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Introduction: Nuclear Factor kappa B (NF-κB) is a transcription factor
whose upregulation is associated in chronic inflammatory diseases, including
rheumatoid arthritis, inflammatory bowel disease, and asthma. In order to
develop therapeutic strategies targeting NF-κB-related diseases, we developed
a computational approach to predict drugs capable of inhibiting TNF-α induced
NF-κB signaling pathways.

Method: We utilized a dataset comprising 1,149 inhibitors and 1,332 non-
inhibitors retrieved from PubChem. Chemical descriptors were computed using
the PaDEL software, and relevant features were selected using advanced feature
selection techniques.

Result: Initially, machine learning models were constructed using 2D
descriptors, 3D descriptors, and molecular fingerprints, achieving maximum
AUC values of 0.66, 0.56, and 0.66, respectively. To improve feature selection,
we applied univariate analysis and SVC-L1 regularization to identify features that
can effectively differentiate inhibitors from non-inhibitors. Using these selected
features, we developed machine learning models, our support vector classifier
achieved a highest AUC of 0.75 on the validation dataset.

Discussion: Finally, this best-performing model was employed to screen
FDA-approved drugs for potential NF-κB inhibitors. Notably, most of the
predicted inhibitors corresponded to drugs previously identified as inhibitors in
experimental studies, underscoring the model’s predictive reliability. Our best-
performing models have been integrated into a standalone software and web
server, NfκBin. (https://webs.iiitd.edu.in/raghava/nfkbin/).

KEYWORDS

NF-κB, nuclear factor kappa B, machine learning, chemical descriptors, high-
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Highlights

• NF-κB signaling pathway plays crucial role in many diseases like rheumatoid arthritis.
• NF-κB signaling pathway is drug target for arthritis, bowel disease, asthma etc.
• A method for classification of TNF-α induced NF-κB inhibitors and non-inhibitors.
• Application machine learning techniques for predicting inhibitors.
• A web server NfκBin for predicting, designing and screening inhibitors.
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1 Introduction

Nuclear factor kappa B (NF-κB) is a pivotal transcription
factor that regulates genes critical for immune and inflammatory
responses (Lawrence, 2009). Since its discovery in 1986, NF-κB
has been identified as central to the body’s defense mechanisms
(Hayden and Ghosh, 2008). It is activated by receptors such as
Toll-like receptors (TLRs), which detect microbial components
and trigger inflammatory in response to harmful stimuli like
pathogens, damaged cells, and irritants (Lim and Staudt, 2013;
Tak and Firestein, 2001; Li and Verma, 2002). As depicted
in Figure 1, NF-κB activation occurs via two main pathways:
canonical and non-canonical (Bonizzi and Karin, 2004; Hayden
and Ghosh, 2014; Wu and Zhou, 2010; Hoesel and Schmid,
2013; Baud and Karin, 2009). The canonical pathway, triggered
by signals such as TNF-α and IL-1, involves the phosphorylation
and degradation of IκB, allowing NF-κB to translocate into the
nucleus and initiate transcription of genes related to inflammation
and immunity (Lawrence, 2009; Schütze et al., 1995; Hayden and
Ghosh, 2004). The non-canonical pathway, activated by receptors
like CD40 and BAFF, relies on NIK-mediated processing of p100
into its active form (p52), which pairs with RelB to promote
immune system development and adaptive immune responses
(Hayden and Ghosh, 2014).

Dysregulated NF-κB signaling is implicated in numerous
diseases, including chronic inflammatory conditions (e.g., Crohn’s
disease, asthma, and psoriasis), autoimmune disorders (e.g.,
SLE and multiple sclerosis), and cancers (e.g., breast, lung, and
colorectal cancers) (Hoesel and Schmid, 2013; Zinatizadeh et al.,
2020; Lee et al., 2007). Persistent activation contributes to
excessive inflammation, tissue damage, and tumor progression by
promoting cell survival, proliferation, and resistance to apoptosis
(Liu et al., 2017; Yamamoto and Gaynor, 2001). Moreover, it
fosters tumor invasion, metastasis, and angiogenesis by creating
a pro-tumor microenvironment (Rasmi et al., 2020; Tang et al.,
2017; Pikarsky et al., 2004; Dong et al., 2015; Karin, 2006;
Zhao et al., 2021).

Due to its central role in diverse diseases, NF-κB is a promising
therapeutic target (Wu and Zhou, 2010; Baldwin, 1996). Existing
inhibitors range from small molecules to natural compounds and
peptides, targeting various stages of NF-κB signaling (Yamamoto
andGaynor, 2001).However, traditional drug developmentmethods
are expensive and time-consuming. Computational approaches
for high-throughput screening of chemical libraries to identify
NF-κB inhibitors are urgently needed. Among various NF-κB
activation pathways, the TNF-α-induced canonical pathway is one
of the most extensively studied and clinically relevant, making
it a suitable focus for targeted inhibitor discovery. Targeting this
specific axis allows for the identification of compounds capable
of modulating early upstream events in NF-κB signaling, offering
broad therapeutic potential across inflammation-related diseases
and cancer. In present study, we introduce “NFκBIn,” an in
silico tool for predicting TNF-α-induced NF-κB inhibitors based
on experimentally validated compounds. This tool addresses the
gap in computational resources for efficient and precise inhibitor
prediction.

2 Methods

2.1 Dataset collection

In this study, we extracted the TNF-α induced NF-κB inhibitors
and non-inhibitors from the PubChem repository (Wang et al.,
2012). We filtered all the assays in the aforementioned repository
using keywords “((TNF AND NF-κB) inhibitors)”. This search
resulted in a total of 90 PubChem bioassays, which was further
manually refined based on the number of inhibitors per assay. After
rigorous screening we selected a high throughput bioassay AID
1852 (https://pubchem.ncbi.nlm.nih.gov/bioassay/1852) as the data
source for our study. This high throughput assay is designed for
identification of hits specific to tumor necrosis factor alpha (TNF-
α), a canonical NF-κB inducer, and its modulated pathways. HEK-
293-T NF-κB-Luc cells were seeded at 6,000 cells/well in 1,536-
well plates with 0.62% DMSO and treated with 10 nL of 2 mM
compounds or DMSO controls using a pintool. After stimulation
with 0.25 ng/mL TNF-α and overnight incubation, luminescence
was measured using SteadyGlo and a Perkin-Elmer Viewlux reader.
Tiered Activity Scoring System developed by Sanford-Burnham
Center for Chemical Genomics (SBCCG), was deployed and the
compounds showing more than 50% activity in the assay were
classified as active. Using this assay, we downloaded a total of 2,481
compounds in which 1,332 were non-inhibitors and 1,149 were
reported as NF-κB inhibitors, using this bioassay.

For the drug repurposing case study, we retrieved 2,616 FDA-
approved small molecules from the DrugBank database. Of these,
2,577 compounds with available SMILES representations were used
for descriptor generation and prediction using the “Predict”Module
of NFκBIn webserver.

The detailed schematic representation of the proposed tool is
illustrated in Figure 2.

2.2 Dataset preprocessing

In this study, we followed the best practices of machine
learning algorithms and divided our total compound dataset in
80:20 ratio. Where, 80% of data (i.e. 936 inhibitors and 1048
non-inhibitors) was flagged as training data and were utilized to
develop machine learning models and remaining 20% data (i.e.
213 inhibitors and 284 non-inhibitors) was used as independent
validation set for machine learning model performance evaluation.
These types of standard protocols were reported in previous
studies from literature (Dhanda et al., 2013; Chauhan et al., 2014;
Sharma et al., 2021).

2.3 Molecular descriptors and fingerprints
of compounds

Molecular descriptors and fingerprints are the mathematical
representation of chemical compounds that captures vital
information about them (Yap, 2011; Yang et al., 2022; Dhall et al.,
2021). The descriptors are key features extracted to represent
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FIGURE 1
Schematic representation of canonical and non-canonical signaling pathway for activation of Nf-κB.

chemical compounds in computational chemistry and drug
discovery (Boldini et al., 2024).Theyhelp in predicting the biological
activity, physicochemical properties, and toxicity of compounds. In
this study, we deployed PaDEL software (Yap, 2011) for calculation
of molecular and fingerprint descriptors of NF-κB inhibitors and
non-inhibitors downloaded in SMILES format. This software
calculated 1,875 descriptors including 1444 1D, 2D; 431 3D and
12 types of fingerprints (total 16,092 bits). These 17967 2-D, 3-D,
and fingerprint (FP) descriptors were further screened to develop
machine learning algorithms.

2.4 Descriptor features preprocessing

The 17,967 generated descriptors exhibited varying range
values. To normalize them, we applied the Standard Scaler
from the Scikit-learn package, which operates using the z-score
algorithm (Dhall et al., 2021). Post this step, we discarded the
descriptors with more than 80% null values. After this we were left

with 1107 2D, 431 3D and 9324 FP descriptors, making a total of
10,862 descriptors/features for the dataset.

2.5 Significant descriptor selection and
ranking

In order to develop a robust prediction model with higher
accuracy, we need to select the most significant descriptors
generated from PaDEL software. Thus, ranking and selecting
the significant descriptors from the 10,862 descriptors set is an
important step. In this study we incorporated two approaches to
select and rank relevant descriptors, i.e., using correlation analysis
and univariate analysis.

2.5.1 Correlation based Descriptor selection
In this approach, we deployed the Variance Threshold package

of Scikit (sklearn.feature_selection) to remove the low-variance
features from 10,862 descriptor set. After eliminating low variance
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FIGURE 2
Overall architecture depicting workflow of Nf-κBIn tool.

features, we were left with 6084 descriptors comprising of 786 2D,
169 3D and 5129 FP features (Refer Supplementary Table S1 in
Supplementary Material). We applied a Pearson correlation-based
feature selection method to remove highly correlated features, using
a cutoff value of 0.6 (Dhall et al., 2021). Post this step, we were left
with 102 2D, 3 3D and 2260 FP descriptors making a total of 2365
descriptors (See Supplementary Table S2 in Supplementary Material).
In order to further reduce the dimensionality of the descriptor
matrix, we applied SVC-L1 based feature selection method to
screen relevant feature set. The support vector classifier (SVC)
with linear kernel and L1 regularization is the foundation of this
approach (Kamkar et al., 2016). Using SVC-L1 feature selection
method we selected, 32 2D, 3 3D and 348 FP feature set (Refer
Supplementary Table S3 in Supplementary Material for detailed list).
Using these descriptors,wedeveloped2D, 3D, FPand ensemble-based
machine learning models to screen NF-κB inhibitors.

2.5.2 Univariate analysis-based Descriptor
selection

In this approach, a statistical method i.e., univariate analysis
using 2-tailed independent Student’s t-test was executed based
on the mean value of descriptors of both groups to extract the
important descriptors from the 10,862 descriptors pool. Using
this approach, we ranked the descriptors based on the significant
p-value obtained. We selected top 2000 descriptors and applied
SVC-L1 and RFE based feature extraction methods over them.
Recursive Feature Elimination (RFE) is a feature selection approach
that works by recursively eliminating the least important features,
this process continues until the desired number of features
is reached (Chen and Jeong, 2007). Applying these, we selected
266 descriptors from SVC-L1 method and the top 50 descriptors
from RFE feature selection technique for machine learning model
development.
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2.6 Cross validation techniques

In order to achieve an unbiased prediction model, we
incorporated standard five-fold cross validation techniques,
to build our machine learning models (Sharma et al., 2021;
Dhall et al., 2021; Jain et al., 2022). In this technique, we divided
our 80% training dataset into five sets of data with similar size.
Out of these five sets, four sets were used to train the machine
learning model and one set was used for testing the machine
learning model performance. This process was repeated five
times, to make sure that each fold is used once for testing the
model. We fine-tuned the machine learning models parameters
for achieving best performance on the test dataset. Finally,
the average performance was computed using five test folds
performance.

2.7 Machine learning models

In this study we have applied various machine learning
algorithms to develop prediction models for screening of NF-
κB inhibitors and non-inhibitors with higher accuracy. We
implemented Random Forest (RF), Decision Tree (DT), K-
nearest neighbour (KNN), Support Vector Classifier (SVC), and
eXtreme Gradient Boosting (XGB) to develop classification models.
These machine learning algorithms were deployed using the
Scikit-learn package (Pedregosa et al., 2012).

2.8 Performance evaluation

We have evaluated our machine learning model performance
over 20% independent validation dataset. We recorded both
threshold-dependent and independent parameters for evaluating
our model’s performance. As explained in Equations 1–4 sensitivity
(Sens), specificity (Spec), accuracy (Acc), and Matthew’s correlation
coefficient (MCC) respectively, were recorded as threshold-
dependent parameters and the area under the receiver operating
characteristic curve (AUC), as the threshold-independent parameter
(Jain et al., 2022; Sharma et al., 2022).

Sensitivity = TP
TP+ FN

∗ 100 (1)

Speci ficity = TN
TN+ FP

  ∗ 100 (2)

Accuracy = TP+TN
TP+ FP+TN+ FN

∗ 100 (3)

MCC =
(TP∗TN) − (FP∗ FN)

√(TP+ FP)(TP+ FN)(TN+ FP)(TN+ FN)
(4)

Where, FP is false positive, FN is false negative, TP is true
positive and TN is true negative.

3 Results

3.1 Functional group analysis

In order to get the deeper insights of relevance of functional
groups present in NF-κB signaling pathway inhibitors and non-
inhibitors. We used ChemmineR package to detect and the
frequency of functional groups in both NF-κB inhibitors and
non-inhibitors chemical compounds (Cao et al., 2008). Using
this approach, we observed the occurrence of Primary (RNH2),
Secondary (R2NH), Tertiary (R3N) Amines, Phosphates attached
to alkyl groups (ROPO3), Alcohol (ROH), Aldehyde (RCHO),
Ketone (RCOR), Carboxylic Acid (RCOOH), Ester (RCOOR),
Ether (ROR), Alkyne (RCCH), Nitrile (RCN), Rings and Aromatic
groups for our positive and negative dataset. The frequency
of these functional groups is depicted in Figure 3. Statistical
significance between both groups was assessed using an unpaired
two-tailed t-test, with annotations as follows:∗∗∗p < 0.001,∗∗p <
0.01,∗p < 0.05; non-significant comparisons (p ≥ 0.05) were not
labeled.

The comparative analysis of chemical descriptors revealed
distinct structural preferences between inhibitors and non-
inhibitors. Descriptors such as RNH2, ROH, RCOR, and
AROMATIC were significantly enriched in inhibitors, with ROH,
RCOR, and AROMATIC showing∗∗∗high significance (p < 0.001),
while RNH2 showed∗low significance (p < 0.05). Conversely, R2NH,
R3N, RCOOR, ROR, and RCN were observed at significantly
higher levels in non-inhibitors, with R2NH, R3N, and ROR
showing∗∗∗highly significant differences (p < 0.001) and RCOOR
and RCN showing∗∗moderate significance (p < 0.01). Minimal or
no differences were observed for descriptors like ROPO3, RCHO,
and RCCH, which were not statistically significant. These findings
suggest that specific functional groups, particularly those involving
amines, carbonyls, and aromatic structures, may play important
roles in modulating inhibitory activity.

3.2 Performance of prediction models

3.2.1 Correlation based descriptor model
performance

In this approach, after eliminating highly correlated features, we
selected 32 2D, 3 3D and 348 FP descriptors using SVC-L1 based
feature selection method. We developed 2D, 3D, FP and ensemble-
based machine learning prediction model.

3.2.1.1 2D descriptors-based ML model
Machine learning prediction model was developed using

32 2D descriptors. Using this approach, K-Nearest Neighbor
method recorded the maximum AUC for validation set as 0.62
and accuracy as 64.85%, as evident from Table 1. Performance
of 2D descriptors over training dataset can be referred in
Supplementary Table S4 in Supplementary Material.
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FIGURE 3
Representation of functional group analysis for Nf-κB pathway inhibitors and non-inhibitors using ChemmineR package.

TABLE 1 The machine-learning model performance on validation dataset developed using 32 2D descriptors.

Validation

Model Accuracy Precision Recall F1 Sens Spec AUC MCC

RF 65.05 0.65 0.49 0.74 0.49 0.56 0.61 0.24

DT 54.23 0.54 0.44 0.63 0.44 0.49 0.54 0.07

KNN 64.85 0.65 0.53 0.72 0.53 0.58 0.62 0.25

SVC 61.33 0.61 0.37 0.77 0.37 0.46 0.57 0.15

XGB 61.33 0.61 0.45 0.72 0.45 0.52 0.58 0.18

TABLE 2 The machine-learning model performance on validation dataset developed using 3 3D descriptors.

Validation

Model Accuracy Precision Recall F1 Sens Spec AUC MCC

RF 56.14 0.57 0.49 0.64 0.49 0.52 0.56 0.12

DT 52.31 0.52 0.55 0.50 0.55 0.53 0.52 0.05

KNN 53.52 0.53 0.55 0.52 0.55 0.54 0.54 0.07

SVC 51.51 0.52 0.32 0.71 0.32 0.40 0.51 0.03

XGB 51.91 0.68 0.06 0.97 0.06 0.11 0.52 0.08

3.2.1.2 3D descriptors-based ML model
We have also developed machine learning based model

using 3 3D descriptors screened. We observed the maximum
AUC over validation set as 0.56 with accuracy as 56.14%
in Random Forest classifier, see Table 2. Performance of
3D descriptors over training dataset can be referred in
Supplementary Table S4 in Supplementary Material.

3.2.1.3 Fingerprint descriptors-based ML model
In this study, we developed classification models using 348

fingerprints descriptors selected using correlation and SVC-
L1 based feature selection approach. As depicted in Table 3,
using FP descriptors we achieved a maximum AUC of 0.66
and accuracy as 66.40% over validation dataset using Random
Forest classifier. Also, XGBoost model reported the AUC as
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TABLE 3 The machine-learning model performance on validation dataset developed using 348 FP descriptors.

Validation

Model Accuracy Precision Recall F1 Sens Spec AUC MCC

RF 66.40 0.74 0.51 0.82 0.51 0.60 0.66 0.34

DT 57.95 0.59 0.50 0.66 0.50 0.54 0.58 0.16

KNN 65.19 0.66 0.62 0.69 0.62 0.64 0.65 0.30

SVC 59.96 0.61 0.54 0.66 0.54 0.57 0.60 0.20

XGB 65.79 0.68 0.59 0.73 0.59 0.63 0.66 0.32

TABLE 4 The machine-learning model performance on validation dataset developed using 383 ensemble-based descriptors set.

Validation

Model Accuracy Precision Recall F1 Sens Spec AUC MCC

RF 67.20 0.73 0.53 0.81 0.53 0.62 0.67 0.36

DT 56.54 0.57 0.51 0.62 0.51 0.54 0.57 0.13

KNN 64.79 0.66 0.62 0.68 0.62 0.63 0.65 0.30

SVC 60.97 0.62 0.54 0.68 0.54 0.58 0.61 0.22

XGB 64.59 0.68 0.54 0.75 0.54 0.60 0.65 0.30

0.66, and 65.79% as accuracy for validation set. Performance
of FP descriptors over training dataset can be referred in
Supplementary Table S4 in Supplementary Material.

3.2.1.4 Ensemble based approach
In order to improve the machine learning model performance,

we adopted an ensemble-based approach in this study.We combined
32 2D, 3 3D and 348 FP descriptor set selected using SVC-L1
feature selection approach applied after removing highly correlated
features. We developed a machine learning model, using a matrix
of 383 feature set of 2D, 3D, FP descriptors. As presented in
Table 4, we recorded the maximum AUC as 0.67 and accuracy
of 67.20% using Random Forest classifier over validation dataset.
Performance of FP descriptors over training dataset can be referred
in Supplementary Table S4 in Supplementary Material.

3.2.2 Univariate analysis-based descriptor model
performance

In this approach, we screened top 2,000 descriptors using
Univariate analysis. We calculated the mean difference of
descriptor score and the single descriptor-based AUC score
for top 20 descriptors, refer to Supplementary Table S5 in
Supplementary Material. In this, we observed the KRFP605
outperformed all and have shown the maximum AUC as 0.62, with
average mean difference as 2.60 among positive and negative data
descriptor. In addition to this, we applied SVC-L1 and RFE based
feature selection technique over top 2000 descriptors screened
using Univariate analysis. We developed machine learning based

model for prediction of NF-κB inhibitors using 266 descriptors
from SVC-L1 method and the top 50 descriptors from RFE
feature selection technique (Refer Supplementary Table S6 in
Supplementary Material for detailed list). As depicted in Table 5,
Support vector classifier (SVC) developed using SVC-L1 based
feature selection technique outperformed all classifiers and
reported maximum AUC of 0.80 on training dataset and 0.75
on validation dataset. However, K-nearest neighbor classifier
reported maximum AUC of 0.66 on training dataset and 0.65 on
validation dataset developed using 50 RFE selected descriptors (See
Supplementary Table S7 in Supplementary Material).

3.3 FDA approved drug repurposing to
target NF-κB signaling pathway

In this study, we attempted a systemic approach to identify the
potential drug targets forNF-κB signalingpathway. Inorder to achieve
this, we retrieved the 2616 FDA approved drug molecules from Drug
Bank portal to screen them as the NF-κB pathway inhibitors and
non-inhibitors. Out of 2616, SMILES format was available for 2577
drug molecules. We deployed the “Predict” module of our NfκBIn
webserver over these 2577 compounds SMILES format dataset using
the default parameters. It computed descriptors using PaDEL software
in the backend and provided a machine learning based model label
for each drug candidate in 2577 compounds dataset. The machine
learning score and predicted label as inhibitor or non-inhibitor
for 2577 compounds can be referred in Supplementary Table S8
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TABLE 5 The machine-learning models performance on validation dataset developed using 266 descriptors selected using SVC-L1 based approach.

Validation

Model Accuracy Kappa F1 Sens Spec AUC MCC

RF 65.59 0.31 0.64 60.73 70.40 0.71 0.31

DT 60.36 0.21 0.58 54.25 66.40 0.63 0.21

KNN 65.19 0.30 0.63 60.73 69.60 0.70 0.31

SVC 67.61 0.35 0.66 63.16 72.00 0.75 0.35

XGB 62.78 0.26 0.61 59.51 66.00 0.69 0.26

TABLE 6 List of seven FDA-approved drug candidates as potential Nf-κB pathway inhibitors.

DrugBank ID FDA approved drugs Prediction label Literature remarks

DB00290 Bleomycin Inhibitor Co-administration of ginsenoside with BLM resulted in marked improvement in lung
structure and a significant reduction in Nf-κB expression. (El-Bassoun et al., 2021)

DB00325 Nitroprusside Inhibitor Nitroprusside is a vasodilator that releases nitric oxide (NO) upon metabolism. NO can
influence various signalling pathways, including the Nf-κB pathway. (Colasanti and
Persichini, 2000)

DB00536 Guanidine Inhibitor The guanidine compound ME10092 inhibits Nf-κB activation and the upregulation of
inflammatory mediators in vivo. (Dambrova et al., 2010)

DB00602 Ivermectin Inhibitor Ivermectin may inhibit LPS-induced production of inflammatory cytokines by blocking
NF-kB pathway and improve LPS-induced survival in mice. FDA-approved
antiparasitic drug, could potentially be used in combination with chemotherapeutic
agents to treat cancers. (Noori et al., 2023; Jiang et al., 2019; Zhang et al., 2008)

DB00684 Tobramycin Inhibitor Tobramycin suppresses Nf-κB activation, reducing pro-inflammatory cytokines and
controlling excessive inflammation in lung infections, thus helping prevent further lung
damage in conditions like cystic fibrosis. (Sun et al., 2024; Nguyen et al., 2002)

DB00686 Pentosan Polysulfate Inhibitor Pentosan polysulfate sodium (PPS), an inhibitor of NF-kB activation. (Sunaga et al.,
2012; Krishnan et al., 2023)

in Supplementary Material. For top 10 potential drug candidates
identifiedasNF-κBsignalingpathwayinhibitors,wereviewedprevious
studies to validate and support our findings. These studies provide
evidence of the inhibitory effects of six compounds on the NF-κB
pathway, reinforcing the potential of these candidates for further
investigation and development (El-Bassoun et al., 2021; Noori et al.,
2023; Matthews et al., 1996; Jiang et al., 2019; Sun et al., 2024;
Sunaga et al., 2012; Cai et al., 2022). These seven potential drugs,
i.e., Bleomycin, Nitroprusside, Guanidine Ivermectin, Tobramycin,
Pentosan polysulfate and Gentamicin and their roles as reported in
various studies are depicted in Table 6.

3.4 Webserver and standalone package

In this study, we have provided a user-friendly webserver
“NFκBin” (https://webs.iiitd.edu.in/raghava/nfkbin/) platform to
enable high-throughput screen of chemical compounds as NF-κB
inhibitors and non-inhibitors.This webserver is deployed on a Linux
(Ubuntu) machine using an Apache HTTP server. Its front-end is

created with HTML, PHP, and JavaScript, while the back-end is
implemented in Python 3.6 utilizing the Scikit library. In addition
to this, to ease the usability of the webserver we have utilized a
responsive template which is compatible with desktop, tablet and
phone. Major modules incorporated in this webserver, are “Predict,”
“Draw,” and “Analog design”. Predict module enables users to screen
the chemical compounds in SMILES format as NF-κB inhibitors and
non-inhibitors. Best machine learningmodel has been incorporated
in this module with default threshold parameter. Threshold refers
to the classification score cutoff used to determine whether a
molecule is predicted as an inhibitor or non-inhibitor. Drawmodule
allows users to draw or modify the chemical compound’s structure
using an open-source interactive tool known as Ketcher. Post that,
drawn structure can be further classified as NF-κB inhibitors and
non-inhibitors. In order to generate the analog’s of the chemical
compounds using combination of scaffolds, building blocks, and
linkers, users can utilize the Analog Design module. SmiLib tool
has been implemented in the backend of this module. The tabular
format results generated can be downloaded in.csv format from
all modules. In addition, we also developed standalone software
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package which is available from GitHub and PyPI site (https://
github.com/raghavagps/nfkbin/&https://pypi.org/project/nfkbin/).

4 Discussion

NF-κB is a pivotal therapeutic target due to its dysregulation
in chronic inflammation, immune disorders, and cancers. Its
activation, particularly through the TNF-α-mediated canonical
pathway, leads to nuclear translocation and downstream
transcription of pro-inflammatory genes. Researchers have
increasingly emphasized the importance of blocking this signaling
cascade early to mitigate disease progression. Several tools
developed in past focusing on various broader domain such
as EGFRpred (Singh et al., 2015) aims to predict the potential
chemical molecule as an EGFR inhibitor based on the structure-
activity (QSAR model) of the chemical compound; DrugMint
(Dhanda et al., 2013) to scan and identify whether a chemical
molecule is a potential drug candidate or not; ChAlPred
(Sharma et al., 2021) tool for predicting allergenicity of chemical
compounds. In addition to these, several molecular docking and
simulation-based studies have been conducted for screening of
chemical compounds as Nf-kB inhibitors (Saeed et al., 2022;
Hua et al., 2020; Kanan et al., 2019; Lo et al., 2017; Leung et al.,
2013; Wang et al., 2019; Abbasi et al., 2023; Srivastava et al., 2024).
However, tools specifically designed to screen NF-κB pathway
inhibitors, especially those targeting the TNF-α axis, remain limited.

While molecular docking and simulation-based methods have
been employed for identifying NF-κB inhibitors, they primarily
focus on single protein-ligand interactions and often fall short
of capturing pathway-level dynamics. These methods are further
constrained by their reliance on rigid protein structures and
relatively small chemical libraries, leading to limited predictive
power and high false-positive rates. In contrast, machine learning
approaches—when appropriately trained—can model complex,
pathway-level effects by leveraging large datasets of experimentally
validated compounds and high-dimensional molecular descriptors.
That said, such approaches are not inherently pathway-specific but
instead learn associations from the data used.

In this context, we developed NFκBIn, a machine learning-
based framework for screening small molecules as NF-κB pathway
inhibitors or non-inhibitors, specifically focusing on TNF-α-
induced activation.Our dataset comprised 2481 curated compounds
(1149 inhibitors and 1332 non-inhibitors), for which we generated
comprehensive 2D, 3D, and fingerprint-based descriptors. The
Support Vector Classifier (SVC) model developed using the SVC-
L1-selected features achieved the best performance, with an AUC of
0.80 on the training dataset and 0.75 on the independent validation
dataset.This best-performingmodel was subsequently implemented
as the core prediction engine in our webserver tool for screening
NF-κB pathway inhibitors. To support model interpretability, we
examined the range of key molecular descriptors in the training
dataset. These include ALogP (−4.53–5.03), TPSA (0.00–372.50),
molecular weight (173.08–900.44), H-bond acceptors (0–19),
donors (0–8), and rotatable bonds (0–15). All new compounds
would be processed using the same descriptor generation tool
(PaDEL) and Min-Max scaling as the training data. This would

enhance the tool applicability and ensure consistent feature
representation across datasets.

To demonstrate the utility of NFκBIn in drug repurposing,
we screened 2577 FDA-approved drugs from DrugBank. The
model predicted several high-confidence inhibitors. Of these, seven
compounds—including Bleomycin, Ivermectin, Tobramycin, and
Pentosan polysulfate—were supported by literature evidence for
modulating NF-κB signaling. In addition, the tool identified other
highly ranked compounds with no prior association with NF-
κB inhibition. These represent novel candidates for experimental
validation and may offer potential for repositioning as anti-
inflammatory or anticancer agents.

Although our models showed good performance, we
acknowledge certain limitations. For instance, the SVC model
displayed imbalanced sensitivity and specificity on validation data,
possibly reflecting chemical or assay biases in the training set.
Future enhancementsmay include integratingmulti-target ormulti-
omics features, applying advanced optimization techniques such as
genetic algorithms, and validating predictions through biological
experiments or docking simulations.

In summary, NFκBIn offers a scalable, interpretable, and user-
friendly platform for identifying potential inhibitors of TNF-α-
induced NF-κB signaling. It serves as a valuable resource for
researchers aiming to accelerate drug discovery and repurposing in
inflammatory and cancer-related diseases.

5 Conclusion

NF-κBIn method can be implied in Computational drug
discovery pipelines to conduct virtual screening of chemical
compound libraries as NF-κB inhibitors. Repurposing of FDA-
approved drugs as potential candidates against the NF-κB pathway
opens new avenues for therapeutic interventions. These findings
strengthen the case for further exploration and development of
six compounds as viable drug candidates. In addition to this,
webserver enable scientific community to create ormodify chemical
compounds for the discovery of novel chemical compounds
targeting against NF-κB signaling pathway.
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Glossary

NF-κB Nuclear Factor kappa B

TNF Tumor Necrosis Factor

FP Fingerprint descriptor

RFE Recursive Feature Elimination

MCC Matthews Correlation Coefficient

DT Decision Tree

RF Random Forest

LR Logistic Regression

XGB Extreme Gradient Boosting

KNN K-nearest Neighbour

SVC Support Vector Classifier

Sens Sensitivity

Spec Specificity

Acc Accuracy

AUC Area Under the Curve

TLRs Toll-like Receptors

IL-1 Interleukin-1

IκB Inhibitor of kappa B

BAFF B-cell Activating Factor

DMSO Dimethyl sulfoxide

HEK-293-T Human Embryonic Kidney 293T Cells

SMILES Simplified Molecular Input Line Entry System

SVC-L1 Support Vector Classifier with L1 Regularization

PaDEL Pharmaceutical Data Exploration Laboratory

ALogP Atom-based Log Partition Coefficient

TPSA Topological Polar Surface Area

QSAR Quantitative Structure–Activity Relationship

EGFR Epidermal Growth Factor Receptor

RNH2 Primary Amines

R2NH Secondary Amines

R3N Tertiary Amines

ROPO3 Phosphates attached to alkyl groups

ROH Alcohol Functional Group

RCHO Aldehyde Functional Group

RCOR Ketone Functional Group

RCOOH Carboxylic Acid Functional Group

RCOOR Ester Functional Group

ROR Ether Functional Group

RCCH Alkyne Functional Group

RCN Nitrile Functional Group
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