
TYPE Methods
PUBLISHED 04 September 2025
DOI 10.3389/fbinf.2025.1577324

OPEN ACCESS

EDITED BY

Kang Ning,
Huazhong University of Science and
Technology, China

REVIEWED BY

Bo-Wei Zhao,
Zhejiang University, China
Osman Ali Sadek Ibrahim,
Minia University, Egypt
Alok Misra,
Lovely Professional University, Phagwara,
Punjab, India

*CORRESPONDENCE

Anas Al-okaily ,
aa.12682@khcc.jo 

RECEIVED 15 February 2025
ACCEPTED 07 August 2025
PUBLISHED 04 September 2025

CITATION

Al-okaily A and Tbakhi A (2025) A novel linear
indexing method for strings under all internal
nodes in a suffix tree.
Front. Bioinform. 5:1577324.
doi: 10.3389/fbinf.2025.1577324

COPYRIGHT

© 2025 Al-okaily and Tbakhi. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

A novel linear indexing method
for strings under all internal
nodes in a suffix tree

Anas Al-okaily1* and Abdelghani Tbakhi2

1Department of Cell Therapy and Applied Genomics, King Hussein Cancer Center, Amman, Jordan,
2Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada

Suffix trees are fundamental data structures in stringology and have wide
applications across various domains. In this work, we propose two linear-time
algorithms for indexing strings under each internal node in a suffix tree while
preserving the ability to track similarities and redundancies across different
internal nodes. This is achieved through a novel tree structure derived from
the suffix tree, along with new indexing concepts. The resulting indexes offer
practical solutions in several areas, including DNA sequence analysis and
approximate pattern matching.

KEYWORDS

suffix trees, strings indexing, approximate pattern matching, reads alignment, motif
search

1 Introduction

Numerous string-processing problems arise in several scientific fields, including biology
and medicine. These problems include exact and approximate pattern matching, motif
search, lowest common ancestor queries, and the detection of tandem repeats.The inputs for
such problems can range from small documents and databases toDNA sequences and large-
scale corporate data. To address string problemsmore efficiently, several data structures have
been designed and are commonly used, including suffix trees (Weiner, 1973; McCreight,
1976; Ukkonen, 1995), suffix arrays (Abouelhoda et al., 2004), and the FM-index (Ferragina
and Manzini, 2000).

Constructing suffix trees, suffix arrays, and FM-indexes can all be achieved in linear
time and space. Although building suffix trees incurs a higher constant-factor overhead
than building suffix arrays and FM-indexes, their structure is more flexible and dynamic.
This flexibility arises from the ability of suffix trees to identify systematic redundancies
among the suffixes in the input data—capabilities not offered by suffix arrays or FM-
indexes. For instance, suffix trees make it easy to observe that a subtree rooted at an
internal node is isomorphic or partially isomorphic to subtrees rooted at other internal
nodes. Such structural observations are not possible with suffix arrays or FM-indexes.
Once these redundancies are identified and abstracted, complex string problems can be
solved more efficiently than using suffix arrays, FM-indexes, or even the standard suffix tree
representation.

Frontiers in Bioinformatics 01 frontiersin.org

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org/journals/bioinformatics#editorial-board
https://doi.org/10.3389/fbinf.2025.1577324
https://crossmark.crossref.org/dialog/?doi=10.3389/fbinf.2025.1577324&domain=pdf&date_stamp=2025-09-01
mailto:aa.12682@khcc.jo 
mailto:aa.12682@khcc.jo 
https://doi.org/10.3389/fbinf.2025.1577324
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1577324/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1577324/full
https://www.frontiersin.org/articles/10.3389/fbinf.2025.1577324/full
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Al-okaily and Tbakhi 10.3389/fbinf.2025.1577324

In this work, we introduce two algorithms that index strings
under all internal nodes in suffix trees in linear time and space.

2 Methods

Let T be a text of length n derived from an alphabet of size Σ. Let
ST be the suffix tree ofT. Let h be the height of ST, i.e., themaximum
number of nodes between the root node and an internal node.
For any internal node x in ST, we define the following functions:
Depth(x) denotes the depth of node x, i.e., the sum of the lengths
of all edges between the root of ST and node x; SL(x) denotes the
node to which the suffix link of node x points; SLS(x) denotes the
set of nodes whose suffix links point to node x (note that for any
internal node, the size of this set is up to Σ); and Leaves(x) denotes
the set of leaf nodes in the subtree rooted at node x. For any leaf
node l in ST, Su f fix_Index(l) denotes the suffix index (set during the
construction of ST) labeled at leaf node l (if the suffix index labeled
at l is i, for instance, then the label of the edges from the root node
to l represents the ith suffix in T).

Definition 1: Let x be an internal node, and let S(x) be the set of
suffix indexes, based on T, labeled at each leaf node under x in ST,
i.e., S(x) = {Su f fix_Index(l) ∣ l ∈ Leaves(x)}. Then, the suffixes under
node x, denoted as SU(x), are the suffix indexes in T that start from
node x, i.e., SU(x) = {Depth(x) + Su f fix_Index(l) ∣ l ∈ Leaves(x)}.

As an example, the S list of node 20 in Figure 1 is {9,13,4};
therefore, SU(20) = {12,16,7} since the Depth of node 20 is 3.

Observe the following properties:

• If SL(a) = b, then SU(a) ⊆ SU(b). This implies that any
processing or indexing assigned to suffixes in SU(a) can be

implicitly applied to the same suffixes that are (and must be)
in SU(b).
• In order to achieve the above point, nodes in SLS(x) must be

indexed or processed before x itself (which means that a post-
order traversal is required).
• The set of suffixes that eventually need to be indexed under

node x is the set of suffixes under node x minus the set of all
suffixes under each node with a suffix link pointing to x, i.e.,
SU(x) − (⋃n∈SLS(x)SU(n)).
• The indexing process must recursively traverse the suffix links

in ST.

Therefore, to compute this indexing scheme and traverse the
suffix links recursively, the following tree structuremust be designed
and constructed.

2.1 Okaily-Sheehy-Huang-Rajasekaran
(OSHR) tree structure

Given ST, the structure of the OSHR tree is defined
as follows (the acronym “OSHR” is explained in the
Acknowledgments section):

• The root node is the root of ST.
• There is a directed edge from node a to node b if SL(b) = a. For

example, under the OSHR tree structure, node 25 must have a
directed edge to node 14 since there is a suffix link from node
14 to node 25.
• A leaf node in the OSHR tree structure is any internal node
v in the ST structure for which SLS(v) = ∅; that is, v has no
incoming suffix link (for example, node 14 in Figure 1).

FIGURE 1
This diagram visualizes a suffix tree constructed from a string AGCCTAATTTAACTAAG$ using https://hwv.dk/st/?AGCATAATTTAACTAAG$. Each node is
annotated with a unique identifier enclosed in a circle for ease of reference. The edges between nodes are labeled with substrings that represent
segments of the original string along distinct suffix paths. Leaf nodes—those without children—are marked with red integers, indicating the starting
positions (suffix indexes) of the corresponding suffixes in the original string. Green dotted arrows denote suffix links, which connect internal nodes
according to standard suffix tree construction rules.

Frontiers in Bioinformatics 02 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1577324
https://hwv.dk/st/?AGCATAATTTAACTAAG
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Al-okaily and Tbakhi 10.3389/fbinf.2025.1577324

• An internal node in the OSHR tree structure is any internal
node v in the ST structure for which SLS(v) ≠ ∅; that
is, v has at least one incoming suffix link (for example,
node 25 in Figure 1).
• The children of an internal node v are the nodes in SLS(v).

For example, the children of node 26 (SLS(26)) in Figure 1 are
{node 15, node 21}.
• Edges have no labels.
• Leaf nodes under the ST structure are not included in the
OSHR tree structure.

The directed edges in the OSHR tree, which are the reverse
of suffix links, correspond to a simplified form of Weiner
links in ST (as defined by Wellnitz (2021), Apostolico and
Cunial (2014), Belazzougui et al. (2020). Due to the construction
properties of ST and its suffix links, the OSHR tree forms a directed
acyclic graph. The construction of the OSHR tree is carried out by
traversing ST, and at each visited internal node v, a list called SLS
is created at node SL(v) if it does not already exist, and v is then
appended to this list. Clearly, the space and time complexities of
building OSHR trees are both linear, O(Σn), and this structure can
be constructed either implicitly (within the ST) or explicitly (as a
separate tree structure).

TheOSHR tree differs from the suffix-tour graph (Starikovskaya
and Vildhøj., 2015) and the suffix link tree (Starikovskaya and
Vildhøj., 2015); (Apostolico and Cunial., 2014); (Belazzougui et al.,
2020). Unlike the suffix-tour graph, the OSHR structure is acyclic.
Compared to the suffix link tree, the edges in the OSHR tree are
unlabeled, they do not include the leaf nodes of ST, and its leaf
nodes correspond to internal nodes in ST that have no incoming
suffix links.

2.2 Okaily-Tbakhi (OT) indexing

To identify all similarities and redundancies of strings under
different internal nodes in an ST, a post-order traversal of theOSHR
tree is required, during which both the ST and the OSHR tree
structures are utilized.

Definition 2: We denote those strings, such as suffixes defined in
the SU() function, that are present under node x (in the structure
of ST) but not under any of the nodes in SLS(x) as the Base Strings
for node x or BS(x). Here, SLS(x) refers to the child nodes of x in the
OSHR tree structure. The term “base” indicates that this is the first
occurrence of the string under an internal node during a post-order
traversal of the OSHR tree.

The types of strings considered under each internal node x can
vary. These may include the following:

• The set of suffixes under x (SU(x) as defined earlier). In this
context, base strings are referred to as base suffixes.
• Substrings that label paths from x to each of its descendant

internal nodes, defined as PU(x). In this context, base strings
are referred to as base paths.
• Specific subsets of strings.
• Strings of particular lengths

Definition 3:OT indexing (orOTprocessing) refers to the process
of indexing or processing strings under each internal node (based

on the ST structure, denoted as node x) via a post-order traversal
of the OSHR tree while avoiding the re-indexing of the same strings
that have already been indexed or processed under any of the SLS(x)
nodes (i.e., indexing only BS(x)).

As a simple example, consider the task of performing OT
indexing on the suffixes under each internal node (the set of suffixes
as defined by function SU()) in the ST shown in Figure 1. Let us
describe the OT indexing process for a subset of nodes, namely,
nodes 15, 21, and 26 (noting that node 26 is the parent node of
nodes 15 and 21 under the OSHR tree structure). Before beginning
the post-order traversal on the OSHR tree, initialize a global list
calledOT_index, whichwill store theOT index values for the suffixes
under all internal nodes in ST. Now, we proceed as follows:

• Node 15:
Since SU(15) = {5,8} (suffix 5 corresponds to

AATTTAACTAAG$, and suffix 8 to TTAACTAAG$) and the
base suffixes at this node are also {5,8}, append 5 and 8 to
OT_index (so OT_index is now equal to {5,8}). Next, create
two attributes associated with node 15: Le ft_OT_index =
0 and Right_OT_index = 1, which correspond to the offset
positions of the suffixes in the OT_index list (the suffixes
for any internal node must be next to each other in the
OT_index list due to the post-order traversal and the fact
that (⋃n∈SLS(x)SU(n)) ⊆ SU(x)).
• Node 21:

At this node, SU(21) = {9,10} (suffix 9 corresponds
to TAACTAAG$ and suffix 10 to AACTAAG$), and
the base suffixes are again {9,10}, so append them to
OT_index (now OT_index = {5,8,9,10}). Then, create and set
Le ft_OT_index = 2 and Right_OT_index = 3 for node 21.
• Node 26:

For this node, SU(26) = {5,8,9,10,14} and the base suffixes
are {14} (suffix 14 corresponds to AAG$). So, the suffix that
now requires indexing is suffix 14 as the others were already
indexed during the OT indexing process of nodes 15 and 21.
Therefore, append 14 to OT_index (OT_index is now equal
to {5,8,9,10,14}). Next, create and set Le ft_OT_index = 0 and
Right_OT_index = 4 at node 26. This example illustrates how
all suffixes under node 26 can be indexed throughOT indexing
without explicitly indexing each one of them.

The second part of this work introduces the concepts of base
suffixes and base paths and proposes both linear and nonlinear
algorithms to identify them under each internal node in the ST.

2.3 Base suffixes

We begin by defining base suffixes and then describe linear and
nonlinear algorithms for finding base suffixes under each internal
node in the ST.

Definition 4: A base suffix is a suffix that occurs under an internal
node in the ST structure, denoted as node x, and does not occur
under any of the nodes in SLS(x) (the child nodes of node x in the
OSHR tree structure). Thus, the set of base suffixes under node x
(base suffixes for node x or BS(x)) is the set SU(x) − (⋃n∈SLS(x)SU(n)).
If x is an OSHR leaf node, i.e., SLS(x) = ∅, then all suffixes under x
are base suffixes.

Frontiers in Bioinformatics 03 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1577324
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Al-okaily and Tbakhi 10.3389/fbinf.2025.1577324

Algorithm 1. Non-Trivial algorithm for identifying base suffixes.

The examples from Figure 1 help illustrate the concept of base
suffix. The base suffixes for node 26 are the set 14 (base suffix
14 corresponds to AAG$). The base suffixes for node 23 are {11,
15, 6, 1, 4} (base suffix 11 corresponds to ACTAAG$, 15 to AG$,
6 to ATTTAACTAAG$, 1 to GCATAATTTAACTAAG$, and 4 to
TAATTTAACTAAG$). Because node 20 has no incoming suffix links
(SLS(20) = ∅), all suffixes under it are base suffixes, namely, {12,
16, 7} (base suffix 12 corresponds to CTAAG$, 16 to G$, and 7 to
TTTAACTAAG$). Node 12 has no base suffixes as all suffixes under
it are already covered under nodes of SLS(12) (SLS(12) = {node20}).

Definition 5: If bs is a base suffix under node x, then the extended
suffixes of bs are all suffixes identical to bs that occur under each
ancestor of x (where ancestry is defined according to the OSHR tree
structure).

For example, suffix 8 is a base suffix for node 15 (corresponds
to TTAACTAAG$, starting from node 15 and ending at leaf node
6). The extended suffixes corresponding to this base suffix are the
occurrences of TTAACTAAG$ under node 26 (ending at leaf node
11) and under the root node (ending at leaf node 10).

Observation 1: Based on definitions 4 and 5, the upper bound
on the number of extended suffixes for any base suffix isO(h), where
the last extended suffix of any base suffix is the one occurring under
the root node.

Observation 2: Based on definitions 4 and 5 and Observation 1,
the base suffixes under all internal nodes in ST must be n distinct
integers ranging from 0 to n− 1 (i.e., indexes of all suffixes in T).

In the example provided in Section 2.2, once the traversal
reaches the root node, the OT_index list will encompass all n base
suffixes, ordered as identified through the post-order traversal of the
OSHR tree. Consequently, the root nodemust have a Le ft_OT_index
of 0 and a Right_OT_index of n− 1.

Therefore, once a base suffix is processed or indexed, this
processing or indexing can be applied implicitly to allO(h) extended
suffixes throughout the post-order traversal of the OSHR tree. So,
what will be processed or indexed explicitly is each of the n base
suffixes. As a result, OT indexing or processing of all suffixes under
all internal nodes in the ST can be achieved with a complexity factor
of n.

2.3.1 Finding base suffixes
To find base suffixes under each internal node in ST, we present

four approaches: a trivial algorithm with O(nh) complexity, a non-
trivial algorithm with O(nh) complexity but more time-efficient
than the trivial algorithm, a second non-trivial algorithm with
O(nh log2Σ) complexity, and, finally, a linear algorithm.

Trivially, all base suffixes under each internal node can be
identified using the following algorithm. Build the OSHR tree (to
mainly generate the SLS lists for each internal node). Next, traverse

Algorithm 2. Non-Trivial algorithm for identifying base suffixes.

Algorithm 3. Linear algorithm for finding base suffixes.

theOSHR or ST tree where at each visited node v: create a hash table
for the set ⋃n∈SLS(v)SU(n); then, check whether each suffix in SU(v)
exists in the hash table; if not, then that suffix is considered a base
suffix for (under) node v. The cost of this algorithm is O(nh).

GivenObservation 2, the following non-trivial algorithm, which
requires auxiliary O(n) space (for a hash table named H), will cost
O(nh) but is clearly more time-efficient than the trivial algorithm.
The algorithm is stated inAlgorithm 1. Briefly, during the post-order
traversal of the OSHR tree, check at each visited internal node v
whether each suffix in SU(v) is already in H; if not, then it is a base

Frontiers in Bioinformatics 04 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1577324
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Al-okaily and Tbakhi 10.3389/fbinf.2025.1577324

suffix for (under) node v and add this base suffix (as a number) into
H.

The second non-trivial algorithm achieves O(nh log2Σ) time
complexity using O(n) auxiliary space, as shown in Algorithm 2.
After building the OSHR tree, traverse the OSHR or ST tree, and at
each visited node v: loop through each leaf node (let the leaf node be
l) under node v, then check whether the leaf node labeled with suffix
index equal to Su f fix_Index(l) − 1 is a descendant node under any
node in SLS(v); if not, then that suffix is considered a base suffix for
(under) node v. In the naive approach, the cost of checking whether
node l is a descendant node under any node in SLS(v) is O(Σ) as the
upper bound for the SLS() list for any internal node is Σ, but with a
simple trick (which was also implemented), the cost can be reduced
to O(log2Σ).

The linear algorithm was motivated by Observation 2. As the
total number of base suffixes across all internal nodes in ST is equal
to n, if each base suffix can be found in constant time, the total cost
will be O(n). To achieve this, two definitions must be introduced.

Definition 6: Let A be a leaf node in ST with suffix index x and
B be the parent of A. Let C be the leaf node with suffix index x+ 1
and D be the parent of C. If SL(B) ≠ D, we call each node between C
and D an inbetween node for A, and we call A a reference leaf node
for each of those inbetween nodes.

As shown in Figure 1, node 6 is a reference leaf node for node 21
and node 21 is an inbetween node for node 6.

Note that a reference leaf node can be associated with O(h)
inbetween node, and an inbetween node can correspond to O(Σ)
reference leaf nodes. Additionally, the total number of reference leaf
nodes across all internal nodes in ST is much fewer than n.

Definition 7: Let A be an internal node in ST, with parent B. Let
SL(A) = C, and let D be the parent of C. If SL(B) ≠ D, we call each
node between C and D an inbetween node for A, and we call A a
reference internal node for each of those inbetween nodes.

As illustrated in Figure 1, node 20 is a reference internal node
for node 23 and node 23 is an inbetween node for node 20.

A reference internal node may have O(h) inbetween nodes,
and an inbetween node can correspond to O(Σ) reference internal
nodes. Moreover, an inbetween node may be associated with O(Σ)
reference leaf nodes and O(Σ) reference internal nodes. Finally, the
total number of reference internal nodes across all internal nodes in
ST is much fewer than n.

The linear algorithm derives and identifies each base suffix in
constant time using the inbetween nodes, reference leaf nodes, and
reference internal nodes as stated in Algorithm 3. Since the upper
bound on the number of reference leaf nodes and reference internal
nodes is O(Σ) for any internal node (most internal nodes are not
inbetween nodes), the cost for finding these nodes is O(Σn). In
addition, computing each of the n base suffixes has a cost of O(1),
as shown in Algorithm 3. Therefore, the total cost is O(Σn).

Theorem 1. Finding all base suffixes under all internal nodes in
a ST can be achieved in linear time and space (O(Σn)).

Once the base suffixes have been identified for each internal
node in an ST in linear time, let us OT index the n base suffixes
using an indexing operation P, where the cost of P is p; then, the total
cost for OT indexing all n base suffixes will be O(pn). Since the OT
indexing process of each base suffix will be implicitly applied to each
of its O(h) extended suffixes, then the total cost of applying process

Algorithm 4. Non-trivial algorithm for finding base paths.

P to all suffixes under all internal nodes in an ST is also O(pn) (as
opposed to O(pnh)).

After finding the base suffixes under all internal nodes in an
ST in linear time, several applications become feasible, particularly
when combined with OT indexing. One such application is
illustrated by the following example.

Let the OT indexing of the base suffixes in an ST be applied to
solve the problem of exact patternmatching (which is a fundamental
problem in biological applications such as read alignment, motif
search, and genome annotation). Suppose there is a pattern that
exactly matches one of the base suffixes under some node v. In this
case, the final OT index (constructed across the entire ST) can be
used to determine that the pattern has an exact match under node v
(thematching here is with the base suffix itself) and also under every
ancestor node of v (with ancestry based on theOSHR tree structure),
where the pattern’s exact match corresponds to the extended suffix
(of the base suffix) under each ancestor node. This is achieved by
explicitly applying OT indexing only on the base suffix under node
v, while the extended suffixes under the ancestor nodes of v are
implicitlyOT-indexed through the post-order traversal of theOSHR
tree (as described in the OT indexing example).

2.4 Base paths

The motivation for this indexing approach arises from the
following observations. First, the primary source of complexity in
a tree structure lies in the branching caused by internal nodes.
Second, the tails of suffixes (i.e., the labels between a leaf node and its
parent) are often very long,making their processing computationally
expensive. Third, if a process reaches an internal node whose
children are all leaf nodes, the computational cost for handling
these leaves is bounded by the alphabet size Σ. Consequently,
instead of explicitly indexing or processing the full suffix tails,
it is generally sufficient (and more efficient) to process only the
labels along the paths connecting internal nodes to their descendant
internal nodes.

Next, we define the concept of base paths and present algorithms
for identifying base paths under each internal node in an ST, with
both linear and nonlinear costs.

Frontiers in Bioinformatics 05 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1577324
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Al-okaily and Tbakhi 10.3389/fbinf.2025.1577324

Algorithm 5. Linear algorithm for finding base paths.

Definition 8: Let x be an internal node, and let PU(x) be the set
of internal descendant nodes under x in an ST. A base path is a path
between two internal nodes, for example, nodes A and B, such that
this path does not occur between two other internal nodes C and
D, where SL(C) = A, SL(D) = B, and D is a descendant node of C.
Thus, the set of base paths under node x (base paths for node x
or BP(x)) is the set {PU(x) − {SL(x) ∣ x ∈ ⋃n∈SLS(x)PU(n)}}. Note that
if an internal node x is an OSHR leaf node (SLS(x) = ∅), then all
the paths between the node and its descendant internal nodes are
base paths. If the path between node A and node B is a base path,
then node A is called the top base node and node B is the bottom
base node.

For example, in Figure 1 (noting that the T string for the suffix
tree is relatively short), the set of base paths under node 23 is {node
12, node 14}. Similarly, for node 26, it is {node 20, node 21}. For the
root node, the set is {node 14, node 15, node 24, node 20, node 21}.

Definition 9: If bp is a base path between a top base node A
and a bottom base node B, then the path between node SL(A) and
node SL(B) is called an extended path of bp.This relationship extends
recursively to all paths between the ancestor nodes of A and the
ancestor nodes of B in the OSHR tree structure via suffix links.

For instance, the path between the root and node 25 is an
extended path of the base path between nodes 23 and 14.

Observation 3: Based on definitions 8 and 9, the upper bound
on the number of extended paths for any base path is O(h), where
the last extended path for bp is the one whose top base node is
the root node.

Observation 4: Based on definitions 8 and 9 and Observation 3,
any path from the root node to an internal node can be the final
extended path of a base path; hence, the total number of base paths
is bounded by Σn.

2.6 Finding base paths

All base paths in an ST can be identified using a straightforward
(trivial) algorithmwith time complexityO(nh), described as follows.

The algorithm starts by building the OSHR tree, followed by a
post-order traversal of theOSHR tree or ST. At each visited node v, it
constructs a hash table containing the set SL(x) ∣ x ∈ ⋃n∈SLS(x)PU(n).
Then, for each descendant internal node d under v, if d is not in the
hash table, the path between v and d is identified as a base path. In
contrast, this work introduces a non-trivial algorithm that improves
upon the trivial algorithm, with a time complexity of O(nhΣlog2Σ),
and a linear algorithm with both time and space complexity of
O(Σn).

Algorithm 4, which is analogous to Algorithm 2, can find
base paths under all internal nodes with a time complexity of
O(nhΣlog2Σ) and a space complexity ofO(Σn). The algorithm starts
by building theOSHR tree and traverses theOSHR tree or ST, and at
each visited node v: traverse each descendant internal node under v
(say, node d) and check whether any node in SLS(d) is a descendant
of any node in SLS(v); if not, the path between v and d is a base path.
This check has aworst-case cost ofO(Σ2) as themaximum size of any
SLS set is Σ, but with a simple trick (which was also implemented),
the cost can be reduced to O(Σlog2Σ).

Since the total number of base paths is no more than Σn
as given in Observation 4 and if the time cost for finding each
base path is constant, all base paths can be found in linear time
and space, O(Σn). This is precisely what Algorithm 5 achieves by
leveraging the properties of the OSHR tree and reference internal
nodes (Definition 7).

Theorem 2: All base paths under all internal nodes in an ST can
be found in linear time and space O(Σn).

Once base paths are computed for each internal node in an ST,
any index or process P with cost p applied to a base path t under
an internal node will implicitly apply to the O(h) extended paths of
t. Therefore, the total cost of applying process P for all paths under
all internal nodes in an ST will be proportional to n, costing O(np)
instead of O(phn).

The following is an example of OT indexing base paths. Let the
OT index be constructed to resolve the pattern matching problem,
as discussed in the example at the end of Section 2.3.1, where the
pattern here is an exact match of one of the base paths under node
v. Then, the OT index (constructed across the entire ST) can be
used to determine that the pattern has an exact match under node
v (here, the matching is with the base path itself) and also under
every ancestor node of v (the ancestry is based on the OSHR tree
structure), where the exact match is the extended path (of the base
path) under each ancestor node.

3 Results

To assess the correctness and effectiveness of the proposed
algorithms, we evaluated them on the genomes of the following
organisms, with genome sizes ranging from ∼1 Mb to ∼100 MB):
WS1 bacterium JGI 0000059-K21 (bacteria, 0.5 MB), Astrammina
rara (protist, 1.5 MB), Nosema ceranae (fungus, 5.5 MB),
Cryptosporidium parvum Iowa II (protist, 8.8 MB), Spironucleus
salmonicida (protist, 12.5 MB), Tieghemostelium lacteum (protist,
22.8 MB), Fusarium graminearum PH-1 (fungus, 35.5 MB),
Salpingoeca rosetta (protist, 54 MB), and Chondrus crispus
(Algae, 102.5 MB).

Frontiers in Bioinformatics 06 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1577324
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Al-okaily and Tbakhi 10.3389/fbinf.2025.1577324

T
A
B
LE

1
R
es
u
lt
s
fr
o
m

th
e
ev

al
u
at
io
n
an

d
co

m
p
ar
is
o
n
o
f
al
g
o
ri
th
m
s
1
an

d
3
(f
o
r
b
as
e
su

ffi
x
id
en

ti
fi
ca

ti
o
n
)a

n
d
al
g
o
ri
th
m
s
4
an

d
5
(f
o
r
b
as
e
p
at
h
id
en

ti
fi
ca

ti
o
n
).

G
e
n
o
m
e

W
S1

b
ac

te
ri
u
m

A
st
ra
m
m
in
a

N
o
se
m
a

C
ry
p
to
sp

o
ri
d
iu
m

Sp
ir
o
n
u
cl
e
u
s

T
ie
g
h
e
m
o
st
e
liu

m
Fu

sa
ri
u
m

Sa
lp
in
g
o
e
ca

C
h
o
n
d
ru
s

G
en

Ba
nk

ac
ce

ss
io

n
no

.
G
C
A
00

03
98

60
5.
1

G
C
A
00

02
11

35
5.
2

G
C
A
00

09
88

16
5.
1

G
C
A
00

01
65

34
5.
1

G
C
A
00

04
97

12
5.
1

G
C
A
00

16
06

15
5.
1

G
C
F0

00
24

01
35

.3
G
C
A
00

01
88

69
5.
1

G
C
A
00

03
50

22
5.
2

N
o.

of
al
ph

ab
et
s

5
5

4
15

5
4

5
5

5

N
o.

of
nu

cl
eo

tid
e/

le
af

no
de

s

50
9,
55

2
1,
45

0,
09

6
5,
69

0,
74

9
9,
10

2,
32

5
12

,9
54

,5
89

23
,3
75

,6
63

36
,4
58

,0
47

55
,4
40

,3
10

10
4,
98

0,
42

1

N
o.

of
in

te
rn

al
no

de
s

32
8,
91

7
92

6,
08

7
3,
84

9,
88

0
5,
93

1,
18

1
8,
68

4,
51

4
15

,6
06

,2
21

22
,9
72

,0
65

37
,4
80

,7
99

81
,9
09

,2
52

N
o.

of
O
SH

R
le
af

no
de

s
13

2,
77

4
38

0,
51

8
1,
35

3,
28

9
2,
32

8,
48

0
3,
12

7,
03

1
5,
74

0,
80

7
9,
80

0,
38

5
11

,5
45

,0
32

15
,3
07

,9
82

N
o.

of
O
SH

R
in

te
rn

al
no

de
s

19
6,
14

3
54

5,
56

9
2,
49

6,
59

1
3,
60

2,
70

1
5,
55

7,
48

3
9,
86

5,
41

4
13

,1
71

,6
80

25
,9
35

,7
67

66
,6
01

,2
70

A
lg
or

ith
m

1
(t
im

e
co

m
pl

ex
ity

/s
ec

)

2,
40

9,
86

7/
3

6,
83

8,
68

4/
9

26
,5
49

,8
91

/3
7

42
,9
89

,3
15

/6
1

60
,2
12

,7
75

/9
2

10
9,
64

1,
90

1/
17

2
17

2,
75

1,
17

2/
27

8
25

0,
96

9,
52

3/
44

6
45

7,
34

8,
51

1/
98

3

A
lg
or

ith
m

3
(t
im

e
co

m
pl

ex
ity

/s
ec

)

6,
11

7,
02

5/
3

18
,0
36

,9
12

/8
83

,8
60

,9
95

/4
1

18
6,
08

3,
32

8/
11

3
21

5,
25

2,
43

9/
11

0
36

4,
73

7,
74

7/
20

9
85

1,
87

1,
76

8/
56

1
19

,6
67

,3
87

,7
66

/8
,7
63

2,
78

7,
48

1,
70

5/
1,
50

8

N
o.

of
ba

se
pa

th
s

1,
22

9,
29

6
3,
68

5,
33

9
16

,2
77

,9
62

27
,4
40

,3
61

37
,6
73

,1
55

73
,6
06

,0
66

11
6,
91

5,
92

9
16

1,
20

1,
63

2
23

4,
28

4,
26

1

A
lg
or

ith
m

4
(t
im

e
co

m
pl

ex
ity

/s
ec

)

6,
31

4,
99

6/
18

18
,7
34

,2
71

/5
9

99
,4
97

,8
79

/3
00

21
0,
24

5,
28

3/
69

8
23

8,
31

0,
32

7/
73

1
43

0,
21

2,
88

8/
1,
31

0
80

4,
85

4,
85

0/
3,
46

3
15

,9
46

,0
58

,2
14

/7
9,
91

1
3,
67

0,
44

9,
44

4/
12

,0
91

A
lg
or

ith
m

5
(t
im

e
co

m
pl

ex
ity

/s
ec

)

3,
93

0,
96

3/
6

11
,3
16

,3
46

/2
4

47
,5
10

,8
98

/8
5

76
,0
40

,0
38

/1
35

10
8,
34

0,
93

6/
21

0
20

0,
65

0,
14

5/
38

9
30

7,
25

4,
70

7/
63

0
47

4,
00

7,
99

6/
1,
02

7
87

9,
52

9,
45

9/
3,
52

2

Frontiers in Bioinformatics 07 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1577324
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Al-okaily and Tbakhi 10.3389/fbinf.2025.1577324

FIGURE 2
Execution time (log–log scale) of algorithms 1 (blue), 3 (green), 4 (orange), and 5 (red) plotted against genome size (number of nucleotide/leaf nodes).
The linear trend observed for algorithms 3 and 5 confirms their linear-time behavior, while algorithms 1 and 4 exhibit superlinear growth.

In the preprocessing step, header lines and newline characters
were removed from each FASTA file, and all lowercase nucleotides
were converted to uppercase. As a result, each genome was
converted to a single-line sequence with all nucleotides in
uppercase. The Python script used for this preprocessing step is
available at the repository: https://github.com/aalokaily/Finding_
base_suffixes_and_base_paths_in_suffix_trees.

All five algorithms presented in this study were implemented
in Python and are publicly available in the aforementioned
repository. Notably, the non-trivial algorithm (Algorithm 2)
was excluded from the comparative analysis because it is both
theoretically and empirically slower than the other non-trivial
algorithm (Algorithm 1), as demonstrated by preliminary tests
(data not shown). Regarding base suffix identification, the results
obtained using the linear algorithm (Algorithm 3) perfectly
matched those of its non-trivial counterpart (Algorithm 1) for
each internal node in the ST. Across all tested genomes, the
total number of base suffixes under all internal nodes is equal
to n. Similarly, for base path identification, the outputs of the
non-trivial algorithm (Algorithm 4) and the linear algorithm
(Algorithm 5) were identical across all internal nodes in an ST.
Across all tested genomes, the total number of base paths remained
bounded by O(Σn). A summary of these results is provided in
Table 1.

Finally, a statistical analysis was conducted to evaluate the
scalability and performance differences among the proposed
algorithms. The execution time for each algorithm was plotted
against the genome size, as shown in Figure 2. Linear regression
confirmed a strong linear relationship between genome size and
runtime for linear algorithms 3 and 5 (R2 > 0.99), consistent
with theoretical expectations. In contrast, algorithms 1 and 4
exhibited superlinear growth due to their dependence on variable

h values. One-way ANOVA showed significant differences in
runtime across all algorithms (F = …,p < 0.001). Post hoc pairwise
t-tests (Bonferroni-corrected) confirmed that Algorithms 3, 5 were
significantly faster than their non-trivial counterparts (algorithms
1 and 4, respectively; p < 0.01). These findings empirically validate
the linear time performance of the proposed linear algorithms
(Algorithms 3, 5) across genomes of varying sizes.

4 Conclusion

Theprimary contribution of theOT indexing of base suffixes and
base paths is their linear time and space cost for indexing all suffixes
and paths under all internal nodes in an ST. This property is not
achievable using existing suffix tree construction algorithms (such
as Ukkonen’s algorithm (Ukkonen., 1995) or McCreight’s algorithm
(McCreight, 1976)) or other approaches related to suffix trees. The
resulting linear OT index enables indexing all suffixes or paths
under all internal nodes with a complexity factor of n instead of nh.
This capability can be incorporated into more efficient solutions for
problems related to next-generation sequencing analysis (Li, 2013;
Hu et al., 2024; Guo et al., 2024; Wang et al., 2024a; Wang et al.,
2024b) and machine learning (Zhao et al., 2025; Yue et al., 2024a;
Zhao et al., 2024; Zhao et al., 2022; Yue et al., 2024b).

Data availability statement

Source code of the algorithms are available at https://github.
com/aalokaily/Finding_base_suffixes_and_base_paths_in_suffix_
trees. Further inquiries can be directed to the corresponding
author.

Frontiers in Bioinformatics 08 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1577324
https://github.com/aalokaily/Finding_base_suffixes_and_base_paths_in_suffix_trees
https://github.com/aalokaily/Finding_base_suffixes_and_base_paths_in_suffix_trees
https://github.com/aalokaily/Finding_base_suffixes_and_base_paths_in_suffix_trees
https://github.com/aalokaily/Finding_base_suffixes_and_base_paths_in_suffix_trees
https://github.com/aalokaily/Finding_base_suffixes_and_base_paths_in_suffix_trees
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org


Al-okaily and Tbakhi 10.3389/fbinf.2025.1577324

Author contributions

AA: Conceptualization, Investigation, Methodology, Software,
Validation, Writing – original draft, Writing – review and editing.
AT: Investigation, Project administration, Supervision, Writing –
review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

The term “OSHR” tree is derived from the last names
of the first author and his PhD committee members at the
University of Connecticut, Department of Computer Science,
in 2016. The committee included Chun-Hsi Huang (Major
Advisor), Sanguthevar Rajasekaran, and Don Sheehy. The name
Okaily–Sheehy–Huang–Rajasekaran (OSHR) honors their kind,
influential, and professional guidance throughout the first author’s
doctoral studies. Additionally, the abbreviation “OT” corresponds
to the last names of the authors of this work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Abouelhoda, M. I., Kurtz, S., and Ohlebusch, E. (2004). Replacing suffix trees
with enhanced suffix arrays. J. discrete algorithms 2, 53–86. doi:10.1016/s1570-
8667(03)00065-0

Apostolico, A., and Cunial, F. (2014). Suffix trees and arrays. J. Encycl. Algorithms,
1–10. doi:10.1007/978-3-642-27848-8_627-1

Belazzougui, D., Cunial, F., Kärkkäinen, J., and Mäkinen, V. (2020). Linear-time
string indexing and analysis in small space. ACM Trans. Algorithms (TALG) 16, 1–54.
doi:10.1145/3381417

Ferragina, P., and Manzini, G. (2000). “Opportunistic data structures with
applications,” in Proceedings 41st annual symposium on foundations of computer science
(IEEE), 390–398.

Guo, P., Li, Y.,Wang, R., Chen,X., Kim, S., andPark,H. J. (2024).Deepneural network
learning biological condition information refines gene-expression-based cell subtypes.
Briefings Bioinforma. 25, bbad512. doi:10.1093/bib/bbad512

Hu, J., Wang, Z., Sun, Z., Hu, B., Ayoola, A. O., Liang, F., et al. (2024). NextDenovo:
an efficient error correction and accurate assembly tool for noisy long reads. Genome
Biol. 25, 107. doi:10.1186/s13059-024-03252-4

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with
bwa-mem. arXiv 1303.3997. doi:10.48550/arXiv.1303.3997

McCreight, E. M. (1976). A space-economical suffix tree construction algorithm. J.
ACM (JACM) 23, 262–272. doi:10.1145/321941.321946

Starikovskaya, T., and Vildhøj, H. W. (2015). A suffix tree or not a suffix tree? J.
Discrete Algorithms 32, 14–23. doi:10.1016/j.jda.2015.01.005

Ukkonen, E. (1995). On-line construction of suffix trees. Algorithmica 14, 249–260.
doi:10.1007/bf01206331

Wang, S., Dong, K., Liang, D., Zhang, Y., Li, X., and Song, T. (2024a). Mippis:
protein–protein interaction site prediction network with multi-information fusion.
BMC Bioinforma. 25, 345. doi:10.1186/s12859-024-05964-7

Wang, T., Zhang, Y., Wang, H., Zheng, Q., Yang, J., Zhang, T., et al. (2024b). Fast and
accurate dnaseq variant calling workflow composed of lush toolkit.Hum. Genomics 18:
(1), 114. doi:10.1186/s40246-024-00666-w

Weiner, P. (1973). “Linear pattern matching algorithms,” in 14th annual symposium
on Switching and Automata Theory (swat 1973) (IEEE), 1–11.

Wellnitz, P. (2021). Counting patterns in strings and graphs. Saarbrücken, Germany:
Saarländische Universitäts-und Landesbibliothek. Ph.D. thesis.

Yue, J., Peng, B., Chen, Y., Jin, J., Zhao, X., Shen, C., et al. (2024a). 3dsmiles-gpt: 3d
molecular pocket-based generation with token-only large language model. Chem. Sci.
15 (—), 13727–13740. doi:10.1039/d4sc03744h

Yue, J., Peng, B., Chen, Y., Jin, J., Zhao, X., Shen, C., et al. (2024b). Unlocking
comprehensive molecular design across all scenarios with large language model and
unordered chemical language. Chem. Sci. 15, 13727–13740. doi:10.1039/D4SC03744H

Zhao, B.-W., Su, X.-R., Hu, P.-W., Ma, Y. P., Zhou, X., and Hu, L. (2022). A geometric
deep learning framework for drug repositioning over heterogeneous information
networks. Briefings Bioinforma. 23, bbac384. doi:10.1093/bib/bbac384

Zhao, B.-W., Su, X.-R., Yang, Y., Li, D.-X., Li, G.-D., Hu, P.-W., et al. (2024).
A heterogeneous information network learning model with neighborhood-level
structural representation for predicting lncrna–mirna interactions. Comput. Struct.
Biotechnol. J. 22, 2924–2933. doi:10.1016/j.csbj.2024.06.032

Zhao, B.-W., Su, X.-R., Yang, Y., Li, D.-X., Li, G.-D., Hu, P.-W., et al. (2025).
Regulation-aware graph learning for drug repositioning over heterogeneous biological
network. Inf. Sci. 686, 121360. doi:10.1016/j.ins.2024.121360

Frontiers in Bioinformatics 09 frontiersin.org

https://doi.org/10.3389/fbinf.2025.1577324
https://doi.org/10.1016/s1570-8667(03)00065-0
https://doi.org/10.1016/s1570-8667(03)00065-0
https://doi.org/10.1007/978-3-642-27848-8_627-1
https://doi.org/10.1145/3381417
https://doi.org/10.1093/bib/bbad512
https://doi.org/10.1186/s13059-024-03252-4
https://doi.org/10.48550/arXiv.1303.3997
https://doi.org/10.1145/321941.321946
https://doi.org/10.1016/j.jda.2015.01.005
https://doi.org/10.1007/bf01206331
https://doi.org/10.1186/s12859-024-05964-7
https://doi.org/10.1186/s40246-024-00666-w
https://doi.org/10.1039/d4sc03744h
https://doi.org/10.1039/D4SC03744H
https://doi.org/10.1093/bib/bbac384
https://doi.org/10.1016/j.csbj.2024.06.032
https://doi.org/10.1016/j.ins.2024.121360
https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org

	1 Introduction
	2 Methods
	2.1 Okaily-Sheehy-Huang-Rajasekaran (OSHR) tree structure
	2.2 Okaily-Tbakhi (OT) indexing
	2.3 Base suffixes
	2.3.1 Finding base suffixes

	2.4 Base paths
	2.6 Finding base paths

	3 Results
	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

