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Introduction: There are numerous treatment options available for patients with
confirmed hepatocellular carcinoma (HCC). Guidelines such as Barcelona Clinic
Liver Cancer (BCLC) support treatment decisions by way of a flow diagram that
is organized around groups of patients. Though such guidelines continue to
make a major contribution to standardization of treatment, in clinical reality,
cases are often more nuanced than is captured in any flow diagram, even one as
comprehensive as BCLC. A fundamental challenge for a clinician is to combine
such a population-wide guideline with specific information about the individual
patient. Bayesian networks (BNs) offer a way to “bridge this gap” and combine
standardized care and precision medicine. They do this by enabling answers to
detailed “what-if” questions from the clinician.

Methods: We use real-world data of HCC patients who received treatments
between 2019 and 2020 to construct a BN to assess the potential treatment
effect for cases that were not treated in compliance with BCLC.

Results: We report detailed scenarios for ten randomly selected cases and
summarise the difference in survival time for each scenario. For each case, the
counterfactual treatment scenarios are made based on whether or not the case
is in compliance with BCLC guidelines, the type of treatment received and the
waiting time to receive treatment.

Discussion: We consider two cases with similar clinical characteristics (but
received different treatments) and discuss whether or not they are treated
in compliance to the guidelines resulting in better outcomes than the actual
clinical decision. We include a detailed discussion about the assumptions made
in constructing the BN and we highlight why such a BN can serve as an AI-
based clinical decision support system particularly when there is need for further
patient stratification.
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Bayesian network, BCLC, causal inference, counterfactual reasoning, HCC,
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1 Introduction

Hepatocellular carcinoma (HCC) is the third leading cause
of cancer death worldwide (Huang et al., 2023) with a mortality
rate of 96%. Thankfully there are an increasing number of
treatment options available, while techniques such as trans-
arterial chemoembolization (TACE) and selective internal radiation
therapy (SIRT) are increasingly deployed as curative treatment
options (Horvat et al., 2022). Patient management guidelines are
widely used: in Europe these are predominantly the Barcelona
Clinic Liver Cancer(BCLC) guideline (Reig et al., 2022); and
the European Association for the Study of the Liver (EASL)
guideline (European Association for the Study of the Liver, 2015).
Recommendations for treatment modalities are usually based on
BCLC cancer staging (Reig et al., 2022). Treatment options are
based on assigning a patient to a broadly defined population
subgroup. A clinician faces at least two challenges when applying
such a guideline, especially as treatment decisions often need to be
made quickly. First, the clinician needs to combine such a broad
population subgroup guideline with specific information about the
individual patient. Second, access to treatment modalities, medical
compensation mechanisms, and local expertise/resource allocation
are important factors that vary from site to site, complicating
compliance with guidelines. In practice, treatments are personalised
and indeed, there are situations where the recommended option
does not align with jurisdictional treatment guidelines.

Bayesian networks (BNs) offer a way to combine guideline-
specified standardized care with precision medicine. They do this
by enabling answers to detailed “what-if ” questions (technically:
counterfactual reasoning) from the clinician. This study illustrates
the utility of Bayesian network counterfactual reasoning by
showing how a clinician may estimate potential survival time post
treatment on a case-by-case basis. Causal inference with Bayesian
networks is an AI method in which observational data is used
to predict the likely outcome of an intervention. To be specific,
we discuss the benefits and limitations of the approach in the
context of implementation with the BCLC guideline. Technically,
counterfactual reasoning is a form of probabilistic inference that
is based on joint probability distributions and Bayesian statistics.
We show how it is possible to (a) explicitly denote the influences
between variables in the form of a Bayesian network (BN), (b)
incorporate prior knowledge about unobserved variables to preserve
individual uncertainties in the form of a probabilistic distribution,
(c) perform interventions on specific variables to effect the specific
counterfactual scenario, and (d) estimate potential treatment
effects through the computation of posterior probabilities (Molak,
2023). Taken together, this enables assessment of individualised
treatment effects and potentially serves as a virtual control or
digital twin (Strayhorn, 2021).

2 Material and methods

2.1 Data preparation

A total of 190 patients’ data were curated from the open-
source dataset Newcastle PLC (primary liver cancer) (Geh et al.,
2022). We included only those cases that received liver cancer

care before the possibly confounding effects of COVID-19
(patients were treated between March 2019 and February 2020).
Descriptive statistics for patient demographics are summarized
in Table 1. Metrics selected for further analysis include: tumour
size (Size), HCC BCLC Stage (BCLC_stage), performance status
(PS), treatment groups (Treatment_grps), elapsed time between the
multidisciplinary meeting and time of first treatment (T_MDM_
first_treatment)— i.e., patient’s waiting time, survival time following
the multidisciplinary meeting (Survival_fromMDM), whether the
patient is alive or dead (Alive_Dead). Some valuesweremissing from
the medical records, in which case they were filled according to the
following strategy: there were 8 (4%) missing values for Size which
were filled with the population mean; there were 3 (1.6%) missing
values for PS, which were left “unknown”; there were 116 (62%)
missing values for the metric T_MDM_first_treatment, which were
imputed using Bayesian exact inference (Scutari, 2024). Descriptive
statistics and data cleaning were performed using R (R Foundation,
https://www.R-project.org/).

2.2 Pathway analysis

The BCLC HCC management flowchart (Braunwarth et al.,
2018) was adopted as the guiding principle to support judgement
about whether each case in the dataset was treated in compliance
with the guidelines. For the dataset, we considered the PS, the
BCLC staging, solidary tumour size, and actual received treatment
options. Our analysis investigates: (a) the proportional difference
between the BCLC compliance versus non-compliance; and (b)
which specific decision point tends to exclude a larger number of
patients. Treatment compliance is created as a binary metric and
combined into the larger dataset for the construction of Bayesian
network and counterfactual inferences.

2.3 Construction of Bayesian networks

Bayesian networks and the corresponding probabilistic
inferences were performed using the python library PyAgrum
(Ducamp and Wuillemin, 2020). The metrics chosen were
treatment Compliance, Treatment_grps, T_MDM_first_treatment,
and Survival_fromMDM. The directed acyclic graph required for
a BN was generated based on the assumption that the treatment a
patient receives depends on whether or not the decision is to treat
in compliance with the BCLC guideline. Both the type of treatment
(Treatment_grps) and the waiting time (T_MDM_first_treatment)
affect survival time (Survival_fromMDM). Parameter learning used
the complete dataset derived from the data preparation phase. To
avoid the “zero-probability” problem, we applied a smoothing
prior with 0.001 weighting (Needham et al., 2007). We applied a
smoothing prior with weighting 0.001 because, on the one hand it
allows us to mitigate the so-called “zero probability” problem which
inevitably derives from the limited size of the training data but on
the other hand give highest weighting to real-world data, preserving
the beneficial effect across different treatments. More discussion of
the specific weighting factor 0.001 is given in the Discussion section.
To allow individual variations and the explicit specification of
personalization, two unobserved variables (Us, Ut) were generated.
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TABLE 1 Patient demographics.

Characteristic N = 190

Age 71 (10)

Sex

 Female 44 (23%)

 Male 146 (77%)

Cirrhosis_Yes 134 (71%)

Surveillance_Yes 75 (39%)

Aetiology

 Alcoholic Liver Didease 62 (33%)

 Autoimmune 8 (4.2%)

 Chronic hepatitis B 3 (1.6%)

 Chronic hepatitis C 20 (11%)

 Heamochromatosis 6 (3.2%)

 Non-Alcoholic Fatty Liver Disease 69 (36%)

 Unknown 22 (12%)

Present mode

 Incidental 80 (42%)

 Surveillance 64 (34%)

 Symptomatic 46 (24%)

Us is an unobserved variable that affects Survival_fromMDM while
Ut is the unobserved variable that affects T_MDM_first_treatment.

Note that both waiting time and survival length are discretised
as integer values. This is a consequence of the design of the
pyAgrum software package. The maximum survival time is capped
at 40 months since this aligns with the original censoring of the
Newcastle PLC (primary liver cancer) dataset. We chose to impute
missing values instead of discarding samples because such cases
tend to be patients who received supportive care. For cases received
supportive care, in practice, clinical sites often do not record the
waiting time because there is no active treatment to wait for. In
fact, we previously trained the Bayesian network just with cases who
have observed waiting time (T_MDM_first_treatment) and that lead
to under-representation of the supportive care cases. We wanted to
include this set of patients because we consider that they are a group
who can benefit from counterfactual reasoning.

2.4 Counterfactual inferences

Counterfactual (“What if ”) inferences follow three steps,
which are known formally as Abduction, Action, and Prediction.

Abduction refers to the construction of a hypothetical
(“counterfactual”) situation that describes a specific scenario for that
particular patient. This allows us to preserve an individual case’s
bespoke profile. Technically, it is where the unobserved variables
(Us, Ut) come into play to “absorb” a state of virtual reality that
will represent a given patient. Action means to carry out (“do”) an
action such as imposing a specific value for one or more variables.
For example, we can change the waiting time for a treatment,
or we can change the treatment from non-specified to resection.
Technically, Action is based on the do-operator introduced by Pearl
and Mackenzie (2018). Finally, Prediction assumes that the Action
step has been effected and then calculates the posterior probabilities
for the target variable (e.g., survival time). This enables estimation
of the most likely outcome using the hypothetical situation created
in the Abduction step (Pearl and Mackenzie, 2018; Saha and
Garain, 2022).

Figure 1 is a schematic of the three-step process for
counterfactual inference and Table 2 shows the algorithm. We
assume that the unobserved variables Us andUt inAbduction range
from 1 to 12months since both are the parent nodes for time-related
variables. Since they are “unobserved”, there is no prior knowledge
about Us and Ut and so they are specified by uniform distributions.
We intervenewith a counterfactual (“what if ” question) (Compliance
= Yes, Treatment_grps = resection) during the Action step. The
quantity of interest we seek to compute is the posterior probability
for each level in the node Survival_fromMDM. Prediction is made
by obtaining the survival time that is the maximum likelihood (for
example, 25 months of 18.93% posterior probability).

The following three questions were formulated to illustrate these
applications of counterfactual reasoning:

1. What would the survival time be if the patient had been treated
in compliance with the guideline? SC (x)

2. What would the survival time be if the patient had to wait
longer to receive treatment? ST (x)

3. What would the survival time be had the patient been treated
with other treatment options? SY (x)

In these three questions S(x) stands for months of survival
after the multidisciplinary meeting assessed the case of patient
x. C stands for the binary: whether the HCC patient x was
or was not treated in compliance with the BCLC guideline.
T stands for the time between the multidisciplinary meeting
and the patient receiving their first treatment (i.e., the patient’s
waiting time). Y stands for the available treatment options. In
this particular dataset, Y includes liver resection, liver transplant,
transcatheter arterial chemoembolisation (TACE), selective
internal radiation therapy (SIRT), ablation, medical therapy,
supportive care.

3 Results

3.1 Pathway analysis

Figure 2 shows the results of pathway analysis. Overall, 160
(84%) of the 190 patients were not treated in strict compliance with
the BCLC HCC management guideline, leaving just 30 (16%) who
were. Of the 160 “non-compliant” cases, the decision point at which
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FIGURE 1
Schematic representation of performing counterfactual reasoning with Bayesian networks.

there was greatest departure from compliancewas at the second level
decision point, where 76 (of 78 cases)withBCLC=C didnot proceed
to medical therapy. The second largest number (n = 54) occur at

the first level decision point, PS = 0 to BCLC = 0. The remaining
non-compliant cases are not discussed further because of the small
numbers of patients in each case.
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TABLE 2 Algorithm for counterfactual inference.

Algorithm counterfactual inference

Abduction
 for i = 1, 2, 3, …,N
  infer P(Us,Ut |Xi = X

obs
i )

  Us′,Ut′⟵ P(Us, Ut|Xi = X
obs
i )

  return Us′,Ut′

 modify BN with Us′,Ut′

  BN′⟵ P(Xobs
i (Us′,Ut′))

  return BN′

Action
 intervene on BN′

  BNcounter⟵ BN′(do(Xj = X
unob
j ))

 return BNcounter

Predict
 quantity S(Xunob

j ) fromBNcounter

  S(Xunob
j ) ⟵ P(XiXj=X

unob
j
(Us′,Ut′))

 return S(Xunob
j )

3.2 Counterfactual inference for 10
selected cases

We selected 10 cases to illustrate counterfactual “what
if ” reasoning. The cases highlight where Bayesian network
counterfactual inference could add most to conventional use of
the BCLC treatment pathway. We identified 2 decision points that
corresponded to the greatest number of dis-concordance to the
BCLC recommended pathway. The first was from BCLC = C to
medical therapy, the other is from PS = 0 to BCLC = 0. Five cases
were randomly drawn from each of these two decision points.

Inmore detail, we chose 5 cases (Cases1 to 5) that were excluded
at the first decision point (PS= 0 to BCLC= 0).The remaining 5 cases
(Cases 6 to 10) were non-compliant at the second decision point
(BCLC = C to medical therapy). We performed BCLC-compliant
counterfactual treatment (as summarized in Table 3), which were
resection for Cases 1 to 5 and medical therapy for Cases 6 to 10
respectively. We find that in each of the ten cases, had the patient
been treated in strict compliance to the BCLC guideline, they would
have had a shorter survival time.

Additional counterfactual queries were developed for these 10
cases to take into consideration their demographic information and
waiting time. Table 4 summarizes the results. The rows that are
indicated with prime notation are the counterfactuals. In the right-
most column, cases 1, 2, 4, 6, 7, 9, 10 had better outcomes whereas
3, 5, and 8 did not.

3.3 Counterfactual inference for Case1 and
Case8

To illustrate how Bayesian network enable personalised
assessment we now examine counterfactual inference in Case 1
that became non-compliant at the first decision point. The original
profile of Case 1 was:

• C factual(Case1) = No – that is, Case1 was not treated in
compliance with the BCLC guideline.

• T factual(Case1) = 3months – that is, the waiting time for Case1
to receive treatment was 3 months.

• Y factual(Case1) = TACE – that is, the treatment that Case1
received was TACE.

• S factual(Case1) = 35months – that is, the survival time for Case1
was 35 months.

The three counterfactual queries we made for Case1
were as follows:

1. What would Case 1’s survival time have been be if he had
been treated in compliance with the guideline? We find that
SC=Yes (Case1) ≈ 25months (that is, 10 months less than the
actual survival time).

2. What would Case 1’s survival time have been if he had been
required to wait longer to receive treatment? We find that
ST=4 (Case1) ≈ 8months

3. What would Case1’s survival time have been had he received
other treatment options? We find:

SY=resection (Case1) ≈ 25months

SY=transplant(Case1) ≈ 11months

SY=ablation(Case1) ≈ 32months

SY=SIRT(Case1) ≈ 12month

SY=medical therapy(Case1) ≈ 17months

SY=supportivecare(Case1) ≈ 1month

Similarly, we examine Case 8 who was excluded during the
second decision point. The profile of Case 8 is as follows:

• C factual(Case8) = No – that is, Case 8 was not treated in
compliance to the BCLC guideline.

• T factual(Case8) = 4months – that is, the waiting time for Case 8
to receive treatment was 4 months.

• Y factual(Case8) = resection- that is, the treatment that Case 8
received was resection.

• S factual(Case8) = 25months - that is, the survival time for Case
8 was 25 months.

The counterfactual queries for Case 8 were as follows:

4. What would Case 8’s survival time have been be if he had
been treated in compliance with the guideline? We find that
SC=Yes (Case1) ≈ 17months (that is, 8 months less than the
actual survival time).

5. What would Case 8’s survival time have been if he had not
needed to wait as long to receive treatment? We find that
ST=3 (Case8) ≈ 31months

6. What would Case 8’s survival time have been had he received
other treatment options? We find:
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FIGURE 2
Results of pathway analysis mapping decision points (performance status, BCLC stage, and tumour size) according to the BCLC HCC management
guideline.

TABLE 3 Survival time comparison between actual treatment and
BCLC-compliant treatment.

Case Actual treatment BCLC-compliant
treatment

Case1 TACE (35 months) resection (25 months)

Case2 transplant (32 months) resection (25 months)

Case3 ablation (30 months) resection (25 months)

Case4 TACE (28 months) resection (25 months)

Case5 medical therapy (27 months) resection (25 months)

Case6 SIRT (29 months) medical therapy (17 months)

Case7 TACE (28 months) medical therapy (17 months)

Case8 resection (25 months) medical therapy (17 months)

Case9 supportive care (25 months) medical therapy (17 months)

Case10 ablation (23 months) medical therapy (17 months)

•Note that the waiting time are different between each patient but are kept the same within
the same patient’s actual and counterfactual queries.

SY=transplant(Case8) ≈ 11months

SY=ablation(Case8) ≈ 32months

SY=TACE (Case8) ≈ 31months

SY=SIRT(Case8) ≈ 12month

SY=medical therapy(Case8) ≈ 17months

SY=supportivecare(Case8) ≈ 1month

3.4 Validation

Bayesian networks comprise two parts: a graphical structure that
expresses the relationship between the relevant variables, and the
quantitative aspect, which includes the joint probability distributions.
In this case, the graphical structure was developed by way of
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consultations with the clinician (KH) and three senior scientists at
our institution. There was total agreement on the structure of the
network. As regards the quantitative aspect of the BN,we transformed
the trained network into a classifier and used receiver operator curve
analysis with a 70-30 train test split to assess accuracy. This yielded an
AUC = 0.64 for both the training and testing data.

4 Discussion

4.1 Pathway analysis

A remarkably large percentage (84%) of the 190 cases were not
treated strictly in concordance with the BCLC 2022 guidelines. One
may object that our analysis should have been based on BCLC 2018
guideline (Forner et al., 2018) since that is the version from which
the retrospective data were collected. In that case, metrics such as
solitary tumour size, PS, and BCLC staging have the same thresholds
as for the 2022 guideline. The key difference is that all these metrics
would be considered at the same decision point.Therefore, although
it would not affect the overall proportion of compliance and non-
compliance, it would reduce our ability to expand the decision points
into three levels and so would not enable us to understand which
decision point is ruling people out for eligible treatments.

4.2 Counterfactual inference for Case 1
and Case 8

At the time it was discovered, the solitary tumour size for
Case 1 was 2.8 cm and the diagnosis confirmed as BCLC stage
A and performance status 0. This patient could be treated with
resection according to the BCLC guideline. However, Case 1 is a
73-year-old male with non-alcoholic fatty liver disease (NAFLD)
and liver cirrhosis. An understandable and reasonable decision by
the clinician was to prescribe TACE. Yet, the clinician would (and,
to be in compliance with the Guideline should) reasonably ask “If
I were to treat this patient according to the guideline, would the
outcome be better?”

We observed that for Case 1, each of the three counterfactual
queries (except for being treated with supportive care) would
have resulted in a shorter survival time than that actually
achieved (35 months). This illustrates that despite not following
the management guideline, it is likely that the best decision was
made for Case1.

Case 8 is a male NAFLD patient aged 77. Demographically, Case
8 is similar to Case 1 though at the time the tumour was discovered,
its size was already 5.3 cm and his diagnosis confirmed as BCLC
stage C and performance status 1. According to the BCLC guideline,
this patient should have been treatedwithmedical therapy.However,
Case 8 did not present signs of liver cirrhosis. The clinician possibly
considered this fact and prescribed resection instead.

Counterfactual reasoning showed that had Case 8 been treated
with medical therapy, he would have had an 8-month shorter
survival time. Once again, despite not following the management
guideline, it is likely that a better decision was made for Case 8.

Counterfactual queries such as these are of particular value
during the multidisciplinary (tumour board) meetings because they

inform “what-if ” scenarios. Moreover, one can compute the joint
posterior probability of all these combined counterfactual situations
with the same Bayesian network model, for example:

SC=Yes,T=4,Y=resection(Case1) ≈ 25months

SC=Yes,T=3,Y=medical therapy(Case8) ≈ 27months

This machinery of counterfactual inference provides a scheme
for controlling known confounders and can be applied to enhance
trust and the performance of AI-supported decision systems (Saha
and Garain, 2022)

Interestingly, we note that had Case 8 been treated with
TACE (while keeping all other variables unchanged), he would
likely have had a longer survival time (31 months). As noted in
the introduction, increasing evidence has shown local regional
therapy such as TACE can be used as a curative treatment or
down-staging strategy (Horvat et al., 2022). Bayesian network
based counterfactual inference as developed in this work suggests
that it could, at the very least, flag an opportunity during the
multidisciplinary meeting which may otherwise be missed.

4.3 Counterfactual inference for 10
selected cases

Counterfactual inferences should be compared against the actual
case for an individual instead of aggregated summary because
each case would potentially have an alternative treatment that is
specific to their particular circumstances. We found that despite not
following the BCLC guideline, better decisions were made for all
cases. With further counterfactual inferences where we intervened
on both the waiting time (T_MDM_first_treatment) and treatment
option (Treatment_grps), we found that in 3 of the 10 cases there
could have been increased survival time, while 7 cases would have
shortened survival time had they been treated with these respective
counterfactual scenarios. The Bayesian network that we built is able
to infer both positive and negative outcomes.

One may also note that there will be situations where
counterfactual inference is not obtainable. In our example of HCC,
when a 40-year-old patient’s tumour is diagnosed at an early
stage (Size < 2 cm, BCLC = 0, PS = 0) and without signs of liver
cirrhosis, a clinician would likely not prescribe supportive care,
rather opt for resection.Therefore, the counterfactual inference with
the configuration (Size < 2 cm, BCLC = 0, PS = 0, Treatment_grps
= supportive care) will likely not be obtainable because it is rarely
presented in the parameter learning phase.

4.4 Discussion of assumptions

Due to the counterfactual nature where a potential outcome
is unobserved, it is challenging to verify our estimations of
counterfactual queries. In such situations, one would aim to
reduce, as much as possible, bias introduced into the system by
assessing the plausibility of assumptions made in the process of
constructing Bayesian networks for causal inference. Belowwe detail
the assumptions made and why in some cases those assumptions
would not be justified.
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TABLE 4 Further counterfactual inferences for 10 selected cases.

Case Age Sex Aetiology Cirrhosis Tumour
present
mode

Size PS BCLC
stage

Waiting
time

Treatment Survival
time

Case1 73 M NAFLD Yes incidental 21 0 A 3 TACE 35

Case1′ 4 resection 25

Case2 43 M ALD Yes surveillance 7 0 A 20 transplant 32

Case2′ 4 ablation 26

Case3 61 F HCV Yes surveillance 13 0 A 4 ablation 30

Case3′ 20 transplant 32

Case4 82 M NAFLD No symptomatic 18 0 A 11 TACE 28

Case4′ 7 SIRT 22

Case5 48 M HCV No surveillance 10 0 C 3 medical
therapy

27

Case5′ 6 TACE 31

Case6 72 M heamochro- No symptomatic 47 1 C 7 SIRT 29

Case6′ matosis 1 medical
therapy

17

Case7 78 F NAFLD Yes surveillance 17 2 C 7 TACE 28

Case7′ 4 ablation 26

Case8 77 M NAFLD No incidental 53 1 C 4 resection 25

Case8′ 3 TACE 31

Case9 73 M NAFLD Yes surveillance 6 2 C 2 supportive
care

25

Case9′ 3 SIRT 23

Case10 61 M ALD Yes surveillance 12 1 C 8 ablation 23

Case10′ 6 medical
therapy

17

1: Note that the counterfactual inference result for each case is labelled with a prime notation (′). Therefore, the variation of Case1 is labelled as Case1′.
2: Waiting time and Survival time are measured in month(s).
3: NAFLD: non-alcoholic fatty liver disease; ALD: alcoholic liver disease; HCV: hepatitis C virus; TACE: transcatheter arterial chemoembolisation; SIRT: selective internal radiation therapy.

In this study we assumed that the waiting time (T_MDM_first_
treatment) is independent of whether or not the patient will be
treated in compliance with the BCLC guideline (Compliance). In
other words, we assumed that there are no unobserved confounding
variables between these two metrics. In causal estimation, this
is often called the “ignorability assumption” (Feuerriegel et al.,
2024). More research on this point is needed because it
is possible that the decision to not treat in compliance
with the guideline is because local expertise in alternative
options is more readily available for the specific clinical site.
Consequently, the patient does not need to wait as long to receive
treatment.

Note also that in this study we did not specify unobserved
variables that influence the node Compliance and subsequently
Treatment_grps. This is because, as stated in (Saha and Garain,
2022), it is not required to know an intervened variable’s parent
nodes and corresponding noise variable (i.e., unobserved variable)
during abduction if we are given the observed value for the variable
to be intervened. Note that intervention here means the Action
step of counterfactual inference with do-operator. There could be
situations where obtaining the unobserved variable for Compliance
node is necessary. For example, if the waiting time (T_MDM_
first_treatment) and Compliance node are structurally connected
and we intervene solely on the T_MDM_first_treatment node, the
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state of unobserved variable for Compliance node is necessary for
counterfactual inference.

We also assume that the counterfactual outcome for the patient
to receive different treatment options is identifiable from the
population observational data. In causal estimation, this is called the
“identifiability assumption” (Feuerriegel et al., 2024). In a real clinical
setting, even though a clinician, considering a patient’s specific
circumstances, would not consider all seven possible treatment
options (in reality, two or three options is more likely), the ability
to estimate all potential treatment outcomes supports the choice
of treatment, including combination treatments. In the case of
HCC, tumour down-staging with TACE/SIRT following curative
resection is becoming more commonly used (Sangro and Salem,
2014). In our experience with this study, potential outcomes from
all treatment options can be identified from the Bayesian networks
with counterfactual reasoning. However, estimating the potential
outcome for SIRT was particularly challenging. This is primarily
because the SIRT option is under-represented in the training dataset
(collected in 2019), reflecting the fact that SIRT is a relatively recent
therapy option. As of the latest BCLC 2022 guideline, no-evidence
based recommendation is made for using SIRT for BCLC-B and C
category; as for BCLC-0 and BCLC-A category, SIRT can be used
when TACE is not available.

We also assume that the outcome (in this case survival time)
does not depend on the treatment assignment of other patients,
and there is no hidden variation in the effect of the treatment
across different settings or populations. This is called the “stable unit
treatment value assumption” (SUTVA) (Feuerriegel et al., 2024). The
former clause holds true because each patient is treated on a case-
by-case basis. As for the latter clause, we can only generally accept
that this assumption will hold because our study population were all
referred to the same centre, namely the Newcastle upon Tyne NHS
Trust and so the available expertise was likelymostly unchanged. For
most HCC therapies, the intent is to remove the tumour in a single
session. One can therefore consider 100% removal as a “stable unit”.
Indeed, it could be possible that the same procedure (e.g., resection)
performed by different surgeons on different patients could lead
to variation of treatment effects. In the case of medical therapy or
chemotherapy, where the anti-cancer effect is applied over time,
the unit of treatment value might not be considered stable. More
research is needed to consider this assumption.

Guidelines develop, often substantially, over time. Specifically,
there were substantial changes between BCLC 2022 and BCLC
2018. The major difference between them is that cancer staging,
performance status, and tumour size are considered at a single
timepoint in BCLC 2018; but in separate steps in BCLC 2022.
Applying ourmethod to BCLC 2018would impact the identification
of the point at which BCLC recommendations may need further
stratification. This would have impacted the choice of cases selected
for analysis, but not the overall thrust of the paper.

Finally, and technically, recall from Section 2.3 that we imposed
a smoothing prior weighting of 0.001. It is generally accepted
that a smoothing prior helps mitigate the “zero probability”
issue that derives from relatively small training sets. Nevertheless,
such smoothing priors intrinsically bias the joint probability
distributions. To assess the impact this may have in the current
application, we systematically varied the smoothing prior from0.001
to 1.0 while retaining the same training data.We found that themain

change was to the node Survival_from_MDM (i.e., survival time)
where the predicted survival times (months) became more equal to
each other. Conversely, when we reduced the smoothing prior from
0.001 by factors of 10 (0.0001, 0.00001, …) this made no change to
the associated distributions. For this reason, we chose 0.001, which
means that the training data (real-world data) is weighted as 99.9%.

4.5 Limitations

There is inevitably selection bias particularly due to the fact
that patients who are diagnosed with a liver tumour will almost
always receive treatment. As a result, we could not assume that for
each possible combination of patient characteristics, we can observe
both treated and untreated patients [this is called the “positivity
assumption” (Feuerriegel et al., 2024)]. On the other hand, our
training data could exhibit zero conditional probabilities for certain
combination of patient characteristics, treatments, and survivals.
This actually reflects the difficulties of clinical data gathering rather
than there being no chance of a certain situation happening. To
mitigate such scenario of “zero-probability” (Needham et al., 2007)
and enable counterfactual inference, we applied a smoothing prior.
In particular, we chose a low weighting (0.001) to reduce the bias
by giving the actual training dataset a relatively 1000 times more
importance than the artificial prior. This choice is arbitrary, and we
appreciate the fact that this can still introduce bias. Therefore, for
each counterfactual query, we explicitly specify themost appropriate
alternative treatment option that is largely agreed clinically. Further
research can adopted propensity score matching to tackle the
positivity assumption and mitigate for the necessity of priors.

This study is based on a sample size (n = 190) and 62% of the
missing values for T_MDM_first_treatment (i.e., patient’s waiting
time) were imputed. From a machine learning point of view, 190
would be considered tiny; but from the standpoint of clinical
practice in primary liver cancer it is substantial. When imputing
the missing values for patient’s waiting time, we assumed that the
missing values can be estimated from observational data (this is
called the missing-at-random assumption) (Daly et al., 2011). We
use Bayesian exact inference to account for the influence from both
the nodes Treatment_grps and Survival_fromMDM. This way the
imputed values likely sit between the possible range in our training
data, more closely reflecting reality. Even at first-rate clinics, it is
inevitable that there are missing values and there could be deeper
reasons as to why patient’s waiting time tend to be omitted for
recording, which is an issue that is not likely to be improved until
systematic change at the institutions. In this study, we had to work
with what was available. We are currently developing a project that
has almost 5 times as many patients, and more outcome values (e.g.,
progression free survival, time to recurrence).Thiswill both enable a
comparison against the current pilot study and improve confidence
in such a methodology.

Abduction is a process to allow personalized scenarios to be
preserved. Mathematically, this is done by introducing unobserved
variables to temporarily “absorb” a certain joint probability
distribution for an individual case. When proceeding to the action
step with counterfactual evidence, we sample on this “newly
absorbed distribution” and calculate posterior probabilities for
the outcome node. In this study, we introduced two unobserved
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variables (Us, Ut). Note that Us and Ut are “unobserved” but “not
latent”, meaning that they are not just random variables, but we have
a certain expectation on their effects of Survival_fromMDM and T_
MDM_first_treatment. It is perhaps more suitable to describe Us and
Ut as “class of unobserved variables” so the probability they represent
is joint probability distributions of the class of unobserved variables.
Because there could likely be many factors influencing the survival
and waiting time, inference can quickly become complicated, which
is why currently we assume uniform distributions for both Us and
Ut. Our future studies will aim to expand the Bayesian network
by collecting more influencing and outcome metrics and explicitly
specify values during the abduction phase.

Finally, the data used in this study comes from a single
clinical site. Nevertheless, the methodology outlined in this paper
is generally applicable both to other HCC clinical sites and to other
pathologies. As well, combining data from a plurality of sites would
further reduce the impacts of other assumptions, for example, the
specific value of the smoothing prior. We would always expect
centre-specific practices to influence the results of counterfactual
reasoning. This is also why we explain where the stable unit
treatment value assumption (SUTVA) could be implausible. An
example could bewhere one centre can access the latest development
of selected internal radiation therapy (SIRT), the treatment effect
will be different from the centre where SIRT is less accessible, which
is currently what we observed from the Newcastle dataset.

4.6 Clinical Significance

We stress that this study is not intended as a criticism of
clinicians! Quite the contrary, the study further emphasises the
complexity of real-world clinical decision making and reflects the
nuances that clinicians face daily regarding treatment decisions. As
seen from the pathway analysis, a larger proportion of patients did
not fall into the treatment trajectory of the BCLC guideline. This
is usually not a problem unless allegations of clinical negligence
occur. Instead of passively hoping such events do not happen, this
study attempts to actively demonstrate the possibility of supporting a
clinician’s judgement on potential outcomes by using counterfactual
analysis. Additionally, we identified two decision points that exclude
a large number of patients (PS = 0 to BCLC = 0) and (BCLC = C
to medical therapy). This highlights the need for further or more
flexible stratification strategies. To our knowledge, this study is the
first that demonstrates specific counterfactual reasonings for HCC
population in those cases.

5 Conclusion

This study illustrates counterfactual inference of individual
treatment effects for a group of HCC patients based on real-world
data and the current BCLC guideline. Tools such as Bayesian
networks can be used to support treatment decisions and potentially
serve as an intermediate judgment device when there is need for
more flexible stratification of patient populations. Ourmethodology
is broadly generalizable, in particular to areas of clinicalmedicine for
which there are multiple treatment options, and which are subject to
internationally agreed treatment guidelines.
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