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Introduction: Identifying disease–target associations is a pivotal step in drug
discovery, offering insights that guide the development and optimization of
therapeutic interventions. Clinical trial data serves as a valuable source for
inferring these associations. However, issues such as inconsistent data quality
and limited interpretability pose significant challenges. To overcome these
limitations, an integrated approach is required that consolidates evidence from
diverse data sources to support the effective prioritization of biological targets
for further research.

Methods: We developed a comprehensive data integration and visualization
pipeline to infer and evaluate associations between diseases and known
and potential drug targets. This pipeline integrates clinical trial data with
standardized metadata, providing an analytical workflow that enables the
exploration of diseases linked to specific drug targets as well as facilitating
the discovery of drug targets associated with specific diseases. The pipeline
employs robust aggregation techniques to consolidate multivariate evidence
from multiple studies, leveraging harmonized datasets to ensure consistency
and reliability. Disease–target associations are systematically ranked and filtered
using a rational scoring framework that assigns confidence scores derived from
aggregated statistical metrics.

Results: Our pipeline evaluates disease–target associations by linking protein-
coding genes to diseases and incorporates a confidence assessment method
based on aggregated evidence. Metrics such as meanRank scores are
employed to prioritize associations, enabling researchers to focus on the most
promising hypotheses. This systematic approach streamlines the identification
and prioritization of biological targets, enhancing hypothesis generation and
evidence-based decision-making.

Discussion: This innovative pipeline provides a scalable solution for hypothesis
generation, scoring, and ranking in drug discovery. As an open-source tool, it
is equipped with publicly available datasets and designed for ease of use by
researchers. The platform empowers scientists to make data-driven decisions
in the prioritization of biological targets, facilitating the discovery of novel
therapeutic opportunities.
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1 Introduction

ClinicalTrials.gov, managed by the U.S. National Library of
Medicine (NLM), is a critical public repository that enhances
transparency and accessibility in biomedical research. Established
in 2000 under the Food and Drug Administration Modernization
Act (FDAMA) of 1997, it serves as a centralized platform
for registering clinical studies and disseminating trial results,
addressing challenges related to data accessibility and reliability
(Zarin and Keselman, 2007; Tse et al., 2018). By supporting
clinical trial registration, the database provides researchers,
policymakers, and the public with comprehensive information
about study designs, methodologies, and outcomes. Adherence
to global reporting requirements, including those mandated
by the International Committee of Medical Journal Editors
(ICMJE) and the World Health Organization (WHO), ensures
standardized practices across the research community (Laine et al.,
2007). ClinicalTrials.gov aligns with FAIR (Findable, Accessible,
Interoperable, and Reusable) principles (Wilkinson et al., 2016),
employing standardized data formats to enhance interoperability
across platforms and disciplines. It curates metadata, harmonizes
submissions, and implements consistent reporting standards,
addressing challenges such as incomplete reporting, variability
in trial methodologies, and inconsistencies in diagnostic criteria
(Riveros et al., 2013). The platform supports centralized trial
registration and compliance with legal and ethical mandates
for transparency (Zarin and Keselman, 2007). Its study results
database enables researchers to submit and access summary
results, fostering evidence-based decision-making and mitigating
publication bias through the inclusion of unpublished trial data
(Prayle et al., 2012). Furthermore, integration with global registries,
such as the WHO’s International Clinical Trials Registry Platform
(ICTRP), promotes harmonization and accessibility of clinical
research data worldwide. Despite its significant contributions,
ClinicalTrials.gov faces challenges including variations in reporting
quality, delays in result submissions, and inconsistencies in
terminology (DeVito et al., 2020). The platform continues to
evolve by introducing advanced data validation tools, promoting
adherence to global reporting standards, and collaborating with
stakeholders to refine metadata frameworks and bridge reporting
gaps. As a robust and scalable platform for managing clinical trial
data, ClinicalTrials.gov fosters transparency and enhances research
reproducibility while empowering the scientific community and
improving public trust.

The Database for Aggregate Analysis of ClinicalTrials.gov
(AACT) was introduced to address challenges in analyzing
aggregate data from ClinicalTrials.gov, such as inconsistent
data structures, variability in nomenclature, and evolving data
collection practices. Its purpose is to enhance the usability
of ClinicalTrials.gov data by consolidating and normalizing
information, enabling more effective aggregate analysis, policy
studies, and systematic evaluations of clinical trial attributes and
trends (Tasneem et al., 2012). AACT transforms raw clinical trial
data into a structured, enriched, and analyzable format, integrating
Medical Subject Headings (MeSH) terms and advanced curation
techniques to ensure consistency and usability (Tasneem et al.,
2012). By enabling systematic reviews, policy analysis, and
diverse applications, AACT plays a pivotal role in evaluating

FIGURE 1
Clinical Trial study counts by year indicating growth and trends.

global trial trends, aligning with FAIR principles, and driving
innovation in clinical research. Despite challenges like reliance
on MeSH hierarchies and limited global representation, ongoing
advancements in ontology integration and interoperability aim to
position AACT as an indispensable resource for the future of clinical
trial analysis.

The core principle of pharmacology is that drugs, whether
small molecules or biologics are designed to specifically interact
with target molecules, often proteins, to modulate physiological
processes and influence disease progression (Moffat et al., 2017;
Scannell et al., 2012). Advanced methods in the pharmaceutical
industry facilitate the discovery and optimization of these drugs,
addressing challenges in efficacy, dosing, and safety for market
approval (Hay et al., 2014). However, analysis of drug development
pipelines reveals that insufficient efficacy, particularly in late-
stage clinical trials, is a primary cause of failure, often due to
inadequate validation of the target’s role in disease physiology
(Ledford, 2011; Liu et al., 2021). This highlights the need
for rigorous evidence supporting target-disease associations to
improve success rates and minimize costly late-stage failures
(Dahlin et al., 2015). Traditionally, drug targets were selected
based on experimental evidence linking their modulation to disease
outcomes (Muller and Milton, 2012). Recent advancements in
high-throughput technologies, such as sequencing, genotyping,
and mass spectrometry, have enhanced our ability to characterize
biological samples, uncovering new opportunities to understand
disease mechanisms (Nickischer et al., 2018; Huang et al., 2011).
Furthermore, the growing repository of clinical trial data (Figure
1), alongside extensive literature, serves as a valuable resource for
identifying targets and generating hypotheses to inform the drug
discovery process (Page et al., 2021).

Here, we present TICTAC (Target Illumination Clinical Trial
Analytics with Cheminformatics), an application designed to
illuminate understudied drug targets by leveraging aggregated
data from AACT. TICTAC enables ranking, filtering, and
interpretation of inferred disease–target associations, assigning
scores derived from aggregated evidence linking diseases to
protein-coding genes mapped from drugs. This study outlines the
analytical framework and interpretability of TICTAC, addressing
statistical and semantic challenges. TICTAC demonstrates the
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application of data science in achieving scientific consensus
and improving interpretability. We hypothesized that the
disease–target associations inferred by TICTAC would align
with the curated associations in MedlineGenomics, and that
this comparison would reveal meaningful overlaps as well as
biologically informative divergences. To test this, we present a
methodology for validating TICTAC disease-gene associations
against MedlineGenomics (formerly Genetics Home Reference)
by leveraging standardized disease terminologies, such as Disease
Ontology IDs (DOIDs) (Schriml et al., 2022) and UMLS
Concept Unique Identifiers (CUIs) (McInnes et al., 2007). By
comparing disease-target associations across these datasets, the
aim is to quantify overlap, identify areas of divergence, and
provide insights into the consistency and reliability of the two
data sources.

2 Material and methods

2.1 AACT data preprocessing

The initial step in ourmethodology involved applyingNextMove
LeadMine (version 3.14.1). LeadMine, developed by NextMove
Software, is a commercial text mining tool that identifies and
annotates chemical entities, protein targets, genes, diseases,
species, and more using curated grammars and dictionaries
with advanced capabilities like correcting misspelled terms with
CaffeineFix technology and supports chemical entity recognition
in multiple languages, including Chinese and Japanese (Lowe
and Sayle, 2015). This tool was utilized to analyze intervention
names and study descriptions retrieved from ClinicalTrials.gov,
enabling the identification of unique drug names and their
corresponding SMILES (Simplified Molecular Input Line Entry
System) representations. However, many terms encountered, such
as “placebo,” “test product,” “medication,” and “chemotherapy,”
lacked specific structural chemical information. For disease-
named entity recognition (NER), we leveraged the JensenLab
Tagger (Cook and Jensen, 2019). The JensenLab Tagger is a
dictionary-basedNER tool designed to identify and annotate entities
such as genes, proteins, species, diseases, and other biomedical
terms within text. It has been instrumental in text-mining
applications, including extracting protein-protein interactions and
annotating biomedical literature. The source code is available
on GitHub: https://github.com/larsjuhljensen/tagger. This tool
was applied to trial descriptions to identify and categorize
diseases, resolving disease mentions to standardized terms in
the Disease Ontology (DOID). This enhanced the consistency
and granularity of disease data across sources. Subsequently,
compound-targetmapping was conducted to identify potential drug
targets. Chemical entities were mapped to PubChem (Kim et al.,
2021) using the PUG REST API with SMILES-based exact
search and to ChEMBL (Zdrazil et al., 2024) using REST API
queries via InChIKey. Biological targets were then mapped from
ChEMBL bioassays and linked to the Integrated Disease-Target
Knowledgebase (IDG-TCRD/Pharos) (Sheils et al., 2021) using
UniProt IDs (The UniProt Consortium, 2023). This systematic
mapping established relationships between chemical entities, their

biological targets, and associated diseases, forming a foundation for
data aggregation efforts.

Our dataset, extracted from the Aggregate Analysis of
ClinicalTrials.gov (AACT) database as of September 30, 2024,
comprised 507,584 studies, each identified by a unique NCT_
ID. These studies referenced 901,776 publications, associated
with 632,153 PubMed IDs (PMIDs) and 127,455 RESULT-type
references, spanning 170,697 unique NCT_IDs. For drug-related
data, 133,760 unique drug names were linked to 365,878 unique
intervention IDs. It is worth noting that individual NCT_IDs often
referenced multiple drugs, with synonymous naming conventions
contributing to challenges in precise drug identification.

Our analysis focused exclusively on interventional drug studies,
excluding observational studies. Of the total dataset, 388,958
(76.6%) studies were classified as interventional, with 177,780
designated as interventional drug studies, each linked to a unique
NCT_ID. To refine the chemical data, NextMove LeadMine was
used to resolve drug names into standardized chemical structures
via SMILES notation. This process identified 6,595 unique SMILES
associated with 23,982 unique intervention IDs and 19,662 unique
drug names.The resulting dataset included 901,776 study references
and 632,153 PubMed IDs, offering a robust basis for linking
identified entities in clinical trial data to biomedical literature.

2.2 Computations for disease-target
associations

2.2.1 nStudyNewness
The nStudyNewness metric quantifies the recency-weighted

relevance of clinical studies associated with each disease-gene pair,
reflecting the higher impact of newer studies. This is achieved using
an exponential decay function that prioritizes recent studies.

wi = 2e−ti/h

where:

• t i is the age of the study in years,
• h is the half-life determining the decay rate (h = 5 years for
studies ≤10 years old and h = 10 years for older studies).

The total nStudyNewness for a disease-target pair is:

nStudyNewness =
N

∑
n=1
(wi )

where N is the total number of studies associated with the disease-
target pair.

2.2.2 nPublicationWeighted
The nPublicationWeighted metric assigns weights to

publications based on their reference type, accounting for their
varying levels of impact on disease-target associations. For each
publication i with reference type ri, the weight wi is defined as:

• wi = 1.0: If the publication reference type ri is a Result (denoted
by 0.0), it is given the highest weight.

• wi = 0.5: If ri is a Background reference (denoted by 1.0), it is
assigned a medium weight.
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• wi = 0.25: If ri is a Derived reference (denoted by 2.0), it is given
the lowest weight.

2.2.3 Ranking associations
To facilitate the prioritization of disease-gene associations,

rankings are computed based on multiple metrics, culminating in
an overall score.

1. RankComputation: For eachmetric (nDiseases, nDrug, nStud,
nPub, nStudyNewness, nPublicationWeighted), the rank Rm,j
for disease-target pair j is computed in descending order:

Rm,j = Rank(m, j)

2. Mean Rank: The average rank across all metrics for a disease-
target pair j is:

meanRankj =
1
K

K

∑
n=1

Rm,j

where K is the total number of metrics.

3. Percentile Rank: Percentile rank is calculated to normalize the
meanRank values:

percentileMeanRankj =
1
N
Rank(meanRankj × 100

where N is the total number of disease-target pairs.

4. Mean Rank Score:The final mean rank score, providing a scale
from 0 to 100, is:

meanRankScorej = 100− (percentileMeanRankj)

This methodology ensures inferred disease-target associations
are systematically ranked based on multiple evidence metrics, with
the highest meanRankScore indicating the most promising targets
for further research and development.

2.3 Validation method

The validation methodology included key steps to map
and compare disease-target associations between TICTAC and
MedlinePlusGenetics (MedlineGenomics) (U.S. National Library of
 Medicine, 2024). The mapping from Disease Ontology was
processed to link DOIDs with UMLS CUIs and validate data
integrity through unique counts. MedlinePlus genetics conditions
were formatted to align with thesemappings, ensuring compatibility
and accuracy. TICTAC disease-target associations were similarly
prepared by standardizing identifiers, refining data fields, and
verifying counts of key entities. Common CUIs between datasets
were identified, and their corresponding associations were extracted
for comparison. Overlaps between the datasets were evaluated by

analyzing shared associations, with the percentage of MedlinePlus
Genetics associations present in TICTAC calculated. The validation
assessed dataset integrity, overlap in conditions (common CUIs),
and overlap in disease-target associations to measure alignment and
reliability.

3 Results

3.1 The TICTAC application

TICTAC supports drug target identification by scoring and
ranking associations between drug targets (protein-coding genes)
and diseases. The TICTAC workflow aggregates and filters inferred
clinical trial findings to generate actionable insights. These insights
can be leveraged to enhance target prioritization through interactive
visualizations and hit lists (Figure 2), enabling users to identify the
strongest, evidence-supported associations.

Hits in the TICTAC dashboard are ranked by meanRankScore,
as described in Section 2. The scatterplot presents evidence
(meanRankScore) on the X-axis versus publication count (nPub)
on the Y-axis, visually representing disease-target associations. The
workflow allows users to filter results using query parameters such as
disease terms (e.g., “type 2 diabetes/insulin resistance,” DOID:9352)
and gene symbols. Data points in the scatterplot are colored by
target development level (TDL), a knowledge-based classification
system that categorizes human proteins into four distinct groups
(Oprea et al., 2018) as Tclin (Santos et al., 2017), Tchem, Tbio,
and Tdark for the comprehensiveness of exploration from clinical,
chemical, and biological perspectives. This framework enables the
prioritization of disease-target pairs based on their evidence levels
and functional classifications, facilitating drug discovery efforts and
identifying novel targets for further research.

3.2 Agreement-based validation of TICTAC
and MedlinePlus genetics datasets

The agreement-based validation process revealed that the
TICTAC dataset includes 2,243 unique Disease Ontology IDs
(DOIDs) and 2,022 unique gene symbols, while the MedlinePlus
Genetics dataset contains 1,216 conditions mapped to Concept
Unique Identifiers (CUIs) and 2,142 unique CUIs. A total of
193 CUIs were shared between the two datasets, allowing for
a comparative analysis of associations. For the shared CUIs,
the TICTAC dataset encompassed 63,569 associations involving
1,804 gene symbols, whereas the MedlinePlus Genetics dataset
comprised 1,247 associations involving 967 gene symbols. Notably,
136 associations overlapped between the two datasets, accounting
for 10.91% of the MedlinePlus Genetics associations. This indicates
that the TICTAC dataset contains a high proportion of novel
associations, with an estimated 89% of associations being unique to
TICTAC.These results highlight the potential of the TICTACdataset
to contribute significant novel insights, while also demonstrating
consistency between the datasets for a subset of shared associations.
This agreement-based approach underscores the complementary
nature of these resources and the value of TICTAC for expanding the
landscape of disease-target associations for further investigation.
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FIGURE 2
TICTAC dashboard. The image displays genes currently associated with the disease “type 2 diabetes/insulin resistance” (DOID:9352).

3.3 Using TICTAC for drug target
illumination

3.3.1 Exploring understudied genes in Type2
diabetes/insulin resistance: integrating metrics
for target discovery potential

Figure 3 highlights examples of understudied (Tbio) genes
associated with “type 2 diabetes/insulin resistance” within the
TICTAC framework. The analysis focuses on genes classified as
Tbio, indicating they are less characterized and have limited
research attention compared to more “established targets”. The table
provides key metrics for each gene-disease pair, including the
number of diseases (nDiseases), drugs (nDrug), studies (nStud), and
publications (nPub), along with evidence prioritization scores such
as nStudyNewness and meanRankScore. These metrics collectively
illustrate the relative evidence strength and research activity for
each gene-disease pair. The analysis reveals significant variability
in the evidence supporting these genes. For instance, some genes,
such as UGT1A10 (41 publications, meanRankScore = 97.87784),
have substantial supporting evidence, while others, such as COQ8A
(0 publications, meanRankScore = 46.33545), remain less explored
in the literature. Importantly, all listed genes have some level
of therapeutic association, as reflected in the nDrug column,
which indicates the number of drugs linked to each gene. For
example, MAP4K4 and RAC1 are linked to drugs such as Sorafenib
and Dasatinib, while other genes, such as CISD2, are associated
with broader therapeutic contexts. The nStudyNewness metric
emphasizes the relevance of recent evidence for these gene-disease
pairs, with genes like CISD2 demonstrating strong support from
newer studies and achieving a high meanRankScore (98.92213).
Such metrics underscore the potential for these Tbio genes to serve
as new therapeutic targets for metabolic disorders. Genes with high
meanRankScore and robust evidence, such as CISD2, may warrant

further investigation in drug discovery efforts. Conversely, genes
withminimal publications, such as COQ8A, represent opportunities
for expanding research into their roles in type 2 diabetes and insulin
resistance.

Overall, this analysis of Tbio genes in the context of type
2 diabetes/insulin resistance highlights the utility of TICTAC in
identifying andprioritizing understudied targets for further research
and therapeutic development. By integrating metrics such as
meanRankScore, nPub, and nStudyNewness, the framework enables
systematic exploration of gene-disease associations, providing
actionable insights for drug discovery.

3.3.2 Integrating evidence for disease-target
associations: insights from the TICTAC
provenance dashboard

Figure 4 presents the TICTAC Provenance Dashboard, which
provides detailed reference data supporting the association
between the MCR4 (Melanocortin receptor 4) gene and type
2 diabetes/insulin resistance (DOID:9352). This dashboard
aggregates references from clinical trials and publications, offering
comprehensive insights into the evidence linking the gene to the
disease. The framework for the provenance of this association
includes several key elements. The nct_id column lists unique
identifiers for clinical trials, while the reference_type column
categorizes evidence as BACKGROUND (contextual information),
RESULT (direct findings), or DERIVED (secondary findings). The
pmid column includes PubMed IDs linking to corresponding
publications, and the citation column provides bibliographic
details such as titles, authors, journals, and publication years. The
results reveal a mix of evidence types. BACKGROUND references
highlight physiological mechanisms like insulin sensitivity and
glucose metabolism foundational to type 2 diabetes research.
RESULT references contribute direct findings, such as variability
in cyclooxygenase inhibition in aspirin studies, while DERIVED
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FIGURE 3
Examples of understudied (Tbio) genes for disease “type 2 diabetes/insulin resistance” in TICTAC.

FIGURE 4
Provenance for association between gene MCR4 (Melanocortin receptor 4) and disease “type 2 diabetes/insulin resistance”.

references explore broader evidence, such as anti-psychotropic
medication usage. For example, Larsen et al. (2012) offer insights
into diabetes mechanisms.

Sodium-glucose cotransporter 2 (SGLT2) inhibitors have
emerged as a novel therapeutic approach for type 2 diabetes,
particularly in improving cardiovascular outcomes.These inhibitors
reduce myocardial glucose uptake by up to 57%, inducing
metabolic shifts toward fatty acid utilization (Lauritsen et al.,
2021). Additionally, they lower myocardial blood flow (MBF)
by approximately 13%, potentially due to diuretic effects that

reduce blood pressure and alter renal hemodynamics (Kimura,
2016). While SGLT2 inhibitors significantly mitigate glucose
uptake and blood flow, their broader cardioprotective effects
likely involve mechanisms beyond these metrics. For example,
they do not notably alter myocardial oxygen consumption,
suggesting additional pathways are at play (Lauritsen et al., 2021;
Huang et al., 2023). Despite these complexities, improved cardiac
function and reduced heart failure risk highlight their therapeutic
potential (Huang et al., 2023). A strong hypothesis thus emerges:
SGLT2 inhibition improves cardiac outcomes in individuals with
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FIGURE 5
TICTAC dashboard, displaying a plot of genes associated with disease “lung cancer” (DOID:1324).

type 2 diabetes by inducing metabolic shifts, reducing myocardial
blood flow, and enhancing cardiac efficiency. This framework
underscores the importance of integrating diverse evidence types to
establish robust disease-target associations. Direct access to clinical
trial identifiers and PubMed references enhances reproducibility
and credibility, making the TICTAC Provenance Dashboard a
valuable resource for researchers exploring therapeutic targets in
type 2 diabetes.

3.3.3 Mapping disease-target associations and
evidence in lung cancer research

Figures 5, 6 provide a comprehensive view of gene-disease
associations related to lung cancer (DOID:1324), focusing on
potential gene targets and the provenance of specific evidence
linking the PGR (Progesterone receptor, UniProt: P06401) gene to
the disease.

Figure 5 presents the TICTAC Disease-Target Dashboard,
which highlights key metrics for genes associated with lung
cancer. The dashboard includes metrics such as the number
of diseases (nDiseases), drugs (nDrug), studies (nStud), and
publications (nPub) related to each gene-disease pair. Additional
evidence metrics such as nStudyNewness, which prioritizes recent
studies, and PublicationWeight, which accounts for the relevance
of evidence, are also shown. The meanRankScore provides a
composite metric ranking associations based on the strength
and quality of evidence. For each gene, the dashboard also lists
the associated drugs and Target Development Level (TDL), a
classification reflecting the druggability of the gene.Notable findings

include highly ranked genes such as ADK (meanRankScore =
97.73276) and BDKRB2 (meanRankScore = 95.97179), which are
supported by robust evidence from multiple studies, publications,
and associated drugs. Therapeutically, drugs such as Abemaciclib,
5-Fluorouracil, and Carboplatin are frequently linked to the listed
genes, emphasizing their relevance to lung cancer treatment. The
genes in this dashboard are classified as Tchem, indicating their
known potential as druggable targets, making this dashboard
a critical resource for prioritizing genes with strong evidence
for further exploration in lung cancer research and therapeutic
development.

Figure 6 provides detailed evidence provenance for the
association between the PGR (Progesterone receptor) gene and
lung cancer. The TICTAC Provenance Dashboard aggregates
references from clinical trials and publications to trace the
supporting evidence. It includes clinical trial identifiers (nct_id),
2978 reference types categorized as RESULT for direct findings or
BACKGROUND for supporting evidence, PubMed IDs (pmid),
and detailed citations for each referenced study. The provenance
dashboard reveals that the association between PGR and lung
cancer is supported by both direct results and background
studies. These references detail the role of therapies such as
carboplatin in treating lung cancer, providing clinical context for
PGR’s relevance. This detailed provenance ensures the traceability
of the data and supports further exploration of PGR in lung
cancer research.

Taken together, Figures 5, 6 illustrate the utility of TICTAC in
mapping disease-target associations and integrating comprehensive
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FIGURE 6
Provenance for association between PGR gene (Uniprot: P06401) “Progesterone receptor” and disease “lung cancer”.

FIGURE 7
TICTAC data sources and interfaces. TICTAC integrates clinical trial data from the AACT db and cross referenced other sources to rank disease–target
associations. These associations can be accessed through the TICTAC github repository.

evidence provenance. The TICTAC Disease-Target Dashboard
enables the identification of high-priority gene targets and
associated drugs, while the Provenance Dashboard provides
detailed and traceable evidence for specific genes like PGR. This
combination of tools allows for a robust prioritization framework,
supporting translational research and advancing the discovery
of potential therapeutic targets.

4 Discussion

4.1 Illuminating knowledge gaps in targets

The National Institutes of Health’s (NIH) Illuminating the
Druggable Genome (IDG) program is dedicated to advancing our
understanding of understudied proteins within pivotal druggable
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families, including G-protein-coupled receptors (GPCRs), ion
channels, and protein kinases (National Institutes of Health, 2024).
By elucidating the roles of these proteins in health and disease,
the program seeks to identify novel therapeutic targets and foster
innovative drug development strategies.

For a detailed exploration of the objectives and methodologies
of the IDG program, refer to “Unexplored therapeutic opportunities
in the human genome” by Oprea et al. (Oprea et al., 2018).
TICTAC aligns seamlessly with this mission, focusing on evaluating
clinical trial evidence to reveal disease–target associations. Unlike
other platforms, such as Open Targets (Ghoussaini et al., 2021;
Ochoa et al., 2021), which leverage a blend of data, supervised
machine learning, and external sources, TICTAC strictly aggregates
evidence from the AACT database. This approach minimizes
biases inherent in curated training data and domain-specific
assumptions, offering interpretable results that are grounded in
experimental provenance and reproducible methodologies. By
integrating its automated, sustainable workflow into resources such
as the Pharos portal (Nguyen et al., 2017; Sheils et al., 2021), TICTAC
complements existing tools for target illumination. While Open
Targets supports scientists by enhancing associations with external
validation, TICTAC prioritizes the rigor of direct clinical trial data.
This makes it particularly suited for downstream users who require
traceable, transparent insights into disease–target relationships.

4.2 Transforming data into actionable
knowledge

In genomics and drug discovery, where data overload is a
persistent challenge, transforming raw information into actionable
knowledge remains critical. Specialized tools aid in uncovering
insights, but the interpretation and integration of these findings
often demand expertise that non-specialists may lack. TICTAC
addresses this gap by introducing a layer of abstraction that is
not only accessible but also directly aligned with the objectives
of drug discovery scientists. TICTAC’s design philosophy rests on
simplicity and scientific axioms, such as prioritizing evidence from
independent confirmatory results (Yang et al., 2021). This emphasis
ensures the interpretability of findings and highlights clinical
trial results as a cornerstone of evidence-based reasoning. While
correlation does not equate to causation, it builds a foundation
of plausibility, fostering hypothesis generation and prioritization.
With this context in mind, TICTAC provides a pragmatic, rational
framework for ranking research hypotheses. Clinical trials are
often influenced by experimental noise and systematic uncertainties
stemming from factors like the COVID-19 pandemic’s impact
on follow-ups (Servick, 2020), incomplete data from missing
participants (Verzilli and Carpenter, 2002), and biases in endpoint
evaluations (Chen et al., 2020). Ambiguities in defining study
populations and inadequate reporting of sample sizes further
complicate result interpretation (Frampton and Shepherd, 2008).
Addressing these challenges through improved methodologies and
reporting standards is essential to enhance the validity and reliability
of trial outcomes. While acknowledging that experimental noise
and systematic uncertainties can accompany clinical trial data, the
approach ensures that aggregated insights aremeaningful and usable
for non-specialist stakeholders in drug development.

4.3 Designing for seamless integration and
confidence

Biomedical knowledge discovery thrives on the integration
of diverse, heterogeneous data sources, reflecting the inherent
complexity of the field. However, challenges related to provenance,
interpretability, and confidence frequently undermine these efforts.
TICTAC addresses these concerns by employing simple yet robust
metrics, such as unbiased meanRank scores, to evaluate and rank
disease–target associations. One of TICTAC’s key innovations
lies in its transparent approach to confidence assessment. By
restricting provenance to the linked publications, the platform
ensures enhanced interpretability and traceability. This minimalist
yet methodical approach reduces the accumulation of errors
and confidence decay that often plague systems integrating
multiple, heterogeneous data sources. Continuous confidence
scores allow for dynamic algorithmic weighting and filtering,
supporting downstream applications that require both precision and
flexibility. The clear use of standardized identifiers and semantics
strengthens integration across biomedical resources, paving the
way for consistent cross-platform compatibility. Figure 7 illustrates
TICTAC’s workflow and interfaces, underscoring its defined role in
disease–target discovery pipelines. With its focus on transparency,
interpretability, and confidence, TICTAC offers a practical and
scientifically rigorous tool for advancing biomedical research and
drug discovery.

4.4 Validation

The validation process revealed a 10.91% overlap between
MedlineGenomics and TICTAC disease-gene associations for the
193 shared CUIs, indicating some level of consistency while also
highlighting significant differences between the datasets. These
discrepancies arise from variations in data collection methods,
terminological standards, and the granularity of gene-disease
associations. The low percentage of overlap underscores the need
for improved standardization in disease-gene datasets. This process
emphasized the value of standardized identifiers such as DOIDs
and CUIs for aligning and comparing biomedical data. It also
highlighted potential gaps in data completeness or detail, which
could affect the utility of these datasets in downstream research, and
reinforced the importance of integrating multiple sources to achieve
a comprehensive understanding of disease-gene relationships.

5 Conclusion

The conventional “one gene, one function, one trait” paradigm,
as critiqued by Visscher et al. (2017), is no longer adequate for
understanding the intricate mechanisms underlying diseases. This
shift in understanding highlights the need for advanced tools that
can navigate the multifaceted nature of genetic and clinical data,
enabling researchers to uncover meaningful relationships between
genes, traits, and diseases (Yang et al., 2021). Modern biomedical
research demands tools that move beyond oversimplifications to
provide actionable insights grounded in real-world data. TICTAC
rises to this challenge by offering a dynamic platform tailored
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for drug target hypothesis generation and refinement, leveraging
clinical trial data and metadata to bridge the gap between
data complexity and practical application. Aligned with the
increasing focus on interpretable machine learning and explainable
artificial intelligence (XAI) (Adadi and Berrada, 2018), TICTAC
employs transparent, evidence-driven methodologies to elucidate
disease–target associations. Its foundation rests solely on clinical
trial data and metadata, supported by rational, intuitive evidence
metrics, and underpinned by a robust open-source pipeline
designed for continuous improvement and scalability. TICTAC’s
adaptability allows it to function either as a standalone resource
or as a component integrated with other analytical interfaces.
By simplifying the exploration of complex clinical data, TICTAC
contributes meaningfully to the identification and prioritization of
drug targets, offering a practical and evolving tool for advancing
biomedical research and translational science.
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