striving to challenge this paradigm,
to shift our perspectives as a community. We know that together
we produce better, more impactful science. Together, by giving a
little more, sharing a lot more, we can choose to change how we do
our science. Choosing to gift our future selves with the bounty of
well documented, reusable data, capturing the details that provide
for the assessment of reproducibility is pivotal as we, together,
explore our genomic world. It is time to ask ourselves, what we, the
scientists, can do to change how we enable, report and acknowledge
data reuse and how we can enhance data reproducibility by how
we report our studies. This will further enable us to expand the
tools at our disposal. Having well annotated and curated databases
will enable us to fully leverage AI. Further, let us consider if there
is a role for AI in data generation, methods extraction and in
improving data reproducibility. Prior work has suggested that AI
can aid in conducting metadata extraction (Islamaj et al., 2025;
Gupta et al., 2024; Xiao et al., 2023), which could be leveraged as
a tool for researchers conducting systematic analyses.

Lastly, let us acknowledge positive data reuse use cases. Meta-
analysis, mining sequence data from publicly available resources,
offers new opportunities for posing novel questions – such as,
examining viral impacts on drinking water (Hegarty et al., 2022)
or identifying disease-specific responses across gut microbiomes
(Duvallet, 2020). Secondary analysis of datasets provides novel
opportunities to discover new data associations (Skinnider, 2024)
e.g,., novel host-bacteria interactions (Pilgrim, 2022) or building
machine learning systems (Nieto et al., 2021).
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